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The double photoionization of molecular hydrogen is theoretically investigated in the 40-100-eV
photon energy range. The calculation is ab initio and rests first on the Born-Oppenhiemer separa-
tion. The exact nuclear wave functions have been used for both (bound) initial and (dissociative)
Anal two-proton states and the Franck-Condon approximation is not invoked. The electronic part
of the initial ground state of H2 is highly correlated while the Anal one is simply a symmetrized
product of uncorrelated Coulomb wave functions. Within this framework, the total cross sections
obtained in the dipole-velocity formulation agree well with very recent experimental results. In ad-
dition, the method is able to provide the kinetic-energy distributions of the fragments (electrons and
protons) as functions of the photon energy. The energy distributions of the ejected protons, pro-
duced by 60-100-eV impacting photons, are similar in shape to those resulting from electron or
proton impact on H2. In contrast, it is found that the most probable two-proton kinetic energy is
signifieantly lowered in the threshold region. On the other hand, the differential electron spectrum
gives some insights into the sharing of energy between the s, p, and d ejected electrons. Within the 5
approximation, which is shown to be very accurate over the whole photon energy range, the thresh-
old law for the double photoionization of diatomic molecules is derived. It is found that the cross
sections can be represented, up to 10 eV above threshold, as the convolution of the density probabil-
ity in the initial vibrational ground state with a series of linear thresholds, similar to those derived
in the Wannier-Rau-Peterkop theory for atoms.

I, INTRQDUCTIGN

Interest in the double photoionization (DPI) of neutral
molecules has been recently renewed by the conjoined
utilization of tunable synchrotron radiation and the
photoion-photoion-coincidence (PIP I CO) method. For
numerous small rnolecules, ' this new technique has pro-
vided detailed data on the doubly charged cations that
dissociate into fragments.

Corresponding to this experimental activity, several ab
initio calculations of potential-energy curves of doubly
charged cations have been performed with the aid of
methods that have long been used in the study of molecu-
lar structure. Going from the lowest to the highest so-
phistication, the low-lying states of the cations can be in-
vestigated with Koopman's approximation, self-
consistent-field (SCF), configuration-interaction, and
multi-configuration-SCF approaches. Due to the high
density of accessible states (note, e.g. , that triplet states
are often populated by DPI) such investigations are not
easy. However, they have been successful in identifying
threshold values of many accessible dissociative states of
the doubly charged cations.

Unfortunately, such calculations do not yield the prop-
erties related to the electronic transition moment, like
cross sections or kinetic and angular distributions of frag-
ments. This lack of information was the major motiva-
tion for our previous study of the DPI of molecular hy-

drogen (hereafter, this work will be referred to as paper
I), which to our knowledge is the first study of a molecu-
Iar DPI reaction. In this work, we performed a DPI cal-
culation of the kind adopted by Byron and Joachain in
their pioneering work on helium. Following these au-
thors, we used a highly correlated electronic wave func-
tion for the initial ground state of Hz, and represented
the final states simply by symmetrized products of un-
correlated Coulomb wave functions. This model has pro-
vided rather good information concerning the ejected
electrons. However, due to the fact that the calculation
was performed for the fixed ground-state equilibrium
geometry, no quantitative information related to protons
could be extracted. Hence, in order to set up a more
complete molecular "wave-function approach" of the
DPI, it is worthwhile to take the nuclear motion into ac-
count. In spite of the dissociative nature of the final cat-
ion H2 +, we shall address this problem by use of the
Born-Oppenheimer approximation. This yields a slightly
more involved model than in paper I, since the final states
now comprise four particles (two protons and two elec-
trons) instead of only two electrons. Moreover, some
conceptual modifications of the theory reported in paper
I are necessary since, e.g., the two sets of electrons and
protons no longer have separate definite energies.

The organization of the present paper is as follows.
Sections II and III are devoted to the description of the
wave functions describing the initial ground state of Hz
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and the final states accessible via the DPI process. In
Sec. IV, the cross-section formulas are derived in a model
where rotation is neglected while nuclear motion is prop-
erly averaged. Computational details are given in Sec. V.
Finally, results are presented and discussed in Sec. VI.

II. GROUND-STATE WAVE FUNCTION

1

2 +2p E;"(u)—E (R)—— P;(u
~

R ) =0, (2)

In the molecular frame, the Born-Oppenheimer ap-
proximation allows the vibronic wave function of the
X 'Xg+ ground state of the hydrogen molecule to be fac-
tored as

4;(X 'Xs+, E;,u
~
r„ri,R )

=4, (X 'X~+, R
i r, , r2)R 'P, (u

~
R ),

where R is the nuclear separation and rj, is the position
vector of the kth electron. The index i will be used to
denote quantities referring to the initial state. The elec-
tronic and vibrational parts of the wave function, 4; and

P;, respectively, are both normalized to unity. It should
be noted that the spin part of a two-electron wave func-
tion can be factored out, so that spin will be ignored in
the rest of the paper. As usual, the fixed-nuclei electronic
Schrodinger equation is solved first to yield the eigen-
function 4; and the (negative) associated eigenvalue E,
for various geometries. The purely electronic energy
E (R) plus the nuclear potential energy 1/R yield the
Born-Oppenheimer potential-energy curve that governs
the motion of nuclei. More precisely, the vibrational ei-
genvalues and eigenfunctions of the uth level are obtained
from

the hydrogen molecule are very similar two-electron sys-
tems as far as electronic correlation is concerned, we are
led to adopt a ground-state wave function for H2 of near-

ly the same accuracy, i.e., accounting for, say, more than
90% of the correlation energy. Such high accuracies
have long been achieved for two-electron systems either
by the explicit inclusion of the interelectronic distance r I2

in the wave functions, or, alternatively, by use of super-
position of configurations constructed with single-particle
orbitals. In this work, as in paper I, we have adopted the
latter approach by choosing configuration interaction
wave functions of the form optimized by Hagstrom and
Shull. ' As will be described in more detail in Sec. V, this
ensures that more than 95% of the ground-state correla-
tion energy is accounted for in the considered geometries.

