
PHYSICAL g.EVIE% A VOLUME 37, NUMBER 5

Monotonicity of Coulomb dipole matrix elements
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%e present a proof that nonrelativistic Coulomb dipole matrix elements are monotonically de-

creasing functions of transition energy, for transitions from any given bound state to states of
greater energy, including bounded and unbounded negative-energy states and positive-energy con-
tinuum states. {Byan unbounded negative-energy state we mean a solution of the Schrodinger equa-

tion, regular at the origin, which is unbounded and therefore is not an eigenstate. ) The proof ap-
plies both to reduced matrix elements {normalization constants factored out so that for small dis-

tances wave functions behave as Cr with C=1) and to full analytic matrix elements {including
bound-state normalizations and their analytic continuations). It also applies to the full bound-free

matrix element {including the complete continuum normalization) and to the bound-free cross sec-
tion. The method of proof is related to our recent demonstration that there are no zeros in nonrela-

tivistic Coulomb dipole matrix elements. Our result follows from a new recursion relation, simply
related to the Infeld-Hull recursion relation utilized in our previous demonstration.
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where r is in units of Za0 with a0 the Bohr radius, and e
the energy in units of Z Ry. (Here e= —1/n with in-
teger principal quantum number n for bound states and
e=P /Z with P the momentum for continuum states. )

A,' is (I+el )' /l and is real and positive for e & —1 jl
(l &1). N« is a normalization constant which can be
written as N, (

——N,(l8„with

Here
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%'e have recently gi.ven a proof that allowed Coulomb
dipole matrix elements never vanish. ' Here we wish to
report that with similar methods we can show that al-
lowed Coulomb dipole matrix elements decrease mono-
tonically as the transition energies increase.

Our previous proof was based on the recursion rela-
tions, for Axed initial and Anal energies e and e',
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of Infeld and Hull2 for successive pairs of dipole matrix
elements, D,";where

I, (' 3D,', = R.(r R (dr,
0

describing a transition from initial energy and angular
momentum (e, l ) to final (e', l') Here, th.e radial
Schrodinger wave function R,(, in the point Coulomb po-
tential, is simply

( —e} ~~ for bound states
—2 /!}j 1/2(1 —e ~ ')'~ for continuum states .

N, ( is sn analytic function of energy in the finite energy
plane, which is monotonically increasing for e& —1/l .
Also 1 /B, is monotonically increasing for e & 0, so that
N, ( is monotonically increasing in the continuum states.
Note that R,( is real for real e even when e g 0; for small
rR

That each pair of dipole matrix elements are positive
follows from the same property of the previous pair and
that the coeScients A,' of the recursion relations are pos-
itive. In our paper' we also commented that the reduced
dipole matrix element (omitting normalization factors),
D,';=D,', /(N«N;t. ), is a continuous function of ener-(1' (('

gy e' for e' —e & 0, even when the energy e' corresponds
to an unbound negative-energy state. (Such a state is a
solution of the Schrodinger equation regular at the ori-
gin, but since it is unbounded it is not an eigenstate. )

This followed from the analyticity of Rzt. /Nzt, which is
due to Poincare's theorem. This continuity of D,"& in e'

is also true in screened potentials and was essential for
our recent discussion of the oddness (eveness} of the num-
ber of zeroes of the matrix element.

The recursion relations in Eq. (1) are not suitable for a
proof of monotonicity. Even if a pair of D,",. on the
right-hand side in E~. (1) are monotonically decreasing
with energy e', the A & are monotonically increasing with
e', and so no statement can be made for the D,",, on the
left-hand side. In addition, the D,",. are not defined for
negative energies e' (except bound states) so their mono-
tonicity cannot be discussed in this regime. However, we
can rewrite the recursion relations in terms of redefined
continuous matrix elements [continuous functions of e'
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for (e' —e)&0] with coeScients which are energy in-

dependent. These new matrix elements, D,", are defined

by

D;;=(e'—e)N «N, ./D, ', ,I, I'
/ 2 2 1,l'

=(e' e)B—,B;N«N, / D,", (3)

Since D,", '" is positive, it will be monotonic if L &0.
The first and last terms in our expression for X are nega-
tive. %e note that

where X,I ——B,X,&. D,', , like D,'*', is a continuous func-
tion of e' for e' & e because X, I also has that property.
[The extra factor (e —e) is included here in anticipation
of our subsequent proof of the monotonicity of the
photoe6'ect cross sections. ] With these new continuous
matrix elements, the recursion relations in Eq. (1) can be
rewritten as

