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We introduce a new simulation technique which is based on the distribution of the times of col-
lision between plasma particles and a radiating atom. This procedure generates a continuous flow

of particles of random velocities and directions through a sphere of interaction around the radiator.
It leads to correct statistics while traditional procedures with their reinjection prescriptions are
shown to change the statistics. The new technique is applied to a detailed study of Ly-a. The
inSuence of the shielding parameter and the temperature-density dependence are investigated. An
asymptotic exponential falloN'of the ion dipole autocorrelation function is exhibited, verifying ana-

lytic indications. The 6rst joint ion-electron simulation of profiles is reported. They agree with the
experimental profiles of Grutzmacher and %'ende.

I. INTRODUCTION

Until the measurements of Kelleher and Wiese' and, in
particular, those of Grutzmacher and %ende, it was ac-
cepted in the theory of Stark broadening of spectral lines
in a plasma that the ions could be treated as static. The
measurements of Ref. 2 of the Ly-a half-width disagreed
with contemporary theoretical values by almost a factor
of 2. It seems at present that this discrepancy was due to
the assumption of static ions. It is dif6cult to take ion
dynamics into account theoretically at a microscopic lev-

el, since for ions one has strong overlapping collisions, so
that theories using binary collisions, such as the uni6ed
theory or the cluster expansions of Ref. 6, cannot be ap-
plied. The model microfield method of Brissaud and
Frisch was relatively successful in the work of Seidels
and Mazure et al. in treating ion dynamics. It is, how-
ever, a phenomenological approach, not a microscopic
theory.

On a microscopic level„ important progress has been
made by simulation-oriented approaches' ' which
make possible the evaluation of the analytically unwieldy
expressions of the microscopic theory and allow the cal-
culation of hne profiles which agree with the experimen-
tal pro61es to a surprising degree of accuracy. The un-

derlying microscopic model usually treats the plasma
particles ("perturbers") as classical quasiparticles which,
in the case of neutral radiators, travel on straight paths
and whose charge is Debye shielded. Thus the perturbers
are regarded as a two-component ideal gas at given densi-
ty and temperature. In Refs. 10-12 only the ions are
simulated, while for the electrons the impact approxima-
tion' is used. The simulation realizes the model by ran-
domly generating about 125 perturbers' in a simulation
volume, e.g., a sphere, as in Ref. 11. Since the perturbers
are moving, a part of them leaves the sphere during the
simulation time, and therefore a perturber-reinjection
procedure has to be introduced. This can be done either
through periodic boundary conditions in case of a box as
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FIG. 1. Collision frequency v(t) for reinjection method as in
Ref. 11 compared to ideal gas frequency vo.

simulation volume or as in Ref. 11, whereupon leaving a
perturber is reinjected randomly into a surface layer of
the sphere with, up to a sign, the same velocity. The sign
is chosen so that the perturber moves into the sphere.

Periodic boundary conditions clearly introduce corre-
lations and the improved reinjection method of Ref. 11 is
an advance. But also this method introduces correlations
and deviations from the behavior of an ideal gas, in a
more subtle way though. It can be shown analytically
that the reinjection method of Ref. 11 (a) favors large im-
pact parameters and (b) changes the perturber-radiator
collision frequency. To exhibit this graphically we have
performed a simulation with reinjection method as in
Ref. 11 and parameters as in Eq. (4.8). In Fig. I the col-
lision frequency v(t) is plotted where

v(t) '=(~2(t) —~&(t)),„,
the average time interval between the first and second
collision after time t. In an ideal gas the analogous fre-
quency vo is constant. Collision times and their statistics
are explained in detail in Sec. II. It is seen that the ratio
v(t) lvo approaches —'„which is also obtained analytically.
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For ions this limit is reached much more slowly than for
electrons, in accordance with the square root of their
mass ratio. At t =10 ' sec the deviation from the
correct statistics has become considerable for ions, but
for this time the ion dipole autocorrelation function has
already dropped to 0.3 (cf. Fig. 3). Therefore, one would
hope that this change of statistics will not affect the simu-
lated ion profiles too much. For electrons, however, the
deviation from the correct statistics sets in much sooner,
so that one would expect a greater efkct.

