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Microwave multiphoton transitions between Rydberg states of potassium
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Observations are reported of complete sequences of N-photon resonant microwave transitions, in

potassium, from the (n +2)s state to the lowest energy state of the linear Stark manifold of principal

quantum number n. The number N of photons absorbed ranges from 1 to as high as 30, and n is in

the range from 16 to 19. A sequence is observed by scanning the static electric field, starting at the

field at which the levels undergo an avoided crossing, until zero field is reached. The maximum

number of photons absorbed is observed to be proportional to the microwave field amplitude, with

an olset of two photons at zero field. Dynamic Stark shifts of the levels are observed to be propor-
tional to the microwave power. The n dependence and absolute size of the shift are in agreement

with Floquet calculations. The relation between the N-photon resonances and microwave ioniza-

tion is discussed. In particular, resonances in microwave ionization spectra are seen to be due to
dynamic-Stark-shifted multiphoton transitions.

I. INTROOUCIaON

Electric field ionization has proved to be a valuable
technique for selectively detecting highly excited, or Ryd-
berg, atoms. ' A variety of experiments has shown that,
for atoms other than hydrogen, ionization occurs at the
saddle point of the potential surface of the combined
Coulomb and static electric fields. The field (in atomic
units) at which this classical ionization takes place is
given by 1/16n, where n is the principal quantum num-
ber.

For microwave Selds, however, ionization has been ob-
served to occur at lower field amplitudes than for static
or slowly rising ( —1 lss) electric fields. In Na and He, for
example, the threshold field for microwave ionization
is observed to vary as 1/n 5. Microwave ionization there-
fore requires another mechanism in addition to the classi-
cal 1/n" field ionization. This mechanism is provided by
the avoided level crossing of the highest-energy linear
Stark state of principal quantum number n with the
lowest-energy Stark state of principal quantum number
n + 1. This crossing occurs at the static field of 1/3n . If
the microwave field amplitude reaches this avoided cross-
ing, and the microwave frequency is comparable to the
minimum separation of the avoiding levels, the atom can
undergo a Landau-Zener transition at the avoided cross-
ing from the n Stark manifold to the n +1 manifold. The
transitions to still higher Stark manifolds then follow,
since the higher manifold-to-manifold crossings occur at
lower Selds, until Snally a state is reached which can be
classically ionized by the microwave field. In any case,
the n ~n + 1 Landau-Zener transition is the rate-limiting
step in the ionization process. This interpretation of the
1/3n ionization is supported by several observations.
First, the presence of a static field I', depresses the re-
quired microwave Seld by I'„ implying that the total field
must always reach the avoided crossing, as expected for a
Landau-Zener transition. Second, the analogous transi-
tion of a state of nonzero quantum defect 5 to the adja-

cent Stark manifold is observed to occur at a field of
25/3n, where 5/n is the energy separation from the
nearest hydrogenic level.

The Landau-Zener theory strictly applies to the case
where the electric field varies through the avoided cross-
ing linearly in time (for t ranging from —ao to + 00).
Rubbmark et al 'have . generalized this notion and have
studied the avoided-crossing traversal problem for experi-
mentally realizable electric field pulses. They have calcu-
lated the probability of diabatic traversal of the avoided
crossing by numerically integrating the Schrodinger
equation for two coupled levels, each with linear Stark
shifts away from the avoided crossing, for various types
of pulses. Their calculations show resonant behavior
when the field pulse has spectral content near the
minimum separation of the avoiding 1evels. Pillet et al.
have applied their calculational technique to the 1/3n
transitions of microwave ionization. Specifically, they
calculated the probability of making a transition from the
highest-lying n Stark state to the lowest-lying n +1 Stark
state with one half-cycle of the microwave field. Only a
half-cycle was used since transitions between states of the
same n were observed to be rapid and were assumed to be
so much more rapid than the hn transition that coher-
ence over many cycles was not possible. These calcula-
tions showed that the probability of making the hn tran-
sition was high if the microwave field very nearly reached
the crossing and the microwave frequency was approxi-
mately equal to the size of the avoided crossing.

%e have extended the Landau-Zener calculations of
Pillet et al. to the case in which there are many cycles of
the microwave field and a static 6eld is present as well.
When there are many coherent cycles of the microwave
6eld, the transition amplitudes for successive cycles can
add constructively or destructively, and as a result reso-
nances occur in the transition probabilities. The reso-
nances occur when the separation between the levels,
which is determined mainly by the Stark shift of the stat-
ic 6eld, but has a small contribution from the microwave
6eld, is equal to an integer times the microwave frequen-
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cy. A particular resonance has appreciable strength if
the peak electric field, i.e., the sum of the static field and
amplitude of the oscillating field, approaches the avoided
c1ossing.

%ith this connection between the Landau-Zener e6'ect
and multiphoton resonances in mind, it is reasonable to
expect that an experimental study of these Landau-Zener,
or multiphoton, transitions will be most instructive. In
particular, it will provide valuable information concern-
ing the rate-limiting step of microwave ionization
without all the complications of the actual ionization.
Here we expand on our previous report" on observations
of resonant microwave multiphoton transitions between
Rydberg states of potassium. SpeciGcally, we have ob-
served resonant transitions from the (n+2)s state to a
member of the linear Stark manifold with principal quan-
tum number n and have measured the threshold mi-
crowave field for this process in order to make explicit
the connection with the microwave ionization experi-
ments, for n in the range 16-19. The relevant potassium
energy levels are shown in Fig. 1 for n =17. The states
with l & 2 are nearly degenerate in zero static field (for a
given n), and therefore have approximately linear Stark
shifts. We will use the notation (n, n, ) for the manifold
state which connects adiabatically to the zero-Geld state
with l=n&. The s state has quantum defect 5, =2. 18,
placing the 19s state approximately 8 cm ' below the
n = 17 manifold. The manifold states contain very little p
character, as can be seen from the behavior of the 19@
state in Fig. 1. As a result the s state has relatively little
Stark shift and small avoided crossings with the lowest
linear Stark states.

The observations of microwave resonances were con-
centrated primarily on transitions to the lowest manifold
level. In this case the one-photon resonance is observed

-560

at a Geld just below the first s-state avoided crossing, and
resonances involving progressively more photons are
found at progressively lower values of the static Geld. In
Fig. 1 the S-photon transitions are indicated by the verti-
cal arrows for N =5 and 10 (for 9.278 GHz photons).
For n =17 the manifold to s-state energy separation in
zero static field is such that, for 9.278 GHz microwave
photons, transitions for N as large as 26 can be observed
before the static Geld reaches zero. The resonances occur
at the static field interval fm/S, where co is the mi-
crowave angular frequency and S =d W/dF is the
di8'erential Stark shift of the levels involved, where I' is
the static electric field and 8'=(energy of manifold
state) —(energy of s state). Therefore the spacing is small-
est for the transitions to the extreme members of the
manifold.