III. FINAL-STATE WAVE FUNCTIONS

As mentioned in the Introduction, the DPI of H2 is
dissociative and so leads to final states that are unbound-
ed with respect to both electronic and nuclear degrees of
freedom. Nevertheless, we assume that the Born-
Oppenheimer approximation still applies, so that a fina1-

state wave function should read (in the body frame)

%~(S,l, EJ,EI i ri, r2, R )

—+f(S,l, E&,R
~
r, , r2 )R 'P&(Ep R )

where S is the set of symmetry quantum numbers and I is
an index (to be defined below) used to distinguish the de-
generate final states having total energy EI. Note that
the index f will be used to denote quantities referring to
final states. The total energy splits into electronic and
nuclear positive contributions as

EI ——Eg +EI, (5)

~here p is the reduced nuclear mass. In this paper, ex-
cept when explictly notified, atomic units are used,
Hence, p is expressed in units of the electron rest mass
and we adopt p=918.05. Finally, the energy of the ini-
tial vibronic state is

E, =E,'(R, )+ +E,"(u =0),
e

(3)

where 8, =1.4 bohr is the equilibrium nuclear separa-
tion.

A key result of the work of Byron and Joachain was
the recognition of the importance of ground-state elec-
tronic correlation in the DPI of helium. They expanded
the 4, (l 'So) ground-state wave function of helium in
terms of three relative partial waves and obtained an en-
ergy of —2.9020 hartree, indicating that their 45-
parameter %'; accounts for 95.9% of the correlation ener-
gy. %ith the very accurate six-parameter Hylleraas
wave function (yielding an energy of —2.9033 hartree
and thus including 99.0% of the correlation energy),
Brown obtained essentially the same ratio of double- to
single-ionization cross sections as did Byron and
Joachain. This indicates that, although partly optimized,
the ground-state wave function of Byron and Joachain
was suSciently correlated. Since the helium atom and

and it should be stressed that any partitioning of E& is a
priori allowed. The electric-dipole selection rules, for
single-photon absorption, state that only final states with
S= 'X+ or 'H„symmetries are accessible from the X 'Xg+

ground state of the molecule.
%e consider first the determination of the nuclear

wave function. The actual potential energy is that of
H2 +, i.e., it corresponds to the Coulombic repulsion of
two protons. Consequently, one has

1

dR
+2p, EI" Pg(EI

~

R )=0 —.

Given any positive energy EI it is possible to solve Eq. (6)
for PI(EP R ) via standard numerical procedures. How-
ever, it is readily recognized that Eq. (6) defines the so-
called spherical Coulomb functions of order 0, which can
be computed with very eScient existing algorithms. In
the notation of Abramowitz and Stegun" the regular
solution reads

PI(EI
~

R }=so(g„~ k„R )

with

k„=(2pEI )'i, rl„=plk„.
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R-'P (E" iR)= Fo(rl„
i
k„R )

R
(10)

In the theory of the dissociation of diatomic molecules
by electron, proton, or photon impact, it is a common
practice to substitute a 5 function at the classical turning
point for the nuclear continuum wave functions. ' This
"5" or reflection" approximation is especially useful
when the position and shape of the upper potential are
not known. Here, although we are able to deal with the
exact nuclear functions describing the actual dissociative
two-proton final state, it is interesting to consider this ap-
proximation along with the exact treatment. Let
Rf —1 /E/ be the classical turning point for the nuclear

Coulomb functions oscillate with amplitudes approaching
unity in the limit of infinite R. They are conveniently
normalized in the energy scale' by use of a Dirac distri-
bution

J P/(E
~

R )P/(E'
(
R )dR =5(E E—') . (9}

Applying this condition, the normalized nuclear wave
functions are easily expressed as

is properly normalized as required by Eq. (9). In spite of
its simplicity, it will be seen that the function represented
by Eq. (11) is a rather good approximation of the exact
one [Eq. (10}].

%'e now arrive at the major difFiculty encountered
within the wave-function approach of atomic or molecu-
lar species, namely, the determination of the wave func-
tion 4& representing the two ejected electrons. For the
helium problem, Byron and Joachain have chosen a
model with independent electrons. Using single-electron
spatial orbitals P(e, l, m

~
r) with the asymptotic kinetic-

energy s and angular quantum numbers (I,m ), they have
constructed configurations of the type el e'(I+1) with
asymptotic electronic energy

Ey =6+6 (12)

The precise form of the properly symmetrized final-state
wave functions they used is

state of energy E/. It can be proved (see the Appendix)
that the approximate wave function

5(R —R/)
R 'P-/(EP R ) =

E El

+I
EP/(iP~, I, e, e'

[ ri, rg)= y (l, rn, I+ i,l in
[ 1,M)[y(e I, pyg

]
ri)y(e', I+ l,~ in

[ rp)+1~2]
2 m= —I

(13)

where (I, , m, , l2, m2
~

1,M) denotes the Clebsch-Gordan
coeacients providing the desired final state 'P. In
Eq. (13), the one-electron spatial orbitals are given by

Fi(rI, k, r)
Ji (&), (14)P(e, l, m

i
r) = 2

k, m.

where Fi(rI,
~
k, r ) is the regular spherical Coulomb func-

tion of order I with

k, =~2e and rI, = —Z/k, . (15)

(P(e, l, m )
~

P(e', I', m ') }=5(, , )5i i 5 (16)