With the above reinjection method, one also has no
fluctuations of the particle number in the simulation
volume nor of the velocity pro61e. To avoid all this, it
would seem simplest to enlarge the simulation volume
sufficiently, the lighter the perturbers, the larger the
volume required. There are, however, the following ob-
jections.

(i) Computer time rises tremendously.
(ii) It is uneconomical —there are a growing number of

peturbers which do not come physically close enough to
the radiator to interact and which are, thus, superfluous
for the simulation.

Most appropriate wouM be a simulation that picks out
just those perturbers from the infinite gas which are
relevant for the interaction, i.e., which are actually in a
sphere of interaction of given radius R during a time for
which the dipole autocorrelation function is still (appreci-
ably) nonzero. Just this is achieved by the simulation
procedure we are proposing, a collision-time simulation
technique. This procedure generates random collision
times and, for each collision, a random velocity and an
impact parameter smaller than R. In this way one gen-
erates a continuous jfoio ofperturbers entering and leaving
the interaction volume. Details are explained in Sec. III.

The new technique is used in Sec. IV in a detailed
study of ionic and electronic properties of Ly-a by means
of individual ion, and electron simulations, and —to our
knowledge, for the ffrst time joint —ion electron s-imula
tions. %'e 'investigate the inhuence of the shielding pa-
rameter, the density-temperature dependence, and validi-
ty of the impact approximation. %e exhibit an asymptot-
ic exponential fall o8' of the dipole autocorrelation func-

tion for ions and show agreement of calculated and ex-
perimental profiles.

For an average number of 125 perturbers in the in-
teraction sphere, the number Xof collision times generat-
ed, i.e., the total number of perturbers, is typically
600-1200 for ions and 3000-5000 for electrons. In our
applications we use 250 perturbers in the interaction
sphere, with corresponding total number %= 1000-2000
for ions and N =5000—8000 for electrons. Our algorithm
requires more memory than the traditional approach, al-
though this can be reduced by program refinements. On
the other hand, our algorithm is easily vectorizable, as
opposed to the traditional one, thus allowing large sav-
ings in computer time.

II. LINK-BROADENING MODEL
AND COLLISION-TIME STATISTICS

The electrons of an atom, with Hamiltonian H„, ex-
perience an additional potential if placed in a gas or plas-
ma of classical point particles. The jth perturber contrib-
utes a potential yj(t) to the atomic Hamiltonian, e.g. , a
Coulomb or a Debye-Huckel potential in case of a plas-
ma, so that the total Hamiltonian is

(2.1)

We denote by TH ( t, to ) the corresponding time-
development operator and consider an optical transition
from an unperturbed atomic energy level E;„ to Ez„. By
%;„and %s„we denote the associated eigenspaces, with
orthonormal bases t l

i & ] and I l f & l, say. We define

tvo. ——(E E„)/A'—
(2.2)d:= —eX,

the unperturbed transition frequency and dipole opera-
tor, respectively. For simplicity we consider a single ra-
diating electron only. Semiclassical radiation theory
gives for the normalized line-shape function I.(co) for an
atom at rest,

(2.3)

where A is a normalization constant,

and where & &,„denotes averaging over the perturber configurations. Following Baranger' we define the line space

(2.4)

and operators C&J (t), V(t), U(t, to), and D in % by



37

&if
I
U« to} It"f'&:= &i

I &tt« to} I
i'&&f'I ~a« to}' If &e

'

&if ID I
t'f'&:= ~ &t

I dl f &&f'
I dI t'& .

(2.S}

The centered line profile I(hto) is then given by the
Fourier transform of the dipole autocorrelation function
C(t),

C(t):= Tr&DU(t, O)&,„,
I(bc@):=L(coo+lkc0)=(2m) ' Jdt e' "'C(t) .

