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In the present research we have used a Fourier spectral analysis to study line pro6les due to
strong atom-atom interactions in the limit of high perturber density. The presence of multiple satel-

lites in this case is well explained. Moreover, for decreasing interactions and densities we may ex-

trapolate our results and explain the disappearance of the satellites. The use of "a crude potential
shape" —here a square-well —proves to be sufBcient to explain the presence of multiple satellites
and determine the necessary physical conditions for their appearance.

I. INTRODUCTION

Our previous analyses' of spectral lines of neutral
atoms perturbed by collisions lead us to study the limit of
very high perturber densities and strong interactions. In
this situation the emitted wave trains are always per-
turbed. The radiator is continuously subject to collisions
and the duration of any unperturbed wave trains tends to
zero.

For large densities and strong atom-atom interactions,
the autocorrelation function exhibits very distinctive
features which lead us first to build a model and then to
check its mathematical validity. A spectral analysis is
then sufficient to explain the existence of the multiple sa-
tellites appearing so often in experimental profiles. For
decreasing densities and interactions, we also have found
the physical conditions necessary for their existence.
This is a powerful approach.

This study has allowed us to deduce mathematically a
peculiar value of the phase shift induced by the collision
which defines a transition between two very different fam-
ilies of profiles. This transition has been observed experi-
mentally and previously studied, ' but the analysis
presented here provides a new systematic explanation of
the phenomenon.

II. THEORY

The spectral line I(bco) is the Fourier transform (FT)
of the Hermitian autocorrelation function 4(s),

I(hco) = I EBSe' "'4(s)ds .
2% Qo

4(s) is calculated in the unified Anderson-Talman
theory with the assumptions that the radiator is station-
ary in space, the perturbers are mutually independent,
and in our adiabatic approach, that the potentials are
scalarly additive.

4(s) is expressed by

4(s)=exp I [w (s—}+id(s)]),
where

w(s)+id(s)=nu J dp2srp f dt(l —e'"'t'"'),
0 oo

n is the perturber density, p the impact parameter, and
ri(t, s) the phase shift calculated along a classical path
from

ri(t, s)= J V(t')dt' .

V represents the difFerence between the energy levels of
the transition in units of rad/sec. The interaction poten-
tial used here is a square well where V(R) = V for 8 pa,
V(R }=0for R & a, and 8 is the internuclear distance.

We assume rectilinear trajectories for the perturbers of
uniform velocity u [u =(SkT/mm)'~2]. The autocorrela-
tion function is completely analytical and we only need to
compute its Fourier transform to obtain the spectral line
shape. 4(s) depends only on the dimensionless parame-
ters

u =us/2a =sir,„,
where r,„=2a/u is the collision time, x, the maximum
value of the phase shift,

x =2aV/u = Vr,„;
and h, the number of perturbers in the interaction
volume,

I]I = 3VQ Pl

There are two difFerent expressions for @(s)depending
on whether the value s is less or greater than ~,„.

For u ~ 1 we obtain
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III. STUDY OF THE AUTOCORRELATION
FUNiIION

The autocorrelation function 4(s) is composed of
several distinct patterns which are seen in Figs. 1(a) and
1(b). This strange shape is rather astonishing at the first
sight, but it is easy to model mathematically. The ap-
pearance of the satellites is governed by the dependence
of the autocorrelation function on the parameters h and

FIG. 1. (a), Re[4(s)], real part of the radiation auto-
correlation function; —-—-, the damping function y(s). In theinset:, the first even pulse p(s) of Re[4{s)] represented
for s & 0; ———,p(s), the second damping function. (b)
1m[4(s}],imaginary part of the radiation autocorrelation func-
tion. In the inset:, the first even pulse p(s) of 1m[4(s))
represented for s &0; ———,LM(s), the second damping func-

tion. h=12.6, @=375, V= —1.6 10' s '. h is the number of
perturbers in the interaction volume. x is the maximum value
of the phase shift. Vis the interaction potential.

An examination of Figs. 1(a) and 1(b} points to three
main characteristics. The Srst striking phenomenon is
that ill(s) is composed of separate patterns with rather
similar appearance. The second is that the patterns are
separated by the same time, s =2ir/V. The third is that
the maxima of the patterns decrease regularly with in-
creasing s. These three features permit an obvious repre-
sentation for the correlation function.