In the present work, as in paper I, we use for Hz the
wave function devised for the helium atom. This approx-
imation was expected to be reasonable since it was known
that Coulomb functions provide rather accurate results
for the simple photoionization of molecular hydrogen. '

The 'Po and 'P~, atomic states represented in Eq. (13)
are hence the ansatz for the corresponding 'X+ and 'H„*'

Byron and Joachain have taken the effective charge
Z =2. This choice corresponds to the situation where
each electron does not screen the nuclear charge seen by
the other one. One can expect that this is physically
reasonable for two ejected electrons which are close to
the nuclei for only a short time. It should be noted that
the ((} orbitals defined in Eq. (14) are again normalized in
the energy scale, i.e.,

final molecular states. Finally, to summarize the above
definitions, a final wave function with total energy
Ef —F +F +E& will be denoted as

0 f(S,I,E/ Ef ~
Ii r2 R ) qf(9', E/ ~

r„r2,R ), (17)

where 7 is the shorthand notation

V—= {S='r+,'n„",I,e, e )

defining the pair of ejected electrons.

IV. FORMULAS FOR CROSS SECTIONS

Cross sections for molecular processes involving ab-
sorption into a continuum are conveniently expressed
with the aid of difFerential oscillator strengths. The value
of this concept mainly rests on the fact that discrete and
differential oscillator strengths join smoothly at the ion-
ization threshold. '

In the present problem, the accessible final states in-
volve three such continua: two electronic ones and a sin-
gle nuclear one, associated to the relative motion of pro-
tons. The relevant differential cross section is then triply
differential in the energies c., g', and E&. Under the
electric-dipole approximation, the differential cross sec-
tion for ejection of two electrons el, e'(I+1) with ener-
gies in the ranges d c,, d c', and for the simultaneous pro-
duction of two protons with relative kinetic-energy E& in
the range dE&, is
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d 'o'+(O' E"
~

E )

B'I(V,E
'dE dE dEf

BE Be BEf
(19)

( V) forms as

B' (VE" E ) =E iMI(VE")
i

Be Bs'BE"

where E~ is the photon energy. The differential oscillator
strength in large parentheses in Eq. (19) is alternatively
expressed in the so-called "length" (L) and "velocity"

=E '
i
Mv(9;Ef")

i

where ML z are the dipole-matrix elements defined as

ML (O'Ef )=(+f(PEf ( r„rzR )
~
r, +r2

~

ql;(X 'X+,E;,0 =0)
~
r„r2R )),

Mv(9yEf )—(Vf(P, Ef ~
r, , r2, R )

~
V, +V'2

[ p;(X 'Xg, E;,U=0)
~
r»r2, R ))

(21a)

(21b)

In Eq. (22), Mz v are the electronic dipole-matrix ele-
ments to be computed within fixed nuclear geometries

ML(9'~ R )

(Cf(9',R
( r„rz) ) r, +r2 ) 4, (X 'X+,R

~
r, , r2))

Mv(9'
I
R )

(23a)

= (@f(PR ) ri, r2) ( Vi+72 (
4;(X 'X+,R

( ri, r2) ) .

(23b)

In the case where one uses the 5 approximation for the
nuclear wave function [Eq. (11)], the integration over R
in Eq. (22) is readily performed and yields

M v(L9 Ef)= „ML,v(9
I Rf)P (u=0

I Rf), (24)
f

so that the electronic dipole-matrix elements Ml' z are
simply modulated by the value of the initial vibrational
wave function at the classical turning point. This is the
mathematical foundation of the 5 or reAection approxi-
mation. ' It should be noted that this approximation is
often used together with the additional assumption that
electronic moments do not vary with R (Franck-Condon
approximation). In that case, the transition moment of
Eq. (24) and therefore the cross section exactly re6ect the
be11-shaped behaviors of I',- and I', , respectively. In the
present paper, the Franck-Condon approximation wi11
not be invoked, so that we shall present results that are
exact or 5 approximated with respect to the nuclear de-
gree of freedom.

Until this point our description has referred uniquely
to the molecular frame where the wave functions are

since only transitions from the U =0 initial ground state
are considered in this work. Inserting the actual expres-
sions for initial [Eq. (1)] and final [Eq. (4)] wave functions
in Eqs. (21) leads to the usual integral over the nuclear
separation

ML v(P, Ef")

PfEf" RMLy RP; U=O R R.
0

more easily described. However, DPI is detected in the
laboratory so that a transformation from the body-6xed
to the space-Sxed frames must be carried out. After this
transformation, the previously de6ned vibronic states
[Eqs. (1) and (4)] are seen as rovibronic states in the labo-
ratory frame. As the recent experiments are not rotation-
ally resolved, it is worthwhile to sum over the final rota-
tional states and average over initial vibronic-state distri-
bution. Assuming Hund's coupling case (b) and neglect-
ing the vibration-rotation interaction, it can be demon-
strated' that the above formulas are still valid in the lab-
oratory frame.

By use of Eqs. (19) and (23), we obtain the cross section
for the production of a final state defined by the collective
symbol 9 defined in Eq. (18). In fact, the recent experi-
ment of Dujardin et al. ' does not resolve the final state
so precisely. Hence, the partial cross section of Eq. (19)
has to be summed and integrated over relevant degen-
erate 6nal states. The discrete summations are over the
selected configurations sl s'(l+1), and over the three
states ('X+, 'II„*')comprised in each configuration.