(2.6)

Note that although the definitions in Eqs. (2.S) are basis
dependent the final expression for I(hto) is not. We also
note that V(t, ) and V(t2) will, in general, not commute
for t, &tz. With the usual nonquenching assumption one
may approximate &i

~ yj ~ f & by 0, thus neglecting transi-
tions caused by the perturbers. Then one shows by a sim-

ple calculation

U(t, t, ) = V(—t) U—(t, t, ) . (2.7)

rj.(t)=xj+vjt . (2.9)

The positions at time O, x are uniformly distributed and
the velocities have a Maxwellian distribution. An
equivalent description is in terms of the collision time
~~ —the time of closest approach to the atom located at
the origin —and of the impact parameter p, := r (r, ) as
well as the velocity v,

r, (t)=p, +v, (t r, ) . — (2.10)

In order to have a Anite collision rate one has to choose a
finite radius R and count only those collisions which have
an impact parameter less than R. In an infinite gas there
are, without this restriction, infinitely many collisions in
any 6nite time interval. In theoretical considerations one
may eventually let R tend to in5nity. In our simulation

This is a stochastic di8'erential equation of Schrodinger-
type whose averaged solution has to be Fourier
transformed.

Collision time s-tatistics The pla. sma of ions and elec-
trons is treated in the quasiparticle picture as an infinite
ideal gas, with charge shielding, for example, in the form
of a Debye-Huckel potential. Then the jth perturber,
with charge q and position r (t), contributes to H in Eq.
(2.1),

p~(t)= —eq (4ireo) '
i
x —r (t)

i

g exp[ —g ~

x —r (t)
~
/rD], (2.8)

where rD =(eokT/ne )'~ is the Debye radius and where

g is a further shielding parameter which is often, but not
always, chosen as 1. Each perturber moves on a straight
path,

procedure we choose R large enough for the Debye-
Huckel potential to have dropped close to zero, as dis-
cussed in Sec. III.

The collision times are uniformly distributed and in-
dependent of pJ and v~. Of course, pj and v& satisfy

pjlv&, but otherwise they are independent. The charge q
is also independent of the other variables. Thus @J(t},a
one-perturber contribution to the potential in line space,
is of the form

4J(t)=4(t rJ;v—j.,pj. , q ). . (2.11)

Except for the additional variables v~, pj, and q~ this is
similar to shot noise; particles arrive at random, uniform-
ly distributed in time, and each contributing 4(t r) to-
the "current, " in our case to the matrix-valued potential
V(t) Th.is approach with collision-time statistics has
been used previously in analytic investigations. '

Mathematically, the number of particles colliding in
[to, t] is a Poisson process. In each configuration one can
index the perturbers according to their collision times:
the nth perturber in this numbering would be the one
which collides as the rtth after some time to (for per-
turbers colliding before to one can use n (0 [Ref. 16(b)]).
The time duration u„between the nth and (n+1}th col-
lision is called the intercollision time. It is exponentially
distributed, and diferent u„'s, for n g 0, are independent.
This may be used for a mathematical description. For
the simulation we proceed slightly difFerently, as ex-
plained below.

HI. COLLISION-TIME SIMULATION TKCHNIQUK

The underlying idea of our approach becomes particu-
larly transparent for charge shielding by a cuto8' at the
Debye radius rD. Then only those perturbers in the
infinite gas contribute to V(t) whose impact parameter p
is smaller than rD and the other perturbers can be ig-
nored. In the simulation this is achieved by generating
collision times [~ J and for each ~ a random velocity v
and an impact parameter pjivj. with pJ & ra. In this way,
only relevant perturbers enter the simulation and one
generates a continuous Row of perturbers impinging on
the Debye sphere of the radiator from all directions.

Physically —and also numerically —it is better to have
charge shielding in terms of a smooth Debye-Huckel po-
tential. Since this rapidly goes to zero for increasing dis-
tance, only perturbers with impact parameters of less
than a few rD produce relevant contributions to the total
potential V(t). For exainple, for (= 1, the field strength
at the origin of a perturber at r =3rD is only 0.03 of the
Geld strength of a perturber at r =ra. We therefore
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choose a sphere of radius R such that the perturbers out-
side can be safely ignored, A good value is R =3rD.
Then the same simulation procedure as before can be ap-
plied, but now with impact parameters p. & R.