(2I + 1)D /, /+/+D /+/, /

C D // —/ D //+/+(2I +1)D /+l, /
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where
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Note that all coefBcients of the right-hand sides in Eqs.
(4) are positive and energy independent. If a given pair of
D,",. on the right-hand sides is monotonically decreasing,
the entire right-hand sides are monotonically decreasing
and therefore likewise the left-hand sides are monotoni-
cally decreasing. Since C,l is energy independent and

C,.I is monotonically increasing with e, it follows that
the pair of D,", on the left-hand side are also monotoni-
cally decreasing. Thus, with the recursion relations in
Eq. (4), the monotonic decreasing character of one pair of
D,',.'s generates the same character for the next pair. InI, I' s

the first pair, due to the fact that D,"'," ' vanishes, ' where
n is the principal quantum number of the initial bound
state, D,",". ' also vanishes. Thus all D", ,*'s are mono-
tonically decreasing, for any I, if D ,", '" is monotonically
decreasing.

From the expression for D,", '" in Eq. (4) of Ref. 1 (see
Ref. 5), D,", '" can be easily obtained as

n —1 n —1 n —1

g f(s)= g I f(s)dk ( g I f(k)dk
s=—Q s=0 s=0

= f f(k)dk= —,—g, ,
0

where in the inequality we have utilized the fact that
f (k) is a monotonically increasing function of k. Thus X
is negative and hence D,",. '" is monotonically decreas-
ing.

Now let us discuss the monotonicity of ordinary and
reduced dipole matrix elements, and of cross sections.
From Eq. (3), since D,";is monotonically decreasing and

N;, . and (e' —e) are monotonically increasing, it follows

that the reduced dipole matrix element D,"; (which is

also continuous in e') is also monotonically decreasing.
In the continuum, with e&0, 8, is monotonically de-

creasing. However, we can show that N, /B, (e' e) is-
monotonically increasing, and hence from Eq. (3) the or-

dinary continuum dipole matrix element D,' is mono-

tonically decreasing. In fact, since we will need it subse-

quently, we will prove the stronger statement that

N, . B/, .(
' e—e)'~ is monotonically increasing. We have

already noted that (e' —e)'~ is monotonically increasing.
This is generally also true for X,.&8, , To show that

X, I.B, is monotonically increasing, we show that its

derivative is positive. Using Eq. (2),

where
(I

a, =-,' g f(s)+b, ,

(2n —1)!(2n +1)!

X
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n —1

ff (I+&'s')
s=0
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with

1b;=—
2(e')3~2 2' j+e' —/

the logarithmic derivative of 8, . Since

2'" 1 (27r) 1 (277)
e ' ' —1) 1+ +—,+, , 1

which is positive for e &0 and e —a~0. To investigate
the monotonicity of D,", '", we calculate its logarithmic
derivative with respect to e', which we denote as

2~ 1 (2n)1+—
6 e' (~'+1),2m

(e')' '

n + g f(s)+g, ——,1

s=0

f (s)=s /(1+@'s )

1 16, ) ——
4 (1+@')

Thus for I' & 0, noting that f ( 1 ) = 1/( 1+e' ),

1 1a, ) —,
' f (1)+b, &—,)0 .

4 1+@'

Since (N, ./. B,. ) is positive, a,. & 0 means that it is mono-



SUNG DAHN OH AND R. H. PRA I I 37

tonically increasing. For / =0, X,.l is independent of e'

and does not compensate the monotonic decreasing be-
havior of 8, This is achieved due to the remaining fac-
tor (e' —e)'":

128

1 1

2(e' —e) 4(e'+ 1)

1

2(e'+ 1)
1

4(e'+ 1)

since e & —1, the most deeply bound level. Thus we have
shown that Ã, .t B, (s' e) is mo—notonically increasing,
and therefore the D,";'s are all monotonically decreas-
ing for any I.

Finally we consider the monotonicity of the cross sec-
tion cJ',. for an electron in an initial (e, l) state which
makes a transition to a final (e', I') state,

where now we are restricting ourselves to the case that
the Gnal state is in the continuum. Here the cross section
is in units of (Zao) and I is the larger of I and I'. From
Eq. (6) we can see that the bound-free cross section is also
a monotonically decreasing function of energy, since
D,", is monotonically decreasing and B;N, t (E' —e)' is

monotonically increasing. %e have thus shown that, for
for continuum energy e', D,",*. ', D,",*. ', and D,",*. ' and

0,",. ' all monotonically decrease as the transition energy
increases for any I; the statement also applies to negative
energies e' such that e' —e&0 in the case of D,",*' and

D,",*', which are continuous functions of e' in this
domain.
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