In Sec. II we describe the experimental approach. In
Sec. III we present our observations, beginning with the
threshold microwave fields required to drive the (n+2)s-
to-n manifold transitions. Unlike the microwave ioniza-
tion thresholds, which exhibit a smooth 1/3n depen-
dence, these thresholds do not exhibit a smooth 1/3n
behavior, and in addition exhibit structure. Observations
of microwave multiphoton resonances, including a care-
ful investigation of the transition rates and dynamic Stark
shifts produced by the microwave Geld, allow us to ac-
count for the irregularities in the microwave threshold
fields for the (n+2)s-to-n manifold transitions. The ob-
served transition rates and dynamic Stark shifts are com-
pared to theoretical calculations based on the Landau-
Zener theory and on a Floquet approach. Finally, in Sec.
IV the Floquet method is used to calculate the dynamic
Stark structure, which is compared to the observed dy-
namic Stark shifts.

II. KXPKRIMKNTAI. APPROACH

-$70

E

-380

19p

A schematic diagram of the experimental apparatus"
is shown in Fig. .2. A beam of ground-state potassium
atoms enters a microwave cavity through a small hole in
the cavity sidewall. The potassium atoms are stepwise
excited to the Rydberg s state by two pulsed dye lasers.
The Grst, with wavelength 770 nm, excites the 4s ground
state to the 4p & && state, and the second, with wavelength
-460 nm, drives the 4p, &2 state to the desired (n +2)s
state. The laser beams propagate antiparallel to the
atomic beam and enter the cavity through the opposite
sidewall. Following the laser pulses a 0.3-ps microwave
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FIG. 1. Stark energy levels of potassium in the vicinity of

n = 17. The notation {n,n, ) indicates the manifold state which
connects adiabatically to the zero-Geld state vnth I =nl. The
N-photon transitions are indicated for X =5 and 10 {for 9.278-
GHz photons}.
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FIG. 2. Schematic diagram of the experimental apparatus.
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pulse at 9.278 or 10.353 GHz drives the multiphoton
transitions. Then a high-voltage pulse is applied to a
copper septum in the cavity, producing an electric 6eld
which ionizes the excited atoms. The resulting ions leave
the cavity through a small hole in the center of its top
wall and are detected by a microchannel plate detector.
This signal is ampli6ed and sent to an integrator which is
gated to accept only the signal from the atoms which
have been excited to the manifold states. The integrator
output is collected and averaged by a microcomputer.
The signal from the microwave-excited atoms occurs ear-
lier than the signal from the s state, since the manifold
levels are ionized at a lower electric field and therefore
earlier in the 6eld ionization pulse. In general the mani-
fold levels with higher n i are ionized earlier and the sig-
nals arising from the various manifold levels can usually
be time resolved. The amplitude and slew rate of the ion-
ization pulse are adjusted to optimize this resolution.

The microwave cavity is a 20.32-cm-long piece of X-
band rectangular waveguide which is closed at both
ends. The septum is located just below the laser- and
atomic-beam entrance holes. The cavity is operated in
the TE,o„mode, where n is odd, producing an electric
field antinode (with respect to the directions parallel to
the septum) at the center of the cavity. In this mode the
microwave and static fields are parallel. The n =9 and 11
modes, with resonant frequencies 9.278 and 10.353 GHz,
respectively, have been used in the measurements de-
scribed here. The cavity is excited by a probe located a
quarter wavelength from one end. The microwave source
is an Avantek model 7872 yttrium-iron garnet-tuned os-
cillator, amplified by a Litton model 624 pulsed-
traveling-wave tube amplifier. A small portion of the os-
cillator output is coupled out to a counter, allowing us to
monitor the frequency. A variable crossed-vane attenua-
tor placed between the oscillator and amplifier provides
continuous variation of the microwave power. A circula-
tor between the amplifier and cavity allows us to monitor
the power re6ected from the cavity. The oscillator fre-
quency was adjusted to maintain the reflected power at a
minimum. The cavity has a measured Q of 1100, produc-
ing an electric field of 190 V/cm with 1 W of power in-
put. ' The microwave power was calibrated with a
Hewlett Packard 432A power meter. We estimate an un-
certainty of 10% in the field calibration, due primarily to
geometrical factors. Contributing to this is uncertainty
in the location of the interaction region, defined by the
overlap of the atomic and laser beams with the ion ex-
traction hole, relative to the cavity antinode. The con-
version from microwave power to electric field strength is
also dependent on the cavity geometry.

Two types of data are reported here, multiphoton reso-
nance spectra and threshold field scans. The multiphoton
resonance spectra are obtained by sweeping the static
field from the s-state crossing 6eld to zero 6eld, for a 6xed
microwave-field amplitude. The static 6eld is produced
by applying a dc voltage to the septum and is swept re-
petitively by a computer. The separation between the
septuin and top wall of the cavity is 0.4657(2) cm. This
dimension is inferred from the known s-state anticrossing
fields. ' To be precise, we calculated the 6eld of the one-

photon resonance using the known s anticrossing fields
and the static Stark shifts which are calculated using the
method described in Sec. III D. The implied assumption
that the dynamic Stark shift due to the microwave field is
negligible at the field strength required for a one-photon
transition will later be shown to be valid. The static field
hoiilogellelty is approximately 0.5%.

Also observed are threshold field scans, which are
analogous to microwave ionization thresholds. In these
the static field is zero, while the microwave field ampli-
tude is swept from zero to a value beyond the s-state
crossing field. These spectra are obtained by mechanical-
ly scanning the attenuator with a geared synchronous
motor. These types of data do not benefit from the long-
term averaging used for the multiphoton resonance spec-
trum, since successive sweeps of the attenuator are
diScult to align.

III. OBSERVATIONS AND INTERPRETATION

A. Microwave threshold spectra

In Fig. 3 we show the observed probability for making
the 18s-to-n =16 manifold transition as the 9.278-GHz
microwave 6eld is varied while the static 6eld is zero.
The laser populates the 18s state and the n =16 manifold
states are detected. These data are similar to the mi-
crowave ionization data, which are also obtained by vary-
ing the microwave field. In Fig. 3, however, the signal
from the n =16 manifold is detected using selective
pulsed field ionization, while no such field is used in mi-
crowave ionization. The two types of data are similar,
however, in displaying a smooth threshold as the mi-
crowave field is increased. In the 18s-to-n =16 transition
spectrum the smooth threshold occurs at the crossing
field of the 18s and (16,3) states, while the threshold in
the 18s microwave ionization spectrum occurs at the
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FIG. 3. Microwave threshold spectrum for transitions from
the 18s state to the n = 16 Stark manifold.
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Table I we have also listed the fields of the avoided cross-
ings of the (n +2)s states with the lowest Stark states
(n, 3). It is evident that the threshold fields do not exhibit
a smooth n dependence, as do the microwave ionization
threshold fields, but rather vary from near the crossing
field to 150 V/cm above the crossing field. As we shall
see, this can also be understood in terms of multiphoton
resonances.

