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%'e study the problem of laser-assisted electron-hydrogen-atom elastic scattering in the general

case when the electromagnetic 6eld is elliptically polarized, and obtain the results for plane-

polarized and circularly polarized electromagnetic Selds as special cases. %'e extend the work of F.
W. Byron and C. J. Joachain P. Phys. B 17, L295 {1984)]by considering all higher-order terms of
the laser-modi5ed atomic wave function, which have increasingly important effects on the scattering

amplitude for small momentum transfer when the number of photons emitted or absorbed increases.

%e set up recurrence relations for determining all higher-order coelicients in the spectral expansion

of the laser-dressed wave function and also determine all higher-order terms in the energy shift and

the time4ependent phase. Our general expression for the laser-assisted first-Born-approximation

scattering amplitude for I-photon transfer is cast into a form which gives the probability for the case

in which I' photons are absorbed or emitted by the bound atomic electron and the remaining (I —I')
photons by the free projectile electron. %'e discuss the dependence of the scattering amplitude on

the polarization of the electromagnetic field. Exchange efkcts in the presence of the laser are also

taken into account in a simple though approximate manner. %e further discuss the problem of re-

placing the above-mentioned first-Born-approximation scattering amplitude by some higher-order

scattering amplitude in the presence of the time-dependent laser 6eld.

I. IXTRGDUCTION

The purpose of this paper is to study the problem of
elastic electron-hydrogen-atom scattering in the pres-
ence of a strong laser field when any number of photons
may be transferred between the laser field and either the
projectile or the bound electron or both. Earlier investi-
gators' of the above problem have made an assumption
in their analysis that the spatial part of the ground-state
wave function (ls state) of the atom remains unchanged,
which is not valid for a strong laser field. Recently Byron
and Joachain have considered a first-order laser
modification of the ground state (ls state) which involves
a suitable admixture of np states. It has been found that
the contribution of the first-order correction term to the
laser-assisted scattering amplitude dominates over that of
the zeroth-order amphtude, involving the ls-state com-
ponent of the perturbed wave function, in the region of
very small momentum transfer (q). It appears that for

I

one-photon transfer, the np-state (ls-state) component of
the perturbed wave function mainly corresponds to the
case when the photon is emitted or absorbed by the
bound atomic (free projectile) electron. In this paper we
intend to extend the work of Byron and Joachain by
considering all higher-order terms of the perturbed wave
function which have for small q increasingly important
e8ects on the laser-assisted scattering amplitude as the
number of transferred photons increases.

%e determine the perturbed atomic wave function in
the general case when an elliptically polarized laser beam
of angular frequency ~ is present, using the method of
Langhoff et al. They have studied a similar problem
where the electromagnetic (EM) field interacting with the
atom is plane polarized. %'e may note that plane polar-
ization and circular polarization are special cases of the
elliptical polarization considered in this paper. Langhoff
et al. 7 have written the perturbed ground-state wave
function in the form

%(r, t)=P(r, t)(P
~
P) ' exp (iA) ' Eo't+ I RehE(t')dt'

where in the exponential Eo ' is the unperturbed ground-
state energy, and the integral (to be defined later) gives
"terms" signifying the energy shift and an oscillatory
time-dependent "phase" (secular term). Introducing the
perturbation expansion P(r, t) =g„" oP„(r,t), Langholf
et a/. have set up a sequence of equations connect-
ing various terms P„(r,t). Putting P„(r,t)
=g& p„t(r)exp{iltot) in the present Base of harmonic
perturbation involving the EM Seld, we set up a sequence

of equations involving spatially varying functions P„ t(r)
where n and I may have arbitrary values. Langhoft'
et a/. have given the above set of equations when n has
the speci6c values 1, 2, and 3 and the EM field is plane
polarized. Finally, writing P„ t(r) in the form of a spec-
tral expansion in terlns of eigenfunctions of the unper-
turbed Hamiltonian, P„,(r)=g„b„"'P'„'(r), we set up
very useful recurrence relations for the expansion
coef5cients b„"*' which express the nth-order coef6cient
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b„"' in terms of the lower-order ones b„" ' (n' & n).
Langhoft' et aI." have given explicit expressions for b„"',
the energy shift, and the time dependent phase term up to
third order in the perturbation expansion, whereas we
have given here very general relations which help us to
determine these quantities to sll orders in the perturba-
tion expansion, taking the EM field interacting with the
atom to be elliptically polarized. %'e also write the nor-
malized function 4(r, t)=P(r, t)(t)5

~
P) ' in the form

of the spectral expansion 4(r, t)=g„g& +„8„"'P'„'e'"'
and express 8„"'in terms of b„".'.