The continuous summations are concerned with the
energy variables and are slightly more involved. By im-
pact with photons of energies E, a final state of total en-

ergy Ef is reached. Within our model assumptions, the
law of energy conservation reads

Ef ——c+c'+Ef"——Ez+E; . (2S)

Xd o. +(V,Ef"
~

E ) . (26)

The efFect of the Dirac distribution is to select the ener-
gies e, e', and Ef, in accordance with Eq. (25). Conse-
quently, the triple integral in Eq. (26) actually reduces to
a double one. Alternate forms are possible for this in-
tegral, depending on the choice of the two independent
variables among the set I E, e', Ef"j. We have found it con-
venient to consider the energy c. of the electron with an-
gular momentum I, and Ef, the nuclear energy, as the in-
dependent variables. Thus Eq. (26) can be rewritten as

A priori, any partitioning of Ef between the electronic
and nuclear degrees of freedom is allowed. Taking into
account of Eq. (25) in the integration over continuous en-
ergies, yields

~'+(E, )= J ' I ' I 'S(e+e'+Ef" E, E—, )—
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o +(E )=
y

4+trgo~ zj &I — d f(S,l, e,EI E—I e—,Eg ~E )
(27)

Casting Eq. (27) into the form

d o'+ ( l, e
~ Er )

o (E )=f g de
I=o

we retrieve, in a generalized form, the one-dimensional differential cross section do. + /de introduced in our preceding
paper.

Now, permuting the order of integrations in Eq. (27), allows us to get information on the nuclear motion. This leads
to

o'+(E )=
y

4~'«0 Ef sf sf d'f(S, l, e,E/ Ef e Ef ~
Ey)

(29)

which is cast into a one-dimensional integral over the nu-
clear energy as

d '+(E" ~E )
a +(E )= eE" .

o f
(30)

X (EI EI )' dEI, — (31)

where A is a constant factor. Equation (31}reveals that

In Eq. (30), der +/dE/ provides us the distribution of ki-
netic energy of the nuclei, which is the major contribu-
tion of this paper with reference to paper I. It is
worthwhile to emphasize that Eqs. (28} and (30) are per-
fectly symmetrical analyses of cr +(Er ), in spite of the
very difFerent physical natures of the electron- and
proton-differential spectra, as will be seen in Sec. V. Of
course, these analyses are also similar in form to the more
familiar one involving the di8'erential angular distribution
do +/dQ.

Before ending this section, it is worthwhile to derive a
simplified formula for the cross section at the onset. This
is the first step towards the derivation of molecular
threshold laws, analogous to the well-known Wannier-
Rau-Peterkop (WRP) laws's for atomic processes. Our
derivation rests upon two hypotheses related to the dy-
namics of electrons and nuclei, respectively. For the elec-
trons, Roth' has applied the %'Rp laws to atomic multi-
ple photoionization. He has found that the DPI cross
section of a neutral atom varies above threshold as
a + 0-. (EI)', where EI is the energy available for the
outgoing electrons. As a first assumption, we suppose
that such a dependence is also valid when electrons es-
cape from the noncentral molecular field created by the
two protons. As a consequence, the term (EI Ef )'
can be factored out in the diff'erential oscillator strength.
The second hypothesis is that the 5 approximation can be
applied in the threshold region. Then, inserting both the
matrix element obtained under the 5 approximation [Eq.
(24}],and the WRP dependence in the excess energy into
Eq. (30},leads to

P; ( U =0
i 1/EI }o+(E )=A.

o Enf

I

the total cross section for the DPI of a diatomic molecule
varies at threshold as the convolution of the density prob-
ability in the initial vibrational ground state with a series
of nearly linear electronic cross sections of the atomic
type.

V. COMPUTATIONS

The practical application of the method described in
the preceding sections involves a large amount of numeri-
cal calculation. All calculations have been done at the
Computer Center (CIRCE) (Ref. 20) in Orsay.

The first computational step of the present work in-
volves evaluation of accurately correlated electronic wave
functions 4;(X 'Xs+, R

~
ri, r2) [Eq. (1)] for the ground

state. of Hz. As in paper I, we used functions of the form
optimized by Hagstrom and Shull, ' i.e., 33-configuration
mixings built up from 15 elliptic molecular orbitals.
These electronic wave functions were computed for vari-
ous internuclear separations by use of a configuration in-
teraction program dealing with the nonorthogonal ellipti-
cal orbitals. The set of exponents optimized by Hagstrom
and Shull for the equilibrium geometry (R, =1.4 bohr)
was used throughout. This set revealed to be of satisfac-
tory accuracy since more than 95% of the correlation en-

ergy is accounted for over internuclear separations rang-
ing from 1.2 to 1.6 bohr. The energies so obtained are
given in Table I, along with the corresponding SCF (Ref.
21) and exact theoretical values.

The second computational step is the determination of
the vibrational ground-state wave function P;(v =0

~

R ).
For this purpose, Eq. (2) was provided with the exact
theoretical potential of Kolos and %olniewicz, and
thence was solved by use of the Numerov-Cooley algo-
rithm. 'With an integration step length AR =0.01 bohr
and the integration range 0.4—4.0 bohr, we have obtained
a vibrational energy E,."(U =0)=0.009935 hartree=0. 27
eV [Eq. (3)]. This yields a total ground-state energy of
—1.164 539 hartree, which compares well with the exact
value —1.164547 hartree. In Fig. 1, the potential for
the X'Xg+ state of H2 and the U =0 vibrational wave
function are plotted as functions of the internuclear sepa-
ration. The third numerical step is the computation of
the final nuclear wave functions PI(EP R ) for a set of
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TABLE I. Potential energies and double-ionization potentials for various geometries of the X'Xg+

ground state of the hydrogen molecule. For the wave functions used in this work, the potential energies
are followed by the percentage of correlation energy actually accounted for.