B. Multiphoton resonance spectra

I

405
I 1 I I I

510 575 645 72 5 810 910
MICROWAVE F)ELD {V/cm)

1020

FIG. 4. Microwave threshold spectrum for transitions from
the 19s state to the n =17 Stark manifold. The resonance near
510 V/cm corresponds to the absorption of 27 microwave pho-
tons.

crossing of the highest-energy n =16 state with the
lowest-energy n = 17 state.

The 9.278 GHz spectrum for transitions from the 19s
state to the n =17 manifold is shown in Fig. 4. This
spectrum, with an obvious structure at low field in addi-
tion to the smooth threshold, is qualitatively difFerent
from the 18s spectrum. As we shall show in an explicit
fashion, the structure at low field is due to a multiphoton
transition which is brought into resonance by the dynam-
ic Stark shift of a 515-V/cm microwave field. Data
analogous to those shown in Figs. 3 and 4 were taken for
several states at the microwave frequency of 9.278 GHz.
In Table I we list the observed threshold and resonance
fields for transitions from the (n +2)s states, for n in the
range 16-21. As a threshold we have taken the point
where the signal has reached 50% of its final value. In

(n +2)$
state

18s
19s
20s
21s
22$
23$

'From Ref. 21.

Observed
threshold

Aeld

(V/cm)

775
695
405
455
295
285

Observed
resonance

field

(V/cm)

Avoided
crossing

field'
(V/cm)

753
546
404
304
233
180

TABLE I. Observed threshold and resonance 6elds for the
I",=0, (n+2)s-to-n manifold transitions and corresponding
avoided crossing 6elds.

Most of our efForts were focused on the study of reso-
nant transitions. A typical example of the multiphoton
resonance spectrum is shown in Fig. 5 for transitions
from the 19s state. Similar spectra were taken for 18s,
20s, and 21s. Each trace is taken at a particular mi-
crowave field amplitude, which is indicated at the left of
the trace. A large majority of the strongest resonances
are spaced evenly with respect to the static field. These
resonances represent X-photon transitions from the 19s
state to the (17,3) manifold state. The number X of pho-
tons absorbed is indicated at the top of the figure. The
remaining resonances seen in the figure represent transi-
tions to the other manifold states, primarily the (17,4)
state. For a given microwave field amplitude, resonances
are not observed for static fields below those shown in the
traces of Fig. 5. Therefore it is clear that progressively
higher microwave fields are required for the resonances
having higher N, which occur at progressively lower stat-
ic fields. In fact, the figure suggests that a particular res-
onance becomes observable when the total field, static
plus microwave, exceeds some constant value. It should
be noted that this observation is consistent with the pre-
viously mentioned Landau-Zener picture, in which tran-
sitions occur when the total field approaches the
avoided-crossing field. For the multiphoton resonance
spectrum, the relevant crossing is that of the s state with
the manifold state.

In order to make this point in a more quantitative
fashion, in Fig. 6 the microwave 6eld required to observe
a particular 19s-to-(17,3) multiphoton resonance is plot-
ted versus the number of photons absorbed. The frac-
tional part of the "number of photons" in Fig. 6 is
defined to be the strength of the weakest observable tran-
sition as a fraction of saturation. For example, in Fig.
5(a) a microwave field of 68 V/cm allows us to observe
6.2 photons. This threshold for observation of a particu-
lar resonance is somewhat uncertain since it depends on
the nonlinearity of saturation, the detection sensitivity of
the apparatus, and the broadening efFects due to electric
field inhomogeneity. In spite of these limitations, howev-
er, Fig. 6 clearly shows that the number of photons ab-
sorbed increases linearly with the microwave field.
Specifically, the line in Fig. 6 is a linear least-squares fit to
the data points. The linearity of the data is consistent
with the Landau-Zener picture, since the number of pho-
tons absorbed is proportional to the difFerence of the stat-
ic field and the crossing field. It is also important to note
that there is approximately a two-photon ofFset in the fit
of Fig. 6. That is, the one- and two-photon transitions
are driven with very small microwave fields, while higher
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FIG. 5. Multiphoton resonance spectrum for transitions from the 19s state to the n = 17 Stark manifold. Each trace is taken at a
fixed microwave field, indicated at the left of the trace. The number of photons absorbed, for transitions to the (17,3) level, is sho~n
at the top of the figure.
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FIG. 7. Identification of the multiphoton resonant transitions
from the 19s state at the 193-V/cm microwave field. The peaks
are labeled [n1,N], where N is the number of photons absorbed.
Note that the transitions to the lowest Stark manifold state
n

&

——3 are more closely spaced than those to the state n
&

——4, due
to the larger Stark shift for n

&

——3.

5 10 15 ZQ

NUMBER OF PHOTONS

FIG. 6, Microwave field required to observe the 19s-to-(17,4)
multiphoton transition vs the number of photons absorbed. The
line is a least-squares fit to the data points, demonstrating that
the total field, static plus microwave, required to drive the mul-

tiphoton transitions is constant. Note the two-photon ofFset at
zero field.

in Fig. 8. The s state,
~

2) in Fig. 8, is assumed to have
no Stark shift, while the manifold state,

~

1) in Fig. 8,
has a Stark shift —kF, where I is the electric 6eld. The
levels cross at the field I', when the coupling between
them is ignored. When the coupling b=(1

~

V
~

2) is
taken into account the levels repel, producing the avoided
crossing with closest approach 2b. Our goal is to calcu-
late the dependence on microwave field of the transition
probabilities for the multiphoton resonances which occur
as the static 6eld is tuned. As an example of such a reso-

S-photon transitions require a constant additional mi-
crowave field for each additional photon. We shall see
that these features emerge quite naturally from a dressed
atom description of the process.