One has to calculate the Fourier transform of the di-

pole autocorrelation function

C(t) =Tr[(,DU(t, O) ),„] (3.1)

and one therefore has to know it for sufBciently large
times. In our applications we have the symmetry

C( t) =—C(t), (3.2)

n —1

r„=to+ g u~,
0

(3.4)

where u 0 =~) —t0. Th1s 1s stopped when 'T„P T+26.
%e use the following alternative way. I.et vz be the

mean collision frequency of a perturber species, ions, say,
with respect to a given radius R,

so that numerically one needs C(t) only in a time interval
[0,T] where, for t & T, C(t) has become sufficiently small.
Since, conversely, C(t) is essentially the inverse Fourier
transform of I(Et') by Eq. (2.6), one can roughly estimate
from the experimental linewidth how broad C(t) is and
how large T has to be chosen. In our application to I.y-a
we find that C(t) asymptotically falls off exponentially
also for ions, which verifies analytic indications. ' ' ""
The onset of the exponential behavior is used to deter-
mine a lower bound for T and to continue C(t) for
larger t.

Once the time interval [0,T] is chosen one has to de-
cide how many collision times to generate. Now, slow
perturbers may collide well before t =0 and still be in the
interaction volume at times later than t =0. Therefore
one has to generate collision times in an interval

[—b„T+b,], where 6 is a "thermalization time. " For
more massive —and thus slower —perturbers, 6 has to be
larger than for lighter perturb ers (cf. Fig. 2). For
R =3rD, a good value for 5 is, in terms of the plasma fre-
quency co =(ne2/earn )'

6=10mp ' . (3.3)

One can show analytically that with this value of 6, on
the average, only one perturber in 1000 with collision
time outside [0,T] is missed by the simulation.

To generate the random-collision times in [—5, T+b, ]
there are two essentially equivalent ways. One is to gen-
erate exponentially distributed intercollision times u„
and, starting at to = b, to add them up t—o give collision
times v„,

N = [v„(T+26)+,']- (3.6)

random collision times r„.. . , rz uniformly distributed
on [—5, T+b, ]. This is numerically easier to handle
than the exponential distribution. In this approach the
number N is fixed, while in the former the total perturber
number fluctuates. However, if the time interval and,
thus, N are large enough, this makes no essential
di8'erence. In either approach, though, the number of
perturbers colhding in [0,T] fiuctuates with the
con6guration, and in each conf]Iguration the instantane-
ous perturber number in the sphere and the perturber ve-
locities fluctuate with time. Although 6, »b, , one has

N, & X,. In our applications, we have typically
X;=1000-2000 for ions and N, =5000-8000 for elec-
trons. In addition, because the ions are much slower
than the electrons, their potential is easier to handle.
Therefore the computer time needed for ion simulations
is far less than for electrons.

Summarizing, our simulation procedure for a single-
perturber species, in principle, runs as follows. One
chooses the radius R of the interaction sphere, R =3rD,
and determines the collision frequency vz from Eq. (3.5)
and N from Eq. (3.6). Then one generates N random col-
lision times r„.. . , r~ uniformly distributed in

[—b„T+b,], where 5=10t0~ '. For each collision time

~~ one generates a random velocity v, as follows. In po-
lar coordinates we write

sln@J cos+J.

UJ =U) SlnB~ Sln+)

cosB~

(3.7)

Then g is uniformly distributed on [0,2n. ] and 8, has
density —, sin8~ on [0,m ]. The density for U is given by
the modi6ed Maxwell distribution

3

2 exp( —U /Uo) .
U 2 2

4
0

(3.8)

The extra factor of U comes from the correct change of
variables from (x (0), v ) to (r,u, 8,y, ,p ). After v

one generates a random impact parameter p, , which is
uniformly distributed on a disk of radius R perpendicular
to v~. Since pzlv we can write with the unit vectors e&

J
and e in the 8 and y directions of the polar coordinates

in Eq. (3.7),

(3.5)

where Uo=(2kT/m)' . The mean number of collisions
in [—b, T+b, ] is then vz(T+2b). One may therefore
generate

p =p. cosg ez +p sing . e (3.9)

FIG. 2. Schematic comparison of thermalization times 5;
and 5, for ions and ejectrons.