Our general expression for the laser-assisted scattering
amplitude when I photons are transferred between the
particles and the EM field is cast into s form which gives
the probability for the case when I and I&' (I and l~')
photons are exchanged between the EM field snd the free
projectile electron (bound atomic electron) in the initial
and the final state such that 1,'+!/+1;+1/=1. The ex-
pression for the laser-assisted scattering amplitude in-
volves various field-free scattering amplitudes corre-
sponding to different transitions like ls ~ns, ls ~np, etc.
It is found that for the n-photon transfer process the part
of the full analytic expression for the laser-assisted first-
Born-approximation scattering amplitude which involves
the nth-order perturbed wave function varies as q

' or
q (i.e., constant) when q~0 according to whether n is
odd or even, whereas the corresponding part involving
the zeroth-order perturbed wave function varies as q".
The above two limiting forms are shown to correspond
mainly to the cases when all the n photons are emitted or
absorbed by the atomic electron snd the free electron, re-
spectively. Using our general expression we obtain the
result of Ref. 6 by considering up to first-order terms in
the dipole interaction.

We also study the dependence of the laser-assisted am-
plitude on the directions of momentum transfer q and po-
larization vectors of the EM field in the two cases when
the laser field is (i) plane polarized and (ii) circularly po-
larized.

Use of the lowest-order perturbation theory or the first
Born approximation to calculate various field-free transi-
tion amplitudes occurring in the expression for the laser-
assisted scattering amplitude is quite satisfactory for fast
projectile electrons. This has recently been done by
Francken and Joachain. The lowest-order perturbation
theory has also been used by Dubois et al. to calculate
the one-photon transition amplitude in electron-atom col-
lision in the presence of a laser Chowdh. ury and Bha-
ksr' have suggested that for the low-frequency laser the
above-mentioned Born-approximation result can be im-
proved upon by replacing the field-free Born transition
amplitudes by the corresponding Glsuber amplitudes.
These replacements are justified when certain conditions
(connected with the time dependence of the interaction of
the laser field with the colliding particles) to be discussed
in Sec. III D are satisfied.

Byron and Joachsin" have pointed out that there are
some deficiencies of the Glsuber approximation although
it provides us with closed-form analytic expressions for
the transition amplitudes. They" have replaced the
field-free first-Born-approximation elastic scattering am-

plitude f,~' occurring in the expression for the laser-
modified scattering amplitude by the eikonal Born series
(EBS}amplitude f,~ f,——~' +f-i +f,i, where f,~

and

f„are, respectively, the second Born term and the
third-order term of the Glauber series for the direct am-
plitude. It may be pointed out that the sma11 momentum
transfer (q } region is generally of paramount interest
since the effect of dressing of the atom (specially for
transfer of odd number of photons) is large in this region
because of the strong peaking of the 1s~np transition
amplitude. Some facts about numerical results and
theoretical analysis of previous investigators' ' to be
given in Sec. IV show that the result for the laser-assisted
electron-atom scattering amplitude evaluated by Glauber
approximation is likely to be quite close to the corre-
sponding EBS result in the small-angle region for transfer
of odd number of photons. We express different Glauber
scattering amplitudes used here for numerical calculation
in the form of a series expansion in the parameter i) (to be
defined later) when q ~0.

To take into account the exchange e6'ect we also deter-
mine the laser-assisted exchange scattering amplitude in
the Glauber approximation using the procedure of Fran-
co and Halpern. ' For small-angle scattering which is of
much interest in the present work, the first-order ex-
change effect is quite small and the field-free first-order
exchange elastic amplitude is of order k (k being the
electron momentum) as compared with the correspond-
ing direct part. We have extended the work of Prasad
and Unnikrishnan on laser-modified direct and exchange
scattering by taking into account additional effects of all
possible excited states like the np states. The final form
of our result is also somewhat difFerent from that of
Prssad and Unnikrishnsn. Recently, Trombetta et al. '

have improved upon the work of Ferrante et al. on
laser-assisted exchange scattering by considering ex-
change collisions through second order in the electron-
electron interaction.

II. LASER-MOMFIED %AVE FUNCTIONS

A. Modification of projectile wave function

by elliptically polarized laser

=e„8„coscot+e~ 8» singlet, (2)

where e snd e~ are unit vectors along the x and y direc-
tion and A(t) is the vector potential.