In describing Fig. 5 we noted that nearly all the ob-
served transitions which occurred at regular static field
intervals were 19s-to-(17,3) transitions and that transi-
tions not Stting this pattern were transitions to higher en-
ergy (17,n, ) Stark states, with n, ~ 3. This is shown ex-
plicitly in Fig. 7, where the strongest peaks of the 193-
V/cm (microwave field) trace are identified, using the no-
tation [n, ,N]. Two points are worth noting. The transi-
tions to higher-energy Stark levels occur at larger static
field intervals due to the smaller Stark shifts of these lev-
els and the transitions become observable when the total
field, static plus microwave, reaches the crossing of that
Stark level with the s state.

l

Fs-Fee
I

Fs

ELECTR IC FIELD

C. Connection between the photon and Sell points of vie~

These observations can be explained in greater depth if
we examine the connection between the photon and field
points of view as it relates to transitions at an avoided
crossing. For simplicity, we will consider a two-level sys-
tem which approximates the levels which undergo the
avoided crossing, the (n +2)s and (n „3)states, as shown

FIG. 8. Multiphoton resonant transition at an avoided cross-
ing from the photon and field points of view. The solid curves
are the avoiding levels and the dashed lines are the levels which
cross when the coupling is ignored. The static field I", gives rise
to a six-photon resonant transition, indicated by the stacked ar-
rows. The range of the electric field variation is shown for the
case in which the peak field I', +I'M+ exactly reaches the cross-
ing field F, . The size of the avoided crossing is exaggerated for
clarity.
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F( t )=F, +FMw cosset, (2)

and the solution is no longer time independent. Here F,
is the static field, FMw is the microwave field amplitude,
and co is the microwave angular frequency. We wish to
calculate the probability for an atom originally in state

~

2 ) making a transition to state
~

1 ) . We shall use two
approaches to this problem, corresponding to the photon
and field points of view. From the field point of view the
microwave field brings the atoms to the avoided crossing
at F„where they undergo a Landau-Zener transition. ' '
From the photon point of view the multiphoton transi-
tions are treated in the Floquet, or dressed atom, ap-
proach. ' ' The calculations must ultimately be done
numerically and for this purpose we have chosen parame-
ters appropriate to the 19s-to-(17,3) transition.
Speci6cally we will use W'& ——220 GHz, 8'2 ——0, F, =550
V/cm [therefore k =400 MHz/(V/cm)], and b =400
MHz, and we will use 10 GHz as the microwave frequen-
cy. %ith these parameters the resonances occur at the
static field interval of 25 V/cm.

From the field point of view the resonant transitions
can be thought of as a generalization of the Landau-
Zener effect. Landau and Zener treated the case where
the variation of the electric Geld through the avoided
crossing is linear with respect to time. They found that
the probability for making the diabatic transition at the
avoided crossing is' '

—2%6po
2

(d W/dF)(dF/d&)
(3)

where eo——2b is the separation of the levels at the avoid-
ed crossing, dW/dF is the differential slope of the levels
(ignoring the coupling), and dF/dt is the rate of change
of the electric field.

Rubbmark et a/. ' have calculated the diabatic transi-
tion probability for fields that do not vary linearly in time
in traversing the avoided crossing. In particular, they
have considered cases for which the electric Geld varia-
tion turns on slowly, passes through the crossing region,
and then turns o8'slowly. The transition probabilities are
obtained by numerically integrating the time-dependent
Schrodinger equation for the two coupled levels.
Through an appropriate change of variables they are able
to use the Numerov integration method, which applies

nance, the six-photon transition is shown in Fig. 8.
If the wave function of this tmo level system is

represented by Q=T, (t)
~
1)+T2(t)

~
2), then the

Schrodinger equation leads to tmo coupled equations,

iT, =(8', —kF)T, +bT2,

i T2 ——bT, + W2T2,

where 8'& and 8 2 are the zero-field energies. If the field

is static the solution is time independent and can be ob-
tained by diagonalizing the Hamiltonian matrix, leading
to the energies shown by the solid hnes of Fig. 8. We are,
however, interested in the case in which a microwave as
well as a static field is present. In this case the electric
field is given by

1,0

0.8

CO

O
~ 0.6
X
CL

O
0.4

Z
K

0.2

399 400 40l
STATIC ELECTRIC F IEL D {9/crn)

402

FIG. 9. Transition probability calculated by numerical in-
tegration of the two-level Schrodinger equation for the six-
photon transition shown in Fig. 8. The microwave field is 150
V/cm.

when the differential equation is second order, linear, and
contains no first-order term. The calculations show reso-
nant behavior when the field variation has harmonic
components near ~o.

Rubbrnark et al. mere interested in diabatic transitions
induced by Geld pulses. That is, they considered only
monotonic variation of the electric field through the
avoided crossing. The Numerov method can be applied,
ho~ever, to any variation of the electric field as a func-
tion of time. In particular, we will assume that the elec-
tric field has the form of Eq. (2). In Fig. 8 the range of
the electric field variation is shown for the case in which
the peak field E, +FMw exactly reaches the crossing field

F, . Resonances in the calculated transition probability
begin to appear when the oscillation continues for at least
a few cycles. The connection between the slowly varying
field point of view, in which Landau-Zener transitions are
the model, 'and the resonance point of view, in which
multiphoton transitions are the model, therefore arises in
a continuous, natural fashion.

Multiphoton resonances appear in the Numerov calcu-
lations whenever the static field is such that the separa-
tion between the levels matches an integer multiple of the
microwave oscillation frequency. The static field F,
shown in Fig. 8 gives rise to a six-photon resonant transi-
tion, indicated by the stacked arrows. A resonance can
be observed in one of two ways: the frequency can be
swept at Axed static field or the static field can be swept
at Axed frequency. As can be seen in Fig. 5, we are in-
terested in the latter situation. Figure 9 shows a typical
resonance obtained from the numerical integration tech-
nique. Specifically the six-photon resonance at 400
V/cm, which occurs 150 V/cm below the crossing field, is
shown. The resonance is calculated with a microwave
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field amplitude of 150 V/cm and the previously men-
tioned values for k, co, and b appropriate to the 19s avoid-
ed crossing.

The line shape of the resonance shown in Fig. 9 is very
similar to the Rabi resonance pattern' and can therefore
be characterized by three parameters, the line center Fo,
the full width at half maximum b,F, and interaction time
t. The field width AI' is related to the Rabi frequency 0
by hF =40(18'/dF). This parameter is of primary im-
portance since it represents the strength of the transition.
The resonance represents a six-photon transition since
the hne center is very close to 400 V/cm. The interaction
time has been chosen to produce the "optimum perturba-
tion"' (Qt =n /2). We determine the values of the reso-
nance parameters by a least-squares fit of the calculated
resonance to the ideal Rabi pattern. For Fig. 9 the re-
sults are Fo =400.02 V/cm, bF=0.99 V/cm, and
Qr =0.99(w/2). The Rabi line shape provides an excel-
lent model for the calculated resonance, but a small de-
gree of asymmetry is evident in Fig. 9. For example, the
wing at the right of the main peak is slightly larger than
the left-hand wing. It is reasonable to assume that this
asymmetry is minimized at optimum perturbation.