Then P is uniformly distributed on [0,2n ] and p~ has the
density 2p/8 on [O,R ]. Now one calculates V(t) from
Eqs. (2.5) and numerically determines U(t, O) from Eq.
(2.7). Averaging over a larger number N, of
configurations, one obtains ( U(t, O)),„and then I(b,ro)
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by Fourier transformation.
For a joint simulation of two perturber species, ions

and electrons, one has two diferent time scales given by
the respective plasma frequencies, ru; and ~,. In this
case we choose two 5's, 6;=10~ and 6, =10m,',
determine the collision frequencies vz; and vz, from Eq.
(3.5), and the corresponding N, and N, from Eq. (3.6).
Then we generate X; and N, random-collision times in

[ 6;,T—+b; ] and [ b,„—T+ b,, ], respectively, and for
each a random velocity and perpendicular impact param-
eter. The velocities are distributed with the respective
mass parameter. As before, we calculate

V(t) = V, (t)+ V, (t),
solve Eq. (2.7) numerically for those quantities needed to
determine C ( t },and Fourier transform.

the Hamiltonian H,

X exp[ fr~(—t)lrD] .

If we define d in line space by

(if
~

d (
I'f' }:=(I [ dI I'&&ff 5;; (f—'

I d If &

the potential V(t) becomes

(4.2)

(4.3)

(4.1)

where E'J' is the electric field of the perturber at the ori-
gin,

r (t)E"'(t}=—q
' [1+(r (t)lr~]J (t)3 J
J

IV. APPLICATION TO Ly-0.'
V(t)= —d QE'J'(t)= —d.E(t),

J
(4.4)

We have performed simulations for diferent perturber
species: (i) ion simulations, (ii) electron simulations, and
(iii) joint ion-electron simulations.

Since we are interested in the line center and not in
asymmetry of the wings we are using the customary di-
pole approximation for the Debye-Huckel potential in
Eq. (2.8). The monopole term just causes a common shift
of all energy levels and drops out in Eqs. (2.5). The di-
pole approximation gives the symmetry C( t)=C(t) in-
Eq. (3.2}by the reliection invariance of the distribution of
[x (0)], and from this the symmetry of the line follows.
In this approximation, a single perturber contributes to

where E(t) is the microfield at the origin.
As in Ref. 11 we take the radiator at rest, employ as

efFective mass of the perturbers the reduced mass }u of the
perturber-radiator system, and then convolute with the
Doppler profile. ' In the case of a pure ion simulation we
convolute the ion profile with an electron profile obtained
by the impact approximation and with the Doppler
profile.

Let
~

nlrn ) be the hydrogen eigenstates. For Lyman
lines, %„„is one dimensional, spanned by

~ f ):=
~

100}.
For Ly-a we take as basis in %;„ the vectors ~i },
i =0, 1,2, 3 given by

(
200), (

)
211)—

)
21 —I ) ), (

)
211}+[ 21 —1}), i

(
210—} .' v'2 '

2
(4.5)

In the basis
~
i }

~ f ), i =0, 1,2, 3 one has, in line space,

0 E) E2 E3'

i i — 3eao——V(t) = —d.E=
fi fi

—E) 0 0 0

E 0 0 0 (4 6)
2

—E2 0 0 0

where ao is the Bohr radius. Now Eq. (2.7) is a real ma-

trix equation. The matrix D has diagonal elements only
which are 0 for l =0 and —,

' for l = 1. By rotation symme-

try, ( U(t, O) ),„is also diagonal and, in the l = 1 subspace,
a multiple of unit. Therefore, one only needs

(f (
(1

~

U
~

1) ( f ), which in view of Eq. (4.6) is ob-
tained by a single system of four coupled real linear
differential equations. However, to improve the statistics,
we calculate directly,

I

the origin, we employ, as is customary, a cutoff rp for
small r In the co. llision-time technique this is easily done
by allowing impact parameters p~ &rp only. We have
chosen ro ——5ao. Unless otherwise explicitly stated we
have taken the following parameter values:

T=16000K, X=2~1023m

6;=1.5)&10 "sec, 6, =5&10 ' sec,

8 =(3NtI /4mn )', Nti ——250 .

(4.8)

For p;, the reduced mass of the radiator-ion system, we
have taken the proton mass, and for p, we have taken the
electron mass. The number N, of configurations is, in

general, X, =5000 for ion simulations and X, =1000 for
electron and joint ion-electron simulations. We now state
our results.

Tr(DU) =—,
' y (f [

(I'
[ U [ i } [ f ),

by the method of Gigosos et a/. ' which involves the
solution of two systems of four coupled real linear
differential equations.