(bohr}

1.2
1.3
1.4
1.5
1.6

HF'

—1.125 029
—1.132024
—1.133630
—1.131 375
—1.126 352

Potential energies'
(hartree)

This work (kE„„)
—1.163 178(95.6)
—1.170929(96.5)
—1.173 130(96.7)
—1.171 475(96.7)
—1.167 116(96.5)

Exact'

—1 ~ 164 934
—1.172 346
—1.174 475
—1.172 854
—1.168 582

I2+b

(eV)

54.38
52.83
51.40
50.06
48.81

'E (8 )+ 1/8, in the notation of the main text.
I + = —E for two-electron systems with Axed nuclei (see text).

'Hartree-Fock results from Ref. 21.
dExact results from Ref. 22.

given positive energies t Ef"I. As in the case of the bound
vibrational state, these wave functions could have been
obtained by the straightforward integration of Eq. (6).
However, as mentioned in Sec. III, these functions are, in
fact, well-known spherical Coulomb functions, within a
normalizing factor. %e took advantage of this in using
an efficient specialized algorithm for their computation.
The repulsive potential of H&+ and its dissociation limit
H++H+ are plotted in Fig. 1 with three continuum nu-
clear wave functions having the energies 0.4, 0.714, and

n
E (eV) ~ ~

i

~ F (a.u. )

58.9 = IQ

5I I 07I4

42 6- 0.4

3I 7- 0

O.
(

I

I

0 I I4 2 5 4
INTERNUCLEAR SEPARATION (bohr )

- -I I65

FIG. 1. Exact potential-energy curves for the neutral
H2('Xg+) and doubly ionized Hz + states of the molecular hy-
drogen (denoted by E;" and Ef, respectively, in the main text).
Potentials are given in eV from the u =0 ground state of H2 and
in hartrees from the dissociation limit H++H+. The internu-
clear separation is in bohrs; the equilibrium value is 8, =1.4
bohr. The bound vibrational wave function P,-(u =0) and
three-continuum nuclear wave functions Pf (Ef") are also plotted
(on a difFerent scale).

1.0 hartree (their corresponding classical turning points
are 2.5, R, = 1.4, and 1.0 bohr, respectively).

In order to check the vibrational part of our computa-
tional code, and also to verify numerically that the con-
tinuum nuclear wave functions given in Eqs. (10) and (11)
are properly normalized, we found it convenient to use
the closure property as a check. It was verified that a set
of 18 energies ranging from 0.3 to 1.6 hartree correctly
spans the relevant continuous spectrum. More precisely,
we obtained the following numerical result:

I 1(pf(EI")(
I
p;(U =0))

I
'dEf"=0.99992 .

0, 3
(32)

In computing the above integral, the values of the ma-
trix elements were first calculated on the grid of the 18
selected energies, and the intermediate values were inter-
polated by cubic splines. For the actual calculation of
cross sections, via the discretization of integrals over Ef,
further tests have shown that a convenient set tEf" j of
proton energies consists in a grid of 51 equispaced values
from 0.36 to 1.36 hartree (step length bE =0.02 hartree).
This choice ensures that the region where the initial vi-
brational state has significant amplitude (see Fig. 1) is
spanned with suScient accuracy.

At this stage, we have determined the final-state
configurations cl c'(I + 1) that are significantly populated
by the DPI process. Taking advantage of the fact that
the DPI cross sections of helium and Hz, in the fixed
equilibrium geometry, are rather similar (see paper I), the
tests were made on the simpler helium case. A well-
correlated initial ground-state wave function, and three
final channels cs c'p, cp c'd, and cd c'f were used. At a
photon energy of 100.8 eV, a total cross section of 0.553
10 Mb has been obtained, in accordance with the work
of Byron and Joachain. In this value, corresponding to
the region where the cross section is maximum, the rela-
tive contributions of the final channels were found to be
of 84.8% (cs c'p), 15.1% (cp c'd), and 0.14% (cd c'f ).
Hence, we decided to consider only the two first final
configurations, which amount to summing over I =0, 1 in
Eqs. (27) and (29).

We now arrive at the major part of the numerical e8ort
involved in the present study. The application of cross-
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section formulas derived in Sec. IV requires several re-
peated integrals, since one has to sum over the electron
coordinates, the internuclear distance, and two variables
taken among the set Ies, 'E, II depending on the way
chosen for analyzing the total cross section [Eqs. (28) or
(30)]. Fortunately, the computational effort implied in

the evaluation of partial, differential, and total cross sec-
tions can be considerably reduced in the following way.

For the grid of internuclear distances given in Table I,
the electronic dipole matrix elements ML v of Eqs. (23) or
(24) are evaluated at fixed energies e and s', each of them
ranging from 0.0 to 2.0 hartree with a step length of 0.1

hartree. The total dipole matrix elements ML z are then
computed, via Eq. (22), for the previously determined
grid of 51 final nuclear energies. All the required elec-
tronic matrix elements [Eqs. (23)] have been computed
with an integral generator previously used in the con-
text of simple photoionization studies of H, H2, and

Hz. It should be noted that the electronic dipole-
matrix element ML z varies almost linearly with the in-
ternuclear separation. This allowed us to employ only
the five geometries given in Table I. At this point, ignor-
ing the various discrete indices that define the final states,
one has obtained a three-dimensional matrix
ML i ( ss E, &

',) over 21 X 21 X 51 preselected continuum
energies. In order to make the last computational step
more eScient, it is convenient to have the same step
length AE=0.02 hartree in the three dimensions. For
this purpose, the matrix is enlarged by cubic-spline inter-
polation to a 101' 101X 51 dimensional ML v matrix.

Until now, all computations have been done without
any reference to the photon energy. The last numerical
step consists in selecting all the matrix elements relevant
to a given photon energy Ez. This amounts to collecting
all elements of the large ML v matrix that satisfy the law
of conservation of energy [Eq. (25)]. These matrix ele-
ments are then conveniently summed in order to obtain
the cross section, analyzed either in terms of electronic or
nuclear energies [Eqs. (28) or (30), respectively].