We cannot expect to observe the Rabi pattern in our
experiment since it will be washed out by static and mi-
crowave field inhomogeneities. The calculated Rabi fre-
quency will, however, be proportional to the amplitude of
the transition. Therefore we have calculated the Rabi
frequency for N-photon transitions with various mi-
crowave field strengths. The results are shown in Fig. 10.
Each solid circle represents an X-photon transition (N is
plotted on the horizontal axis) for a particular microwave
field strength (plotted on the vertical axis). The diameter
of a circle is proportional to the calculated Rabi frequen-
cy. A transition is not shown if its calculated Rabi fre-
quency is below the threshold for observation, given our

T (t)=e ' ' g J (kF /fico)e (4)

detection sensitivity. The number N of photons absorbed
is proportional to the static field relative to the crossing
field and the microwave field is expressed as an equivalent
number of photons NMw (that is, proportional to the
Stark shift dW/dF). Therefore the peak electric field,
static plus microwave, exactly reaches the crossing field
when NM~ ——

¹ The resonance shown in Figs. 8 and 9
has XMw ——%=6.

Figure 10 clearly shows that the transition probabilities
are approximately constant along lines for which
dNMw Id% =1. More specifically, the transition proba-
bilities fall ofF sharply when N & NMw. This is consistent
with the Landau-Zener picture, which predicts that the
transitions occur with appreciable probability when the
total electric field reaches the crossing. The calculated
threshold for observation of a particular transition does,
however, exhibit the two-photon offset which was ob-
served experimentally, as shown in Fig. 6. From the
Landau-Zener point of view this effect is superficially
surprising since transitions are observed even when the
electric field does not reach the crossing. In this case,
however, the transition probabilities are small but not
zero since the coupling between the levels, although
sinall, is not zero away from the crossing.

The Floquet, or dressed-atom, approach to this prob-
lem was first used by Autler and Townes' and it provides
an alternative, perhaps more useful, way of approaching
the multiphoton transitions. It is useful to first consider
the problem of an atom in a combined static, F„and mi-
crowave, FMw costi, field in simple quasistatic terms. As
level

~

2) has no Stark shift it is alfected by neither the
static nor microwave field. Level

~
1), on the other

hand„has an average energy W, kF, which —is modulat-
ed by kkFMw at frequency co/2n Thus . the energy is not
a constant. Stated another way the interval between the
states

~
1) and

~

2) is frequency modulated at frequency
co/2n. Just as for an FM radio signal, if the modulated
frequency is Fourier analyzed it is found to consist of a
carrier at (W, kF, —W2)/h —with sidebands displaced
by integral multiples of co/2m. Thus, as shown by Autler
and Townes, the coefficient of

~

1) in the wave function
of Eq. (1) in a ffeld F=F, +FMw coscot is given by

l I t I I 1 i I 1

2 3 4 5 6 7 8 9 10
N NUMBER OF PHOTONS ABSORBED

FIG. 10. Transition strengths calculated by numerical in-
tegration for X-photon transitions at various microwave 6elds.
The diameter of a circle is proportional to the Rabi frequency of
the calculated resonance. The microwave 6eld is expressed as
an equivalent number of photons NM~. Note that the transition
strengths are approximately constant along lines for which
AM~/dN =1, and are appreciable for X —NM~ &2 (the tmo-
photon offset).

where J„ is the Bessel function of order n. That is, the
spatial wave function is unchanged, but there is no longer
a single energy but an infinite number of them, at inter-
vals of co. We shall refer to the states at the new energies
as sideband states in analogy with FM radio. At this
point it is worth noting a few points about the Bessel
function J„(x). For the large arguments relevant to the
multiphoton processes of interest, the values of J„(x)are
of comparable magnitude out to x =n, beyond which
point the amphtudes fall by a factor of 10 in two side-
bands. ' Thus further sidebands have negligible ampli-
tude and may be neglected. Thus the sidebands cover the
energy range kkFMw, as might be expected. In addition,
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the energies of the sideband states have the same depen-
dence on static field as does state

~

1 &.

The most convenient form of the solution to the prob-

lem at hand was worked out by Shirley. ' A Floquet ma-
trix, analogous to the usual Hamiltonian matrix, is diago-
nalized. For our case the matrix is given by

a
0

b

b
8'~
0 a

0
8'& + 2'

b

(5)

where a=kFMw/2. The blank entries are all zero. The
matrix has several features which are worth noting.
First, the diagonal energy levels occur in pairs, corre-
sponding to the energies of states

~

1 & and
~

2 &, plus or
minus an integer number of photons. These states are
coupled by the o8'-diagonal, field-independent coupling
matrix element b. The sets of energy levels difFering in

energy by one photon are coupled by the microwave field

through state
~

1& only. Notice also that the matrix is
infinite, to account for all possible sidebands. To obtain
reasonably accurate results, however, it is only necessary
to include enough sidebands to ensure that all with ap-
preciable amplitude are included. From our previous dis-
cussion of the Bessel function representation of level 1 we

know that the number of sidebands required is approxi-
mately N =(kFMw /%co)+2.

When the matrix of Eq. (5) is diagonalized for fixed
values of static and microwave fields it leads to energies
as shown in Fig. 11, in which we have shown the carriers
and sidebands as solid and dashed lines, respectively.
Note that the sidebands tune along with the carrier.
Note also that in addition to the avoided crossing of Fig.
8 (for which FMw ——0), there are avoided crossings of the
sideband states as well. As has been shown by Shirley, 17

the magnitudes of these avoided crossings at a particular
static field are equal to the Rabi frequency for the multi-
photon transition of interest. Thus by simply computing
the eigenvalues of the Floquet matrix of Eq. (5) we are
able to determine the transition rates. It is interesting to
note that it is possible to observe experimentally the
equivalence between multiphoton transitions and avoided
level crossings of dressed atomic states. Specifically, we
have detected the microwave multiphoton resonances as
anticrossings between the (n +2}s state and sidebands of
the (n, 3) states by monitoring the population transferred
to the (n +2}p state by 300-K blackbody radiation. The
blackbody-radiation transfer mechanism is discussed in
Refs. 13 and 21.

Before presenting the results of the numerical diago-
nalization of the Floquet matrix, it is first useful to sug-
gest a method for determining approximate solutions. As
shown by Eq. (4), level 1 does not have a unique energy

but is composed of a carrier and sidebands. To estimate
the Rabi frequency of the coupling of one of these levels
with level 2 we only need to calculate the matrix element

& 2
~

V
~

1„&= & 2
~

V
~

I &J„(kF„w/m),

where
~

1„& represents the nth sideband state. This im-

mediately implies that the total field must approach the
level crossing.