Due to the singularity of the dipole approximation at

A. Exponential falloff of dipole autocorrelation function

There are analytic indications that the dipole auto-
correlation function, C(t) =Tr[D ( U(t, O) },„] has an
asymptoticaHy exponential falloff [cf. Refs. 16(b) and
16(c)]. We have tested this for ions and electrons with
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loK, 0C,(t)
—I.O—

~ OO

TABLE I. Half-widths for diFerent shielding parameters g
and simulations of ions {I;),electrons {I, ), and convolution of
ion simulation with electron impact and Doppler profile (I „,).
I „, (A) I, {A) I; {A)

w ~ ~

0.0 f.0 2.0 3.0 4.0 5.0

(10 "sec)

0.315
0.312
0.308
0.305
0.300

0.108
0.101
0.095
0.090
0.085

0.149
0.155
0.160
0.164
0.165

0.6
0.8
1.0
1.2
1.4

log, oC;(t)
0.0

—1.0—

—30
I

0.0 I.O
I I I

Z.O 3.0 4.0 5.0

(fo "sec)
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(:i)
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FIG. 3. Exponential falloff of the ion dipole autocorrelation
function. Top, N, =1000;bottom, N, =10000.

FIG. 5. Increasing Lorentzian character of the ion profile for
increasing g. Left )=0 6, rig.ht /=1.4. Dashed curve is a
Lorentzian with same maximum.

di8'erent configuration numbers N, . For ions the results
are plotted in Fig. 3. The exponential behavior already
sets in at about 0, 75 X IO ' sec. At a later stage this fal-
lot is drowned in noise, depending on the number N, of
configurations. With the onset of noise the simulated
C, (r) may be replaced by its exponential asymptote. This
allows a much higher resolution of I(b,0i) by fast Fourier
transform. For electrons the results are plotted in Fig. 4.
It is seen that the exponential form sets in almost im-
mediately. This verifies the impact approximation for
electrons. '

B. IINuence of the shielding parameter

8.0—
I,(sx)

6.o --&

40—

8,0

6.0—

4.0—

z.o—

0.0— O.o!

O.O 0.05 O.fo O.f5 O.ZO

(i)
0.0 0.05 0.10 O.f5 O.ZO

(.4)

In Eq. (4.2) g determines the falloff of the electric field
of a perturber with increasing distance. Most authors
take (=1, but other values have been used, e.g., g= &2
in Ref. 20 and /=&3/2 in Ref. 21. We have performed
simulations for ions and for electrons for values of g be-

FIG. 6. Electron profiles for /=0. 6 (left) and /=1.4 (right).
Dashed curve is a Lorentzian with same maximum.

icgicc.(t)
0.0

2.5
It,t(QA)

z.o —~
f.5—

z.o—

1.0—

0.S—

—1.0
I I I

0.0 0.5 1.0 f.5 Z.O Z.G

(&O-is~ec)

FIG. 4. Exponential fallol'of the electron dipole autocorrela-
tion function N, = 1000.

00, ! ! ! . o'o
,
'& ! !

O.O O.f O.Z 0.3 0.4 0.0 O.f O.Z 0.3 0.4

(.4) (3)

FIG. 7. Complete profiles for (=0.6 (left) and (= 1.4 (right).
The impact approximation was used for the electrons. Dashed
curve as in Fig. 5.
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tween 0.6 and 1.4. The results are collected in Table I
and Frgs. 5-7.

There is a qualitatively dimerent behavior for ions and
electrons. For the former the half-width I; increases for
increasing g and I;(bee) approaches more and more a
Lorentzian. The maximum remains constant, which
means that for increasing g the line wings are attenuated
in comparison to the line center.

For electrons, on the other hand, the profile is essen-
tially I.orentzian for all g considered, again verifying the
impact approximation. The maximum, however, in-
creases for higher shielding and the half-width decreases
correspondingly. As in the case of ions the line wings are
again attenuated for increasing g, which in view of the
decrease of field strength is physically expected.

Convolution of ion and electron profile partially can-
cels the counteracting elects. The complete profiles in
Fig. 7, which include Doppler broadening, retain only
relatively weak dependence on g.

The increasing Lorentzianness of the ion profile msy be
understood from the fact that for increasing shielding the
collisions show less overlapping and therefore the proSe
becomes more electronlike.