Let us denote the pattern centered at s=0 by p(s).
The quasiperiodic shape of 4(s } can be expressed by the
convolution of p (s) with Dirac impulses centered at mul-
tiples of 2m /V. Hence, a first expression for 4(s) is

4,(s)=p (s}eg 5(s —k2m. / V) .

This model for 4(s) is illustrated in Fig. 2(a). The so-
called "sampling function" gk 5(s —k2m/V) is a pseu-
dofunction with a Fourier transform (FT}proportional to

g 5(v IV/2n ), —

which is also a sampling function. Notice that the im-

pulses, in the Fourier transform, are separated by
v= V/2m.
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The Fourier transform of Eq. (8) is

I, (a))=P(IV) +5(a)—1V) .
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P(cu) is the Fourier transform of p(s). Rather than a
convolution, we now have a direct product. Hence I, (co)
is formed of infinitely narrow lines with amplitudes
P (1V). This spectrum is shown in Fig. 2(b).

The third remark concerning the autocorrelation func-
tion was the decrease of the maximum amplitudes of the
different patterns p(s k2n IV)—with k. This decrease is
modeled perfectly by multiplying 4(s) by a damping
function y(s). An improved expression for the correla-
tion is then

4z(s)=4, (s)y(s) p(s)«+5 s —k y(s), (10)
2'
V

with a Fourier transform

Iz(co) =I, (co)«l (co)= g P(/V}5(co 1V) « I'(co)—,
I

FIG. 3. I(hu): ———,envelope P|', hem);

velope E (hen).
, shifted en-

of the satellites has the same shape as P (co) but shifted by
a quantity which is slightly dilferent from coo due to the
loss of periodicity in the first pattern of 4(s) and in the
others as shown in Fig. 3.

This representation presents the great advantage that it
permits a simple physical interpretation. Nevertheless,
we have to notice that in Fig. l the diFerent patterns in
4(s) do not have exactly the same shape, since their
halfwidths increase with increasing s. This may explain
why the difFerent satellites do not have exactly the same
halfwidth (it increases with the order of the satellites).
%e shall now see that this approach suggested by the
computed results is well corroborated by the analytical
expression of the autocorrelation function.

where 1 (ro) is the Fourier transform of y(s}. The inter-
pretation of this spectrum is straightforward; it is com-
posed of Dirac shaped lines, each broadened in the same
manner by convolution with 1"(co). This is exactly what
we obtain when taking the Fourier transform of the auto-
correlation given in Fig. 1. The resulting profile Iz(co)
presents a series of broadened satellites separated by V.
The envelope of the satellites is nothing but the Fourier
transform of 4(s) when it is truncated after the first pat-
tern. This is illustrated in Fig. 3.

Notice that p (s) has a very characteristic shape. It is a
quasisinusoidal function weighted by a second damping
function p(s), as shown in Fig. 1(a). Then p (s) is
represented by

IV. JUSTIFICATION OF THE MODEL
BY THE MATHEMATICAL EXPRESSION

OF THE AUTOCORRELATION FUNCTION

d (u }=—ri u — ——sin(xu)
3 Q 2
2 3 3

(14)

We need to consider only Eqs. (4) and (5) because we
are concerned with large h for which the autocorrelation
function becomes negligible when u~ 1. Because we
study the limit of the strong interactions, we are con-
cerned with large x, Eqs. (4) and (5}become

3 0 2 2
w (u }=—rt u + u — ——cos(xu }+—, (13}

2 3 3 3

p (s) =iu(s)exp(icarus),

with FT,

P (co) =M (co+a)0),

(12)
let

+max

if i'(s) =FT[M(m)]. The envelope, in our model, is then
the FT of p(s) simply shifted by coo. The envelope E(co)

8= 3

2+max
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xu =Vs .

and

ut, (s) =h [1—cos( Vs)] (17)

d, (s)= —h sin(Vs) . (18)