This approach also allows us to generalize the case
shown in Fig. 8 to the one in which both states have
Stark shifts. In this case the matrix element between the
mth sideband of level 2 and the nth sideband of level 1 is

=&2
~

V
~

1&J (k2FMw/fico)J„(k)FMw/fin)) .

Similarly the coupling for the j-photon resonance, for
which

~

1 & lies jco above
~

2&, is a coherent addition of
the amplitudes of several interacting sets of sidebands

Fc

STAT I C F I EL D

FIG. 11. Carrier and sideband energies, shown as solid and
dashed lines, respectively. Note that the sideband levels, in ad-
dition to the carriers, undergo avoided crossings.



1536 R. C. STONEMAN, D. S. THOMSON, AND T. F. GALLAGHER 37

(2
~

V
~
1)k ——(2

~

V
~

1) X J) (k2,FMw/ ice)

xJ (k)FMw/fico) . (8)

The sum collapses to a single Bessel function„' and there-
fore

(2
~

V
~

1)1,. ——(2
~

V
~
1)JI,[(k) —k2)FMwlfici)] . (9)
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FIG. 12. Total energy (number of photons times photon en-

ergy) absorbed vs microwave 6eld. The solid triangles indicate
the 9.278-GHz data; solid circles, the 10.353-GHz data; open
squares, Landau-Zener calculations; open circles, two-level Flo-
quet calculations.

Thus the conclusion derived from Fig. 8, in which only
one state has a Stark shift, applies equally well to the case
in which both states have Stark shifts. In the latter case
it is only the differential Stark shift that is important.

We can now compare the Landau-Zener (field point of
view) calculations with the results of the Floquet (photon
point of view) matrix diagonalization. We wish to plot
these results in such a way that they may be directly com-
pared to the experimental results shown in Fig. 6, where
the microwave field required to observe a particular mul-
tiphoton transition is plotted versus the number of pho-
tons absorbed, First we must determine the smallest ob-
servable Rabi frequency. The microwave pulse is on for 1

ps, but we are only able to observe linewidths as small as
1 GHz due to electric field inhomogeneity, implying a 1-
ns coherence time. There are 10 coherence times in our
1-ps microwave pulse and we add their transition proba-
bilities, which must be -10 to produce saturation.
This occurs for a Rabi frequency of 30 MHz. Therefore
we have chosen 30 MHz as the saturation Rabi frequen-
cy. The Landau-Zener and Floquet calculations provide
the Rabi frequency for a given number of photons ab-
sorbed at a particular value of the microwave field. We
can therefore determine the number of photons absorbed,
for a given microwave field, at the 30-MHz saturation
Rabi frequency. The Landau-Zener, Floquet, and experi-
mental results are all shown in Fig. 12. The number of
photons absorbed is expressed in frequency units so that
the experimental results for both 9.278 and 10.353 GHz
photons can be shown together. The simple Bessel-

function expansion of Eq. (9) gives essentially the same
results as the Landau-Zener and Floquet calculations
shown in Fig. 12. This is not surprising since the photon
energy is signi6cantly larger than the avoided-crossing
energy. As shown, the calculations based on the simple
two-level model indicate less energy absorption than ac-
tually observed. This is not surprising in light of the in-
teractions we have omitted from the model. What is im-

portant is that this simple model gives a clear picture of
all the phenomena observed and is quantitatively correct
to -30%.

D. Dynamic Stark shifts

We have pointed out that the observed transitions from
the (n +2)s to the (n, 3) state (shown in Fig. 5 for n =17)
are evenly spaced with respect to the static field. The
spacing is only approximately uniform, however, and the
deviation from uniformity is due at least in part to the de-
viations from linearity of the Stark shifts of the levels in-
volved. The resonance fields can be predicted if the ener-
gies of the (n +2)s and (n, 3) states are known as a func-
tion of the static electric field. We have chosen to calcu-
late the energy levels by numerically diagonalizing the
energy matrix, using as the Hamiltonian

H =Ho+F, z, (10)

A least-squares fit to Eq. (11) of the data in Fig. 13 gives
A =2(2) X 10 ' GHz(V/cm) and p =5.9(8). The
determination of the exponent p is reasonably good but

where Ho is the atomic Harniltonian in the absence of
electric 6elds and I', is the static electric field which is as-
sumed to lie along the z axis. The matrix elements of H
are calculated in the n, l basis, for which Ho is diagonal.
The calculation is made tractable by including in the
basis only those states which have energies in the neigh-
borhood of the (n +2)s and (n, 3) states. The zero-field
atomic energies are known from spectroscopic measure-
ments. ' The radial matrix elements of z are found by
numerically integrating the Coulomb radial equation.
This technique, while not the most elegant theoretically,
has been found to give very accurate results for the static
Stark shift.

When the resonance fields are calculated in this way,
however, they diff'er from the observed resonance fields in
a systematic way. The deviations are shown in Fig. 13
for transitions from the (n +2)s state for n in the range
16-19. The shift, expressed as an energy, is plotted
versus the square of the microwave electric field. The
shift is evidently proportional to the square of the mi-
crowave field for a given n and therefore represents a dy-
namic polarizability, i.e., an ac Stark shift. The observed
resonance fields are larger than the calculated 6elds, im-

plying that the dynamic Stark shift causes the s state and
the manifold state to repel. It is apparent from Fig. 13
that the dynamic polarizability increases regularly with
n. Therefore it is reasonable to fit the observed dynamic
polarizability a to a power law

a=An~ .
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the fit gives very little information on the coeScient A.
The fit parameters are used to plot the straight lines in

Fig. 13.
It is interesting to compare the fit exponent with the

result that we expect from simple theoretical arguments.
Since the shift is quadratic in the field it can be calculated
in second-order perturbation theory. Therefore the shift
is expected to be a product of two dipole Inoments, with
an energy denominator. Rydberg dipole moments are
proportional to n, while energy intervals, which substan-
tially exceed the microwave frequency, vary as 1/n .
Therefore the dynamic polarizability is expected to be
proportional to n, which is in reasonable agreement with
the exponent fit from the data.