The free-electron wave function in the presence of a
laser field is of the form

gk(r, t)=(2') ~ exp[i(k r —k.a El, tlfi+y)]j, —

(4)

The electric field associated with the laser which in
general can be taken to be elliptically polarized is given
by

1 d A(t)
c dt
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(5) Rnd

, k„OO
5I = —tRII

o
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(10)

k'cK =k~cxo~ coscot +kyAoyslno)f

= [k,a]sin(rot +5I,+It/2),

where the notation [k,a] stands for

[k,a]=[(k„ao„)'+(k ao )2]I~2,

For plane-polarized light of the type C„=O and 8 &0,
[k,a] becomes k„ao ( =k ao, say) and 5&+Ir/2 =0.

For the circularly polarized light for which C„=e'
RIld 8 =+4 or equtvaleIltly ao =ao Rnd ao& =+ao
the term [k,a] becomes kao and 5& has the value
+tan I(ky/k„).

Using Eq. (8) we can write'

Xk (2Ir——) exp[i(k;I r EI, —t/R+} }]pJt, ([k, &,a])exp[ il,'/(—eIt+5k +It/2)],
Vi,f

where the subscript i (f) refers to the initial (Snal) state
of the electron and the superscript e of l &, order of the
Bessel function, imphes that we consider the case of the
electron.

where

h '*'=—,
' (x 8„+iy6'„) . (18)

H, = p+ —A(t) + U(r) .1 e
27Pl C

L

(12)

8. Perturbatioa of the bound-state wave function by elliptically
pelarfixed laser

Perturbation of the bound-state wave function g'(r, t}
in the presence of a laser is obtained by using the follow-
ing Hamiltonian1 H, for the target atom:

In order to solve Eq. (14) we write (following the pro-
cedure of I.angholf et al. )

p(r, t) =ao(t)p(r, t)exp[(iA') 'Eoo't],

where Eo ' is the energy of the unperturbed ground-state
wave function $0 '.

We write the following perturbation expansion of
P(r, t):

For the low-frequency laser we ignore space depen-
dence of A(t }and this leads to a dipole-type interaction'
as shown below. Using the transformation'

P(r, t}=g P„(r,t),
n=0

subject to the condition of intermediate normalization

(20)

P'(r, t) =exp
—ie A(t)

(13) (21)

we obtain

I
- (r, t)=(H"'+H"')p(r, t),.B~

It can be shown that for dipole interaction (P ~ P„}=0
for m+n odd. From the above equations Langhoff
et al. have shown that

H"'(r) —E,"'—I Ir—y(r, I)
Bt

+[H" '(r, t) EE (t)]P(r, t)—=0, (22)
H'"= l '+ U(.)

2PFl

and the dipole-type interaction

H"'=r et) (16}

T

ao(t)=exp (iA) ' f EE(t')dt' (23)

g 1, 1 imt~g 1,—1 —imt &y~y&-'"=exp (a)-' f' lm~E(t )dt', (24)
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~E(t)=&({0~H"'~y&= y E(")(t).
Ft =1

The complex quantity E("'{r)is given by

(25)

Itt(r, t) = 4(r, t)exp

X (i(II) ' E0(0)r+ I RehE(t')dt' (27)

where we have introduced the normalized function 4(r, t)
defined by

e(., t) =y&y
~

y&-'" (28)

E'"'(t)=&/,
(
H"' )({}„

Using the above relations we can write

(26)

prom Eqs. (22} and (20) we obtain the following se-
quence of equations for ({}„givenby Langhoff'et al. :

n
H' '(r) E0 ' I'—A —tt)n—(r, t)+[H"'(r, t)—E"'(t)]pn I(r, t)= g E(")(t)tttn I, (r, r) .

k&2

For n = 1, the right-hand side of Eq. {30)is taken to be zero. Considering the expansion

{30)

({)„(r,t) =y({'„,(r)e" ',
1

we have from (26)

E(n)(r) ~ ( e, n(ie(l I+)tnt+en, l ((I —1)ntt)
+1 je

(31)

(32}

where

&+I=&({0II '" l 0"-1,1 & . (33)

In Eq. (33) n is even for dipole interaction.
From Eqs. (30) and (31}we obtain now the recurrence relations connecting various ({i„I in the general case of ellipti-

cally polarized electric field instead of the plane polarized one considered by Langho8'et al. ,

E0 +I)4n, kl +( 0n —l, k((+I)+~ 0n — kI(l —I)) g g (~k~l +e%1 )4n —s, +q
S

(34)

C. Syectral reyresentation, secular terms, and energy shiN of perturbed wave function

Let us expand ({}„(in terms of eigenfunctions P„' '(r) of the unperturbed Hamiltonian

y„,=b„"'y(0)(r),

b 0, (y(01( r )

where

b."=&(04

(35)

(36)

(37)

Summation over repeated subscript x is in the above equations and henceforth is implied.
It will be very useful to set up recurrence relations for various expansion coefBcients b„"' not previously expressed.