These expressions correspond to the function p (s) in-
troduced for the model in Sec. III as the pattern centered
at s=O. Hence the spectrum I, (co) is composed of
infinitely narrow lines. iu, and d i are also the results ob-
tained in the quasistatic limit u~0. The corresponding
spectrum is evidently composed of infinitely narrow lines
because the duration of the wave trains and their auto-
correlations continue to infinity (see Fig. 2). Short-
duration iuaue trains, on the contrary, lead to broad lines.
It seems paradoxical to obtain the same results for tuto

fundamentally diferent physical situations
This paradox arises from the fact that the autocorrela-

tion function may not be written as Eqs. (17) and (18) for
every s when h is large. Let us point out that in the qua-
sistatic limit (u~0) the correct FI' needs considering, s
going to infinity and hence taking all the patterns
p(s k2n/Y) —into account. Therefore, this first-order

l

In terms of these parameters, Eqs. (13) and (14}become

iu(s)=h [1+Hs —(1—Hs+~4, 8 s )cos(Vs)],

d(s)= —h(1 —Hs+~48 s )sin(Vs) .

These formulas show that large values of h cause a
drastic damping as s increases. As a consequence, we
need to consider only small s, and we define first-order ex-
pressions

limit is really meaningless for large density because the
damping function has been neglected. This remark is
fundamental because it shows clearly that the spectrum
given by the quasistatic limit is not equiualent to the high-

density limit, which is quite evident because they corre-
spond to opposite physical situations.

Ho~ever, if the autocorrelation function is restricted
to the 6rst pulse only, this implies that we need to consid-
er only very small s =s,„such that Hs «1 [assuming
that 4(s)=0 for s p s,„].Since in this case we have

iud(s) =h [1+8s —(1—Hs)cos( Vs) ],
d 2(s ) = —h [(1—Hs)sin( Vs) ] .

Hence the autocorrelation function becomes

(20)

s «2a/u,
the quasistatic theory is valid but only for the autocorre-
lation function. This is in agreement with Baranger who
discusses the validity of the static theory in terms of the
autocorrelation function, giving as a condition the re-
quirement that the autocorrelation function go to zero
before a single collision is completed. A suScient condi-
tion for this has been given by Royer in the context of
the Anderson-Talman theory,

n && I /(4n R o /3 ),
where Ro is the radius of an "interaction volume" about
the radiator which is equivalent for the square-well po-
tential to h && 1.

But the correct FT is going to s,„,not to infinity. %e
therefore need to know the damping function and to con-
sider the second order. The correct expression for the
limit of large h is

4(s) =exp[ —(h 8s)]exp [h [cos( Vs) —1]j exp[ —(h Hs)cos( Vs)]exp[i [—h (1—Hs)sin( Vs)] j .

When cos( Vs) =1, this pseudoperiodie function presents
maxima at s =k2n/V. Its value is then exp( —2hHs),
which corresponds to the damping function y(s) of our
representation. According to Eq. (10},the pattern func-
tion is

p (s)=exp [ h [eos( Vs) —1]j

Xexp[i [—h (1—Hs)sin( Vs)] j . Q2)

If we restrict our study to the first pulse only, we can use
instead

p(s)=exp[h[cos(Vs) —1]jexp[ i [h sin(Vs)—]j . Q3)

Notice in Eq. (22} that for subsequent pulses the ap-
proximation for Hs « 1 given in Eq. (23) becomes poorer
and poorer. These pulses are not identical. This proves
that our representation was a little crude, and for de-
creasing h is quite poor because the correlation times of
interest (s,„)increase. We have shown here mathemati-
cally what has been noticed previously in the representa-
tion discussed in Sec. III. This model is excellent for the

t

limiting case when h and x are large. %e shall see that
for decreasing h and x, the very peculiar shape of 4(s),
which presents well-separated patterns, deteriorates quite
slowly. With this behavior in mind, this representation
nevertheless allows an interpretation of these intermedi-
ate cases which present less characteristic patterns.

V. EVOLUTION OF THE AUTOCORRELATION
FUNCTION %'ITH DECREASING II

A. Study of the computed proSles

In Figs. 1(a), 4, and 5 we have plotted the real parts of
the autocorrelation function 4(s) and in Figs. 3, 6, and 7
the corresponding proNes for h=12.56, h=6.28, and
h=3. 14. In the first pattern p (s), the number of oscilla-
tions and their peak-to-peak values decrease regularly
with h. For these large values of h, 4(s) still presents
multiple pulses which lead to profiles with multiple satel-
lites. The halfwidth of those satellites decreases predict-
ably with h. For h =12.56, the satellites are even a little
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blended and a continuum appears between them, but this
phenomenon disappears for h =3.14.