E. Connection with Inicrowave ionization

The appearance of a resonance in the microwave
threshold spectrum discussed in Sec. III A is not surpris-
ing in light of the large magnitudes of the dynamic Stark
shifts shown in Fig. 13. For 19s the observed shift is as
much as half the photon energy. The appearance of a
resonance is governed by several factors. These factors
combine to produce an observed resonance for 19s,
shown in Fig. 4, but not for 18s. The most fundamental
of these factors is the energy separation of the (n +2)s
state and the n manifold when no fields are present. For
the manifold energy we use the hydrogenic energy

4
N
T.
(3

U

hc
K

2

—I/2n, adjusted for the potassium nuclear mass. In
Table II this separation is given for n in the range 16-21.
The separation is expressed in units of the 9.278-GHz
photon energy. The fractional part of this number deter-
mines the amount of dynamic Stark shift required to
meet the resonance condition. %'e have already pointed
out that the dynamic Stark shift repels the s state from
the manifold. Therefore the resonance in the microwave
spectrum corresponds to an absorption of N photons,
where N —1 is the integer part of the zero-field separa-
tion shown in Table II. Given the zero-field separation,
the dynamic polarizability, also shown in Table II, deter-
mines the field at which the resonance will appear. The
calculated microwave resonance fields are given in the
last column of Table II.

The calculated resonance fields indicate potential reso-
nances, which may or may not be observable, depending
on the transition probabilities. A resonance will be ob-
served only when the microwave field is within a limited
range just below the s-state crossing field (shown in the
last column of Table I). Roughly speaking, the two-
photon offset shown in Fig. 6 determines this range. If
the microwave field is too small the threshold condition
of Fig. 6 will not be met and the resonance will be too
weak to observe. If the microwave field is too large the
resonance will not be resolved from the smooth threshold
in the microwave spectrum. With this point in mind it is
interesting to consider the origin of the smooth thresh-
old. When a particular multiphoton transition is just
above the observation threshold, for example, the left-
most peaks in each of the traces of Fig. 5, the resonance
is narrow and well resolved from neighboring resonances.
When the microwave field is increased, the strongest
transitions broaden due to saturation and weaker transi-
tions become observable. Thus the resonances represent-
ing transitions to the various manifold levels tend to
blend together. This effect iS most pronounced at zero
static field, where the transition probabilities to the vari-
ous manifold states are more uniform. It is this effect
which gives the resonance in Fig. 4 its broad character.
The blending process is accelerated by the quadratic na-
ture of the dynamic Stark shift, which brings successive
multiphoton transitions into resonance more rapidly.
Therefore, at most, one resonance is observed before the
smooth threshold is reached.

The observed threshold and resonance fields for the mi-

TABLE II. Calculated I', =0 resonance fields.

IQ 15

F~~ [10 ( V/cm} ]
20

(n +2)s
state

Number of
9.278-GHz

photons
separating

(n+2)s and
(n, 3) states

Dynamic
polarizability

of (n+2)s
state

[GHz/(V/cm) ]

Calculated
I', =0

resonance
field

(V/cm)
FIG. 13. Observed dynamic Stark shifts for multiphoton

transitions from the (n +2)s state to the (n, 3) manifold state.
The data points represent the deviations of the observed reso-
nances from those calculated using Eq. (10). Solid circles indi-
cate n =16; squares, n =17; triangles, n =18; open circles,
n =19. The lines are a least-squares fit of the data to the
power-law equation (11).

18s
19s
20s
21s
22$
23$

31.84
26.51
22.30
18.95
16.23
14.01

1.59 X 10-'
2.37x 10-'
3.42 x 10-'
4.86x 10-'
6.84 x 10-'
9.44 x 10-'

306
438
436

98
323
312
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crowave spectra are given in Table I. A resonance is
resolved from the smooth threshold only for 19s, where
the resonance corresponds to the 27-photon transition.
The stated resonance field refers to the center of the reso-
nance, while the tabulated threshold fields refer to the
half maximum of the saturated signal. The observed
threshold fields are generally somewhat above the s-state
crossing fields, i.e., they generally increase monotonically
as n decreases. The deviations from this behavior are ex-
plained by the calculated resonance 6elds. The most
striking example of this effect is 20s, where the low value
for the smooth threshold is explained by the calculated
23-photon resonance at 436 V/cm. In Sec. IV we will ex-
pand on the simple picture provided by Tables I and II by
calculating in detail the energy-level structure as a func-
tion of the microwave field strength.

IV. FLOQUET CALCULATIONS

suits are given in the third column of Table II.
%e will now calculate the dynamic Stark shifts without

making the adiabatic approximation. %e apply the nu-

merical diagonalization method to the Hamiltonian of
Eq. (10) as before, except that F(t) from Eq. (2) will be
used in place of F, in Eq. (10). The application of the di-

agonalization method is complicated by the time depen-
dence of the field. %'e will follow Autler and Townes' in

applying the time-dependent Schrodinger equation, ex-
panding in terms of Floquet (i.e., sideband or dressed}
states, and thereby eliminating the time dependence from
the energy matrix. Autler and Townes considered the
case of a two-level system with I', =0. %e will extend
their treatment to allow for many atomic levels, and in

general nonzero I', .
The wave function of the system can be expanded in

the n, 1 basis,

In Sec. III 0 the dynamic Stark shifts of the multipho-
ton transitions were determined by comparing the ob-
served resonances with calculations based on Eq. (10).
The shifts arose because the Hamiltonian of Eq. (10) did
not include the microwave electric field. We can expect
to account for the dynamic shifts if we use F(t) from Eq.
(2) for the electric field in place of F, in the Hamiltonian
of Eq. (10}. Before doing this, however, it is instructive
to consider the problem in the adiabatic approximation.
In this approximation, which applies when the mi-
crowave frequency ~ is low compared to the atomic ener-

gy separations, the variation of the 6eld is treated quasi-
statically. It is reasonable to expect the quasistatic
description to apply since the s state is not coupled
strongly to the linear Stark manifold, as can be seen in
Fig. 1. In the quasistatic approximation, then, the energy
of a level is given by the time-average

(12)

and are known from spectroscopic measurements.
When Eq. (15) is substituted into the time-dependent
Schrodinger equation, and the result is multiplied by
(j ~, we obtain

co T, +F(t}g T„(J
~

z
~

k ) =iT, ,
k

(17)

where Eqs. (10) [with F(t) substituted for F,] and (16)
have been used. At this point we make use of Floquet's
theorem, which states that the solution of a difFerential
equation with periodic coefficients can be written in the
form

where the
~

k ) are the basis functions and the T„are the
time-dependent amplitudes. The zero-field energies coI,

are given by

Ho ik)=co„ ik),

where T =2m/ru, i.e., the average is taken over a com-
plete cycle of the rnicrowaves. In general the energy of a
particular level can be written approximately as

E(t)=AF(t)+BF (t) . (13)

For the s state the Stark shift is approximately quadratic
and A -0. The manifold levels have approximately
linear Stark shifts and B-0. Using Eqs. (2), (12), and
(13), the quasistatic energy is

(18)