VI. RESULTS AND DISCUSSION

The investigations reported in paper I have revealed
that the dipole-length formulation is much less reliable
than dipole-velocity one, as previously observed in the
DPI of helium. Consequently, we shall only report re-
sults obtained within the dipole-velocity formulation in
the following. Some comparisons of the two forms are
given in paper I. In this previous paper, the DPI of the
H2 molecule had been studied within a model where the
motions of nuclei were completely ignored. More pre-
cisely, it was supposed that the nuclei remained held at
the ground-state equilibrium distance R, while both elec-
trons were ejected. In the present work, the nuclei are al-
lowed to move in the (bound) initial as well as in the (free)
final nuclear states. This conceptually modifies the fixed-
nuclei model used previously. In order to make the con-
nection between the two approaches more transparent, it
is worthwhile to discuss first the threshold energy where
DPI begins to appear.

In the fixed-nuclei model, the protons keep their poten-

I.0-

0.8-

OJ

O

06
0

OK

0.2.

0
40 60 80

PHOTON ENERGY E ~ {eV)
100

FIG. 2. Theoretical calculation of cross section o'+ for
molecular hydrogen in the velocity formulation. The solid
curve corresponds to the calculation where the motion of nuclei
is accounted for (R-averaged calculation). The dotted curves
refer to calculations done within fixed geometries R between 1.2
and 1.6 bohr.

tial energy 1/R during the overall process. Neglecting
the vibrational energy of the U =0 level, the combination
of Eqs. (3), (5), and (25) leads to the relation

EI =F~+E (R)=E, ,I—(R),
since for two-electron systems, the double-ionization po-
tential I + appears to be the opposite of the electronic
ground-state energy. Hence, if the nuclei are fixed at the
distance R apart, the DPI cross sections will start at a
photon energy equal to I +(R). Some values of the
double-ionization potential are given in Table I. For in-
stance, one has I +(R, )=51.4 eV at the equilibrium
ground-state geometry R, =1.4 bohr. If the vibrational
energy of the U =0 level is taken into account, I +(R, ) is

slightly modified and the value 51.1 eV is obtained. On
the contrary, when the nuclear motions are considered,
the DPI process is theoretically allowed from photon en-
ergies of —E, =31.7 eV. These values are exemplified in

Fig. 1.
In Fig. 2, a set of curves representing the total cross

section at various fixed geometries is plotted. %hen R in-
creases, these curves are shifted towards lower photon en-
ergies, in accordance with the fact that the double-
ionization potential I +(R) is a decreasing function of R
in the neighborhood of the equilibrium value R, (see
Table I). In a sense, the cross sections derived at fixed in-
ternuclei separations are fictitious, but it has been ob-
served in the context of simple photoionization that the
cross sections calculated at R =R, are in good agreement
with those resulting from the inclusion of nuclear vibra-
tion in the target and in the produced ion. ' Figure 2 re-
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veals that this is also true for DPI. In this 6gure, the
solid curve represents the actual theoretical cross section
for which nuclear motion is properly taken into account.
This curve has been obtained from Eqs. (28) and (30). We
have veri6ed numerically that both routes yield identical
results. For brevity, this calculation mill be denoted as
the "R-averaged" result. As expected in paper I, the in-

clusion of initial nuclear vibration and 6nal nuclear repul-
sion has a lowering efFect on the cross section obtained at
the 6xed ground-state equilibrium geometry. However,
this is a slight effect since the maximum in the total cross
section decreases from 0.783 10 Mb to 0.739 10 Mb
for photon energies of 64.0 and 64.3 eV, respectively. In
contrast, the cross section increases in the region 45-50
eV which was energetically forbidden within the R, -6xed
calculation.

An enlargement of the threshold part of Fig. 2 is

presented in Fig. 3. As expected in Sec. IV, it is found
that the cross sections computed within fixed geometries
are nearly linear functions of the excess energy, i.e., they
obey the %RP atomic threshold law. The solid curve in

Fig. 3 represents both the R-averaged and the 5-
approximated curves since they actually difFer by less
than 1% over the whole energy range considered in this
paper (40-100 eV). It can be seen that the slopes of these
theoretical cross sections do no longer exibit a discon-
tinuity, as was the case when nuclear motions were not
accounted for. The dashed curve in Fig. 3 represents the
molecul@r threshold law derived in Sec. V. The multipli-
cative constant A appearing in this law [Eq. (31)] has
been determined by a matching with the exact cross sec-
tion at 54 eV (this point is referred as I' in Fig. 3).

From Fig. 4, it turns out that the molecular threshold
law is of good accuracy over the photon energy range
45-55 eV. This is in accordance with the recent experi-
ment of Lablanquie et aI. on the DPI of argon, whereas
Roth' estimated that the range of validity of threshold
law could be limited to 1.3 eV above threshold. More-
over, it should be noted that the extrapolation of the
straight part of the 8-averaged cross section does not
yield the Franck-Condon value of the double-ionization
potential I +(R, )=51.4 eV, but a significantly lower
value of 49.3 eV. As a consequence, caution must be ex-
cercised when extrapolating such linear parts of the cross
section in predicting the existence of multiple electronic
states of a doubly charged ion. 3

In Fig. 5, we have plotted the total and partial cross
sections obtained in the model of paper I for molecular
hydrogen with the 6xed equilibrium ground-state
geometry 8 =R„ for photon energies in the range
40-100 eV. As mentioned above, the total cross section
has a maximum of 0.783 10 Mb for 64.0-eV photons.
The relevant partial cross sections are associated with the
cs e, 'p and cp e'd channels, as discussed in Sec. VI. It can
be seen that the contribution of the es e'p states is greater
by a factor of 3 near the maximum. However, as could
be expected, the relative importance of the cp e'd excita-
tions becomes larger as the photon energy increases.