The main line gust appears in the pro6les for h=6.28
and becomes more prominent for h =3.14. If wr = . . we plot the

ourier transform of the 6rst pulse, we notice th
still the env 1ve ope of the satellites, but we must shift it by

ice at it is

a variable quantity as discussed in Sec. III.

B. Study of the mathematical expression for the pulse

Thhese properties may also be found withwi our represen-
a ion. he pulse centered at s=O is given b E . (22).

study the periodic damping function
n

p s =exp[ —h [1—cos( Vs)) I. The separation of two pat-
terns in 4(s) is the period T =2m/V , and p(s) admits

dam in f
=m / as an axis of symmetry. For 1 h h
ping unction ts bell shaped; it decreas t 1 f

arge , t e

s &s g T/4=m/2V), and is practically zero
beyond T/4. In these situations this t
weig ting Implies that 4(s) is composed of distinct pat-
terns separated by gapa as shown in Fig. 8(a).

FIG. 6. I(hco): h=6.28 x== . 8, x=375. ———,envelope P(hco);
, shifted envelope F. (hu).

For smaller h, the damping becomes less and less

corn ared
severe. The value p(m / V) =exp( —2h ) is
compare to unity. The damping function also is no
longer pulse shaped, but rather looks like a modulation
function. 4(s) now oscillates around a slowl da s ow y ecreasing

as s own tn Fig. 8(c). Let us now study the real
part of the oscillating portion ofp (s) given by

cos[A sin( Vs)]

The zeros of this function are given bn y

sin( Vs) =(2k + 1)m /(2h ) .

Because
~

sin( Vs)
~

& 1, there exists a k,„such that

2

(10 sec)
-14

LA
c9

) 05

$, (10 sp. (:)

FIG. 5. Re[4(s)]: h=3.14, x=375.

I

-10000 O

hcu (cm ')

FIG. 7. I(h~): A=3.14 x=.14, x=375. ———,envelope I'(hen);
, shifted envelope E(b~).
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FIG. 10. I(hap): h=0.5, x=75

k &k,„=(Ii/n )

Thus , for large ii, many oscillations
or example, when

k,„decreases while the dam in is s
' ' . ek

'
e e amping is still important. The

sci ations decreases.

C. The particular case II =m /2

There is a ver y peculiar case when h =m=n /2, for which

1„oi fo = /2V. Fi

d do to 0.5, 4 1o

pa erns separated b a
p

in completely and 4( ) bs ecomes a cont
lil ig. 8(c) with the corresponding

D. C. Consequences for the shift

If we consider Eq. (22), we notice that« the oscillating

fil f hm is propert . T

from
ine t e absicssasa s of the first zero of p (s

cos[h sin(Vso)]=0, Ii sin(Vso =n/2 I

or

so = ( 1/ V)arcsin[m /( 2Ii )] .

For large Ii,

so ——m/(2IiV) .

The period of the quasisinusoid is

& =4so =2m /(Ii V)

and the corresponding translation is

5=2@/T =k V .

Thihis is exactly the shift d of the rofilo the profile for h =12. This

the limit for lar e h F
e rst-order develo mpment for small s in

sens. Neverthele 5
'

arge . For decreasin h
'

g the model wor-
ess, is a ver ood

~ ~

for h as small as m/2.
y g d approximation of d

This evaluation of d =Ii V has been found previously in

teraction (small x).
ut or the o ositpp e limit of a weak in-

For the particular case h =m/2

sin( Vso) =m /(2h) =1

0
Q~ (c:IN ) so ——m/(2V) .

FIG. 9. I(hm): h=1.57, x=75; ——— en, x —75, —,envelope P(hco); This leads to d =, e s i t ofs to d = V, which is the shift of
ill t O' Fi 9 d11
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FIG. 11. I(h~): h =1.57, x=18.75; ———,envelope
P(he@);, shifted envelope E(boo).

The peculiar value of h =m/2 leads to discontinuities
in the plots of the line parameters (width, shift, and
asymmetry) versus density for satellites well separated
from the line. These discontinuities have been discussed
previously in Ref. 3 [Figs. 1(a), 4, and 5] and in Ref. 4

from which we have extracted Fig. 12. It is remarkable
to 6nd again this value here mathematically. In Sec. VI,
we shall emphasize again the great importance of the pa-
rameter x and explain why the special case x=6 is the
value for which discontinuities in line parameters shown
in Fig. 12 first appear.