This expansion shows that the microwave field produces
an infinite number of sideband (Floquet) states, equally
spaced at the microwave frequency co, with amplitudes
A„„. When the Floquet expansion, Eq. (18), is substitut-
ed into Eq. (17), we get, after expressing coscot as a sum of
exponentials and equating terms with like exponents,

(~j —ti~)~;+ g lW" ~.1 +&4w(~. +i I, + ~. i, i))
(E & = ~F, +BF,'+ ,'BF'„„. - (14)

The first two terms are just the linear and quadratic static
Stark shifts while the third term is the dynamic Stark
shift. Equation (14) therefore shows that, in the adiabatic
approximation, levels with a quadratic static Stark shift
also have a quadratic dynamic Stark shift (and that the
dynamic polarizability is half the static polarizability),
while levels with a linear static Stark shift have no dy-
namic Stark shift. The dynamic polarizabilities can
therefore be found, in the adiabatic approximation, by di-
agonalizing the static Hamiltonian of Eq. (10). The re-

where the definitions

P,"=F,&j ~.
~

k &,

(19)

(21)

have been made. The problem is now considerably
simplified, since Eq. (19) is independent of time.

For the two-level system which Autler and Townes
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considered, Eq. (19) represents two coupled equations.
They found solutions by rewriting these equations in a
continued fraction form. Shirley' found that the solu-
tion of the Autler-Townes problem was simplified by
writing the coupled equations in matrix form. To extend
this approach to the multilevel problem we cast Eq. (19)
in matrix form, where the A„z are the basis vectors, and
find the eigenvalues by numerical diagonalization. %e
will write the matrix in block form, where the blocks are
identified with the atomic state j and the elements of each
block are identified with the Floquet state n. If we re-
strict our attention to only two atomic states a and b, the
matrix is

-37+ 6
E

-379.8
LLI

otons

W',

0
&MW

0

-380 2—

I

200
I

400

MICROWAVE F lELD (V/(m)

0

(22)

FIG. 14. Dynamic Stark structure calculated by numerical
diagonalization of the Floquet matrix for 9.278-GHz photons.
The n =17 manifold levels {Iy 2), plus their nearest sidebands
{plus and minus one photon), are shown. The bold line is the
19s energy plus 27 times the 9.278-GHz photon energy. The in-
tersection of the 19s plus 27-photon level with the n =17 mani-
fold corresponds to the resonance of Fig. 4.

Only one sideband has been shown in Eq. (22). That is, n

has been restricted to the values —1, 0, and + 1 for each
atomic state, making each block a 3X3 submatrix. The
diagonal blocks have only diagonal elements, since
P',"=Pgw ——0 for j=k. The o8'-diagonal blocks are tridi-
agonal submatrices.

In general, the matrix represented by Eq. (19) is infinite
with respect to both j and n. Therefore, in practice, the
matrix must be truncated in order to find the eigenvalues
by numerical diagonalization. The result of one such di-
agonalization calculation is shown in Fig. 14, where the
n = 17 manifold energies are plotted as a function of the
microwave 6eld I'Mw, for 9.278-GHz photons. The
n =17 manifold (l ~2 states) together with the nearest
1 &2 states (19s, 19p, and 171) have been used as the
atomic basis set. For this calculation each atomic state
has been allowed 20 sidebands (on each side of the car-
rier). The three groups of levels shown in Fig. 14 are the
n = —1 sidebands, the carriers, and the n =+1 side-
bands of the n = 17 manifold, in order of increasing ener-
gy. With only 20 sidebands allowed, it is clear from the
second column of Table II that the sidebands of the l (2
states do not overlap with each other or the n = 17 mani-
fold (for reference, the quantum defects are 5, =2. 18,
5 = 1.71, and 5d ——0.27). In spite of this apparent
deficiency, however, the carrier and sideband energies in
Fig. 14 are self-consistent (that is, ofFset by the mi-
crowave frequency) for microwave fields up to 400 V/cm.
Above this fieM truncation error causes the sidebands to
diverge from the carrier levels, but the calculation is ap-
parently valid up to approximately 500 V/cm.

The bold line in Fig. 14 is the 19s energy plus 27 times
the 9.278-GHz photon energy. Therefore the intersection
of this level with the n =17 manifold carrier near 500
V/cm corresponds to the resonance of Fig. 4. That is,

the observed resonance in Fig. 4 represents the 27-photon
transition shifted into resonance by the dynamic Stark
shift.

When Figs. 1 and 14 are compared it is clear that for
the manifold levels the dynamic Stark efFect is much
smaller than the static Stark efFect. On the other hand,
the s state shown in Fig. 14 clearly has a quadratic dy-
namic Stark shift. These observations are in agreement
with the quasistatic arguments as expressed by Eq. (14).
Given this qualitative agreement, it is interesting to com-
pare quantitatively the s-state dynamic polarizabilities
obtained from the quasistatic model (the third column of
Table II) with the diagonalization of the Floquet matrix.
The agreement is surprisingly good, being better than 1%
for all the states listed in Table II. It is also interesting to
calculate the s-state dynamic polarizabilities using a
variety of truncations of the (infinite) Floquet matrix.
Speci6cally, we use as the basis set either the manifold
plus one set of I & 2 states or the manifold plus two sets of
l & 2 states, and for each choice of atomic basis set we use
either 5, 10, or 20 sidebands. Remarkably, the resulting
s-state dynamic polarizabilities are all within less than
1% of each other. Even more surprisingly, the results are
unchanged when the manifold states are excluded from
the matrix, and the basis consists only of s, p, and d
states.

It is also interesting to calculate the dependence of the
dynamic Stark shift of the s state on the static electric
field. For values of the microwave field I'Mw less than
the crossing field F„ the dynamic polarizabilities are
found to be independent of the static field F, (that is, in
agreement within 1% with the values given in Table II).

Finally, we have determined the dependence of the cal-
culated s-state dynamic polarizability on the principle
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quantum number n. That is, we can 6t the values from
the third column of Table II to the power-law equation
(11). This yields p =6.5(1) for the calculated polarizabil-
ity, in agreement with the experimental result (Fig. 13
data) ofp =5.9(8).

V. CGNCLUSION

We have examined the connection between micro~ave
ionization and microwave multiphoton transitions in
Rydberg states of potassium. We have seen that these
phenomena can be explained equally well with either the
Landau-Zener model or the Floquet (dressed atom) pic-
ture. The multiphoton transitions are observed to have

large dynamic Stark shifts which are in agreement with
numerical calculations of the shifts. Resonances in the
microwave ionization spectrum are seen to be multipho-
ton transitions which are shifted into resonance by the
dynamic Stark shift. In contrast, the broad threshold ob-
served in microwave ionization is due to many broadened
and therefore unresolved multiphoton transitions.
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