C. Temperature-density dependence

In this section we have performed ion simulations with
N, =2000 for 36 parameter values and have treated the
electrons by the impact approximation to keep the
central-processing-unit (CPU) time down. The results are
collected in Figs. 8-10 and Table II.

The half-width is seen to vary approximately linearly
with density both for ions and electrons in the plotted
ran~e from 1-2X10 m . For the densities n(10
m )=1,2, 3,4 and several temperatures, ion and elec-
tron simulations were also performed; cf. Table II. For
higher densities the ion half-width I, varies markedly
slower while the electron half-width I', stiB varies linear-
ly.

Ions and electrons have opposite temperature depen-
dence in the range of Figs. 8 and 9. I; increases with
temperature; I, decreases. Therefore, the temperature
dependence of the complete profile is less pronounced.
For n(10 m )=2 and T=12000-16000 K, I', in-

creases by about 25%, I', decreases by about 6%, and for
the complete profile I „, increases only by 6%. Since
experiments 'b' did not show a measurable temperature
dependence in this region, these 6% changes may be an
artifact of the simulation.

O,gg

O.IO

O.OS

O.OO

0.05

000

~&~~i, ~&& ~

0o

FIG. 8. Temperature-density dependence of half-width for
ions.

V. CONCLUSION AND OUTLOOK

We have presented a new simulation technique based
on collision times which, in contrast to traditional pro-

D. Comparison with experiment

We have calculated profiles and half-widths for the ex-
perimental parameter values of Griitz mach er and
Wende. In Ref. 2(a) complete half-widths are given,
while in Ref. 2(b) reduced profiles are displayed which are
obtained from the experimental profiles by deconvolution
of the Doppler profile. In Table III we compare various
experimental half-widths (in parentheses the associated
reduced half-widths) with I;, obtained from joint ion-

electron simulations and I';„ from ion simulations con-
voluted with electron impact profiles. We also give the
old theoretical values for which the iona were treated as
static. The simulation agrees well with experiment.

In Figs. 11-14 reduced profiles are shown, both for
joint ion-electron simulations and for simulated ion
profiles convoluted with electron impact profiles. The
dots are experimental values. At small densities the
values of the joint ion-electron simulations start out to be
slightly higher than the experimental ones, then they de-
crease relatively, agree for n =3&10 m and end up
slightly lower for n =4)& 10 m

The convolutions of simulated ion profiles and electron
impact profiles have a lower maximum than the jointly
simulated ones, although for the highest density the
difference is very small. This seems to indicate that in the
factorization C(t)=C, (t)C, (t) of the dipole autocorrela-
tion function, the neglect of correlations introduces a
small error. In Ref. 2(b) the experimental uncertainties
are given as 6%; for the simulated profiles we estimate
them to be about 5%.

TABLE II. Half-widths for various temperatures and densities.

I, (impact

approximation)

0.054
0.096
0.135
0.170

I, (simulation)

0.055
0.097
0.134
0.173

I; (simulation)

0.115
0.155
0.172
0.195

T (10 K)

12.7
13.2
13.2
14.0
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TABLE III. Half-widths for four temperature-density values (in parentheses, reduced half-widths}.

I pt experiment; I;,joint ion-electron simulation; I;+, ion simulation, impact approximation for elec-

trons. The theoretical values are taken from Ref. 22.

I,h„,y (A)

0.14 {0.05)
0.16 (0.09)
0.29 {0.13)
0.22 (0.16)

I . ~ (A)

0.23 {0.17)
0.30 (0.26)
0.36 (0.32)
0.41 (0.38)

I;, (A)

0.21 (0.15)
0.28 {0.23)
0.34 (0.31)
0.41 (0.39)

I,„„(A)
0.23 (0.17)
0.30 (0.24)
0.36 (0.29)
0.42 (0.37)

T (10 K)

12.7
13.2
13.2
14.0

n (10" m-')

perturber systems. Though very successful, this pro-
cedure is theoretically not quite satisfactory, since in
principle there may be correlations between both
broadening mechanisms. Our simulation technique can
be applied also in the more realistic situation in which the
radiating atoms are not at rest but moving, too. If one
uses the correct expression for I(b,to) with moving radia-
tors this &vill also take Doppler broadening into account.

Such a joint ion-electron-radiator simulation is presently
under may.
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