VI. PHYSICAL CONSEQUENCES
OF THIS REPRESENTATION

1Q—

x=9

&00—

50—

wl

(a)
/

jl(
I

I

ft

x=6
—-10

E
V

rJ)
—-3Q

We can see from Figs. 1(a), 4 and 5, that for a given x,
the number of pulses which appear in the autocorrelation
function depends on h due to the damping function. Let
us calculate n, the maximum number of pulses. The
pulses are separated by s =2m /V, and 4(s) is a pseudo-
periodical function for s &~,„, where r,„=2a/u is the
maximum collision time. Therefore,

n =(~,„/2m/U)+1

or

~r1

Q . 1 I Q,
l l

[b)
r100

—-5Q

I

d) — Q

n~ = (x /2n )+ 1 .

x=7, 2

I
I I

I'

Q, . l

Q. Q 3.5
r

1.Q 1,5 h 2.Q Q, Q 0.5

—%0
I I

10 15 h 20

FIG. 12. Variation of width, shift, and asymmetry for
difFerent values of x. In each part the variations of m, d, and
asym (width, shift, and asymmetry, respectively) are plotted vs
h. The difFerent scales for m, d, and asym are the same for the
four x values. They are drawn with their respective unit.

I

1 ~2
s('10 set: 3

FIG. 14. Re[+(s)]: h=1.57, x=18.75.
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s (10 sec)

FIG. 15. Re[4{s}]:h=1.57, x=8.75.

If x &2n, then n~ =1. In this case only one pulse exists
and its Fourier transform leads to P(co}, what we have
called the envelope in Eq. (12). Hence, it is clear that the
condition x ~ 2e will be strictly necessary to get a profile
which presents satellites.

We shall now prove that the presence of only two
pulses in the autocorrelation is sufficient to get multiple
satellites. In the case presented in Fig. 1 (h = 12, x =375),
we arti6cially truncate the autocorrelation just after the
second pulse. The new autocorrelation function and the
corresponding profile are shown in Fig. 13. We get mul-
tiple satelhtes separated by V just as in Fig. 3. This
proves very clearly that n =2 is the necessary and
sufficient condition for the appearance of multiple satel-
lites.

These satellites will be more or less blended depending
on the value of x. We shall now compare two cases with
x & 2'. In the first one, x = 18.75, the pulse shape of 4(s)
is less striking than before. Nevertheless, three small
bumps appear clearly in Fig. 14. They are sufficient to
provide multiple, but now blended, satellites shown in
Fig. 11.

For a smaller x =8.75, the autocorrelation is quite
smooth, but a wide bump with a small amplitude still
remains, as can be seen in Fig. 15. In Fig. 16, the first sa-
tellite appears clearly, but the second causes nothing but
a shoulder, and the others are completely blended.

These important and new results are very gratifying to
us. This is because, in our previous publications, ' we
have noticed that x =2m was "a transition region be-
tween two characteristic families of linc shapes. " Now,
in the present study, we are able to explain why x =6 was
a special value.

This study emphasizes again that x =Vr,„is the fun-
damental parameter. This is quite logical because it
represents the maximum phase shift during the coBision.
This is similar to the statement of %'eisskopf, ' '" who
said in 1932 that the collision is completed when the
phase shift attains 1 rad. and de6ned in that way the so-
called "Weisskopf radius. " Our result establishes that
the formation of a pseudomolecule, which provides mul-
tiple satellites demands a 2~ phase shift. '

e I i i i i 1

FIG. 16. I(ho)): A=1.57, x=8.75.

VII. CONCLUSION

A very good practice of the spectral Fourier analysis
has allowed us (1) to build a model well fitted to the auto-
correlation of the radiation emitted during the collision
in the case of high interactions and densities; this model
being in good agreement with the mathematical formulas;
(2) (perhaps most importantly) to follow and primarily to
explain the variations of the autocorrelation (and hence
of the spectra) when decreasing both interaction and den-
sity; (3) to explain (and not only describe) the discontinui-
ties appearing in the plots of shift, width, and asymmetry
versus density when decreasing the reduced variable
x =2a VlU; (4) at last to determine the condition x ~&2m
necessary to obtain the collisional phase variation insur-
ing the presence of multiple satellites.
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