In Fig. 6, the R-averaged total cross section is com-
pared with the very recent experimental results of Dujar-
din et al. ' The agreement is rather good considering the
approximations made in the present work, as well as the
experimental uncertainties.

As explained in Sec. IV, the total cross section at a
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FIG. 3. Same as Fig. 2, but enlarged in the threshold region.
The dashed curve corresponds to the molecular threshold law

[Eq. (31}]matched onto the exact theoretical result at point P.

FIG. 4. Comparison of the cross sections o. + derived from
the molecular threshold law (dashed curve) with the R-averaged
one «,'solid curve) over the whole photon-energy range. Note
that point P is the same as in Fig. 3, and that the 6-
approximated curve is so close to the exact one that they cannot
be distinguished in this figure.
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given photon energy can be analyzed in terms of either
photoelectron or proton kinetic energies. In paper I, due
to the fixed-nuclei model, the latter analysis could not to
be considered while the former was considerably
simplified. Combining Eqs. (12) and (32) for R =R, leads
to

s+e'=E I +(R, ) . — (34)

Equation (34) indicates that, in the model of paper I,

0.8-

FIG. 5. Theoretical calculation of cross section 0'+ for
molecular hydrogen in the fixed ground-state equilibrium

geometry R, =1.4 bohr (velocity formulation). The dotted
curves represent the contributions of the cs c'p and cp c'd pairs
of ejected electrons. The solid curve is the total cross section
(same as in Fig. 2).

given a photon energy of, say, Ez ——94.9 eV, photoelec-
trons share the de6nite total kinetic energy c.+c'=1.6
hartree. The corresponding distribution of photoelectron
energy had been calculated and is recalled in Fig. 7 (dot-
ted curves). From this figure, it can be seen that the shar-
ing of the total kinetic energy between the two ejected
electrons is qualitatively dN'erent for the cs c.'p and cp c,'d

pairs of ejected electrons. In the former case, the curve is

highly peaked at its edges, indicating that an unequal
sharing of energy is favored. One electron is likely to be
ejected with most of the available energy (e=1.6 hartree)
while the other one barely escapes (a=0). Furthermore,
one observes that the curve of the channel es e'p is ap-
proximately symmetrical about the midpoint c, =O. 8 har-
tree. This demonstrates that events in which the slow
electron is s and the more energetic one is p have almost
the same probability of occurrence as those in which the
slow electron is p and the energetic one is s. In contrast,
for an cp c.'1 pair of photoelectrons, the slow electron
would necessarily be of the d symmetry since the
di8'erential oscillator strengths for a p electron with ener-
gies c, = 1.6 hartree and c.=O are almost in the ratio 17:1.

Let us now examine the photoelectron energy distribu-
tion derived within the present model which does ac-
count for the motions of nuclei. For a photon energy of
94.3 eV, very close to the preceding value, the differential
cross sections der +/de have been computed according
to Eqs. (27) and (28) for the main two channels. The cor-
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FIG. 6. Total cross section o. + for double photoionization of
molecular hydrogen. The solid curve is the R-averaged calcula-
tion. Experimental data points are from Dujardin et al. {Ref.
17).

FIG. 7. Distribution of photoelectron kinetic energies calcu-
lated for 64.6-eV impacting photons. The partial contributions
due to the cs c'p and cp c'd channels, as well as the total distri-
bution are calculated within two difterent models: dotted
curves refer to the vertical transition at the fixed ground-state
equilibrium geometry R, (from Ref. 3); solid curves are from the
R-averaged calculation (this work).
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responding curves are given in Fig. 7 (solid curves).
From this figure, it is apparent that the conclusions
drawn in paper I are confirmed by the more re6ned mod-
el used here. However, Fig. 7 reveals that curves are
signi6cantly cut down around their maxima at a=1.6
hartree. This phenomenon is a consequence of the fact
that the energy conservation law actually applies to the
whole four-particle set [H++H++e +e I instead of
the two-electron set. Hence, the possibility now exists for
the protons to have an energy less than the previous
value 1/8, . Correspondingly, electrons can share this
additional energy so that their kinetic energy can exceed
1.6 hartree.

It should be noted that electron kinetic energy distribu-
tions have not yet been measured for molecular DPI pro-
cesses. In contrast, such experimental data are available
for atomic DPI (Refs. 32 and 34) and, generally, compare
well with the theoretical results obtained from many-
body perturbation theory.

%e now turn to the analysis of the total cross section
in terms of the two-proton kinetic energies. Equations
(29) and (30) define the absolute differential cross section
do +IdEf" at a given photon energy. In Fig. g, such
curves are plotted for selected photon energies in the
range 64.3-91.5 eV. From this figure, it can be seen that
the favored two-proton kinetic energy is very slightly dis-
placed towards higher energy for increasingly energetic
photons. More precisely, it is found that the most prob-
able two-proton energy increases regularly from 0.703 to
0.717 hartree over the considered photon energy range.
This amounts to a displacement of 0.36 eV for the
favored proton energy. As could be expected, the most

probable value remains around 1/Il, =0.714 har-
tree=19. 3 eV. The shape of the curves of Fig. 8 and of
the U =0 vibrational ground-state curve (Fig. 1) are clear-
ly very similar. For instance, one recognizes in Fig. 8 the
asymmetrical part of the vibrational function that reflects
the anharmonicity of the exact potential. This strong
analogy con6rms that the 5 approximation is valid in this
actual problem. This is again con6rmed in Fig. 9 ~here
exact proton energy distributions are compared with the
5 approximated ones. The upper curves are for 64.3 eV
impacting photons, and so correspond to the maximum
in the total section (see Fig. 2). In this energy region, the
5 approximation provides an accurate reproduction of
the proton kinetic-energy distribution since the relative
error is less than 2%. For a photon energy of 53.5 eV,
which corresponds to the threshold region, the lower
curves show that the 5 approximation is less satisfactory
since the exact curve is now reproduced within a relative
error of 7%. It should be noted that the latter curves are
truncated above Ef ——0.8 hartree. This again relies on
energy conservation. From Eq. (25) it is found that 53.5-
eV photons populate 6nal states with a total energy 0.8
hartree. This value is reached when both electrons are at
rest, and is an upper bound for the two-proton energy.

Proton kinetic-energy distributions resulting from DPI
of molecules have not yet been measured. However, such
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FIG. 8. Distributions of the two-proton kinetic energy Ef
calculated for photon energies ranging from 64.3 to 91.5 eV.
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FIG. 9. Comparison of exact and 6 approximated distribu-
tions of the two-proton kinetic energy Ff". The upper curves are
for 64.3-eV photon energy, i.e., correspond to the region where
the total cross section is maximum. The lower curves are for
53.5-eV photon energy, i.e., correspond to the threshold region.
Note that 53.5-eV photons create final states with a total energy
of 0.8 hartree. This value is then an upper bound for the two-
proton energy range.
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data are available (in arbitrary units) for the double ion-
ization of the hydrogen molecule by electron and pro-
ton impact. In both experiments, it is found that (i) the
proton kinetic-energy distributions have the expected bell
shape and (ii) the abscissa of the maximum are not
signi6cantly modified when the energies of the projectiles
are varied in the ranges 0.5 —1 KeV and 3—9 KeV for the
electron and proton, respectively. It should be noted that
Fig. 8 revealed a quite similar behavior for impacting
photons with a suSciently high energy, say, larger than
60 eV. In contrast, Fig. 9 shows that the most probable
two-proton kinetic energy is increased by 1.0 eV when
going from 53.3 to 64.3 eV photons, i.e., when passing
from the threshold region to the vicinity of the maximum
in the total cross section.

tive alternative to the wave-function approach for the
molecular DPI, as it was proved to be the case for heli-
um.
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APPENDIX

The purpose of this appendix is to normalize, in the en-
ergy scale, the approximate nuclear function 5(R —R„)
describing the repulsive two-proton state

VII. CONCLUSIONS
Pf (E„ i

R ) =JV(E„)5(R—R „) . (A 1)

An ab initio calculation of the double photoionization
of molecular hydrogen is presented. Partial and total
cross sections are calculated in the 40-100 eV photon-
energy range. Furthermore, at any given photon energy,
the present model allows the total cross section to be ana-
lyzed in two complementary ways: (i) the photoelectron
kinetic-energy distributions are obtained for the es c'p
and the sp e'd channels, (ii) the two-proton kinetic-energy
distribution is extracted, either exactly or by use of the 5
approximation, which is shown to be very accurate. In
addition, the analytic expression of the molecular thresh-
old law for DPI has been derived. In the case of H2, this
law is valid over a range of, say, = 10 eV.

The theoretical cross section obtained here compares
rather well with the absolute total cross section measured
by Dujardin et al. ' To date, this has been the sole avail-
able experimental observable concerning the DPI of the
hydrogen molecule. As a consequence, our analyses of
kinetic-energy distributions of fragments cannot be
directly checked against experiment. However, the pho-
toelectron energy distributions are very similar in shape
to the atomic ones, except in the region of higher photo-
electron energies where a purely molecular efFect appears,
namely, the possibility of a (small) exchange of energy be-
tween protons to electrons. On the other hand, the
proton-energy distributions present a strong analogy with
those resulting from electron and proton impact on H2.
Nevertheless, it is dif5cult to estimate the accuracy of the
present model. Assuming that the Born-Oppenheimer
separation is valid for dissociative DPI, it is likely that
the major approximation made here lies in the uncorrelat-
ed electronic part of the final states. Hence, a relevant
check of the method would result in the companson of
the present results with those deriving from the use of
more refined wave functions for the double electronic
continuum. A similar verification has been done for the
DPI of helium, since partly correlated two-free-e1ectron
wave functions are available in this case. However,
finding accurately correlated wave functions for atomic
and molecular states with two-ejected electrons is a con-
siderable challenge for theoricians. As a consequence,
the many-body perturbation theory would be an attrac-

by use of a fundamental property of the Dirac distribu-
tion. Moreover, using

1 1 1
5 ——a = 5 x ——

X a a

which is a particular case of the theorem giving
5[f(x)], we get

5(R„—R„)=5
n

=E „5(E„—E„) . (A5)

Finally, the right-hand side of Eq. (A3) becomes

JV(E„)JV(E„)E„5(E„ E„)=JV(E„)E„5—(E„ E„), —

by use of the property f(x)5(x —a)=f(a)5(x —a). In
order to arrive at the correct normalization 5(E„E„), —
we are led to

JV(E„}= 1

n

which is the result used in the main text.

Other derivations are available but they often use argu-
ments like the vibration sum rule. ' The present deriva-
tion is a purely mathematical one and is based only upon
the basic properties of the Dirac distribution.

In Eq. (Al}, E„ is the energy, in hartrees, ' of the con-
sidered state and R„ the corresponding classical turning
point (R„=l/E„). The normalization factor is deter-
mined by the condition

f Pf(E„ i
R )Pf(E„ i

R )dR =5(E„E„). (A2—)

Inserting the 5 functions in the normalizing integral leads
to

f Pf(E„~ R )Pf(E„~R )dR =~(E„)~(E,)5(R„—R„) .
0

(A3)
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