Putting t))~=E( ' —E0 ' (subscript 0 refers to the ground state) and using above relations we have

~ (p I, T lbn —1,%(!+I) ~g I, klbn —l, k(/ —I) )+KK K KK K
K s =2,4, .

{m. +((—I —q), s, 2(1+ I —q) q n —s, +sq+

(38)



SASABINDU SARKAR AND MITALI CHAKRABORTY 37

t , y b 1,

bulbs

—l, t

J

I l, kl (y(0)
~
b 1,21

~

y(0))

1,+1 1,+)
OJ KJ KJ

(39)

In Eq. (42) the terms p2, are given by

2s —)

gf 2s, p /pet)t

p

(43)

(44)

2s —1

)I)2$, +P ~ ~ ( bt, k tt)nb2$ —t, h(P+q)
K K

t=) q

(P 2sl 7p)n

where we also use the notation p2, ——gp p 'pe'p '.
In analogy with the relations (31) and (35) we put

+n =& @n,(e""'
1

n g P2sfn —2s (41)
and write the spectral expansion

In Eq. (39), s is even due to the nature of dipole interac-
tion. The above recurrence relation expresses nth-order
expansion coefFicient b,"' ' in terms of lower-order
coefficient b„"'*' (n'~ n) Fo. r the plane-polarized laser
defined by tn„+0, 8 =0 in Eq. (18), h„'„' ' =)(I „'„'+' and

8+1=E '
1 lI1 Eqs. (38}aIld (39}.

We now consider normalized function t)$(r, I) related to
t)t(r, t) by Eq. (28). From Eqs. (28), (29), and (20) it can be
shown that for dipole-type interaction,

(46)

(47)

where g n, ly(0)( ) (48)

~2 82 +( )( 2) 21 2~2 P2 —2

S)

+ ( ——,
' )( —-', )( —-', )

1
X 3, g QP2, ,&2.,&2.-2., -2., +

'

S) $2

In view of the relations (31), (35), and (41)—(48), the ex-

pansion coefficient in Eq. (48) is given by

g n, I y y p2s, pb n —2s, 1 —p

S P

(49)

Explicit values of b„"', p 'p, and 8„"'for specific values

of n and I are gl'ven in the Appendix.
The secular term of the wave function is determined

with the help of Eqs. (27), (25), and (32) we have

Re J
' y„E(")dr =

CO

sin!air

1=2,4, . . .I Ico
n =1,1+2, . . .

(& l —n1 $ &n—(l —1), ~ &n+2, 1+), &
+2n, —(I+1))

n=1, 2, . . .
( ~2n, 1+~2n—1), (50)

It is obvious that g„(e "; +@+', ') is the energy shift,

III. LASER-ASSISTED SCATTERING AMPLITUDE

A. Direct scattering amplitude

The Hamiltonian of the system is

H =H, +Hf+ Vd, (51)

where H, has already been defined by Eq. (12). Hf is the Hainiltonian of free electron in the presence of laser field and
Vd is the electron-atom interaction in the direct (initial) arrangement channel. S-matrix element for the elastic scatter-
ing amplitude in Born approximation is given by

S,;=——I dr(X„(,I)%' (,I)
~
V„~X„(,I)q';(, I)) . (52)

Using Eq. (11)and the summation theorem' for Bessel functions we can show that the product of free-electron wave
functions occurring in Eq. (52) has the following form:
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l
exp[iq r+(E» E—„)t/l)1]

(2~)3 f i

J,,([k;,a])J, ,„,.. .,([kf,a])exp[il ( —5„+5& ) i(—lf'+I,')(cot+51, +m/2)] (53)

~e I e+I te

=g Jl,([q,a]}exp[ il—'(cot +5 +it/2)], (54)

where [qua]=[(il ao } +(qYa03, } ] and 5' = —tan '(ql, ao~/q„ao„). The above result can also be obtained by using
the Bessel function expansion' of exp[ —iq a] which is a factor of X»" g» .f i

In the evaluation of Eq. (52) we use the following form of bound-state electron wave function:

qi;f(r, t)/exp (IA') ' Eo 't +I ReliE(t')dt' =4; &(r, t)

(55)lO1

n, l,. ~
ltt

" t f n la
i,f i,f

where values of 8„"'are further given in terms of b„"' [depending upon the matrix element of electric dipole interaction
as can be seen from Eqs. (37)-(40)] by the relation (49). %"e finally obtain the following form of the S„matrix:

S„=(2m) i g 5(E» —E» Ice)f„',—
I = —co

where the first-Born-approximation elastic-scattering amplitude f,l' with transfer of I photons, is given by

(56)

f 1' =g g g g g g Jt, ( [q,a] )exp[ —I ( I +I'f}(5 q+1r/2)]( 8„' )"8„" ' f„„5..., ,„5, , , 5,
n n. I~ I'e' I~ I'&

i f i f
(57)

=gJ ([q a])exp[ i (I —I )—(5q+~/2)]Alf 'f (say)
Ia

(58}

In Eq. (57) we take

(59)

In the above relation f„„is the field-free Born-approximation scattering amplitude for transition from quantumf i

state x'; to x&. In general x, in this paper stands collectively for the usual quantum numbers n„l„m, .
The above derivation involving the relations (11) and (52)-(57) suggests that I and I&' photons are absorbed by the

initial and final electron, respectively. Likewise I; (I& ) photons are absorbed by bound electrons in the initial (final)
state.

For illustration the quantity A&,
' in Eq. (58) is given below for I'=0, 1,2, 3 considering at least terms up to third or-

der in electric dipole interaction. In Eq. (58) I' (or I —I') may be thought of as the number of photons absorbed by the
bound electron (or free electron)

A of ' ——5„05„0+ g (8„")8„"+I (8„' )'5„O+[c.t. ]I,
l

i =1,—1

f"i (81,+1)e5 +(83'kl )e5 +(82'0)@81'T1+(82'+2)@81'kl+[ .t. ]%1 Kf K 0 Kf K 0 Kf K. Kf K. 3'

f"i (82, +2 )*5 +(81,+1 )+81,%1+[ t ]t f t

A
"f i (82,+2)+81,T 1 +(83,+3)e5 +[c tk3 K- Kf K.O (63)
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In the above relations complementary terms [c.t.] imply
that complex conjugation of previous terms with the
changes ~&~~; and I &

~—I & are to be added.

fo,. & l ~l '*'~0)= (@„q„+@,q, )f, „,iaaf„„

8. Zeroth-order and Srsterder laser-modiSed amplitude
for plane- and circularly polarized laser

Retaining terms up to 6rst order in electric dipole in-
teraction in Eq. (58) for l-photon transfer and using the
explicit value of 8„'*' given in the Appendix we have
(omitting the superscript 8)

f q
=exp[ il—(5q+m/2)]I Jq([q a])foo

E

4 M,& MO, npfnp, o np, ofo, np
A~) ——W, q

2Q CO+0+N CO„O W co
(72)

1 hi 5
[C,q]e 'fo, .IM. (, o (71)

2g

where [C,q]=mco /e[a, q] and 5 has already been
defined after Eq. (54). The above relations enable us to
express A+& in the foHowing more compact form in

+i5
which the phase factor e q does not appear:

where

+~1 i([q a])~+i

+Ji+1([q a])~ i I (64)

In the case of plane-polarized EM field obtained from Eq.
(2) by putting C„=O, we have [g,q]=g q=

~ C)(q ~

cosA,

(A, is the angle between 8 and q) and 5s ———m /2. In this
case the above relation becomes the same as given by By-
ron and Joachain. In the case of a circularly polarized
EM field defined by

(h~l, ki )nf
2 ~, = —exp[hi(5 +ir/2)]g g

0 (73)

1, %1
~npm, o fO, npm+

0

(65)

we have

me@
[q, c]=qc'=

8
(74)

2417e
(

&q &) 1) (66)

eo 1
e' '=4m++ i JI ('qr)1'i* (q)FI (r),

1=0m = —1

we can write

f.I,O= ~P (q)f.I,O.

%'e can also write

&nlm
/
r A) 0) =

) A) r/' ( A)M„/o51, ,

where A is any vector and M„1051 &
or M„&0 can be called

the dipole matrix element.
Then using Eqs. (68) and (69) we can write

In Eq. (65) ii '*' is already defined by Eq. (18). In the
exPression f„p o suffix n is the PrinciPal quantum num-
ber, p stands for orbital angular momentum quantum
number l =1 (appropriate for dipole-type interaction),
m ( = + 1,0, —1) for magnetic quantum number, and zero
implies ground state. We de6ne co„0=co —400.

We now proceed to express Az& in another compact
form in the following. In view of the relations

(t~~ v, ~t;&=e'(t~

tan5,"'= Vq, /q„ (75)

when relations (74) and (75) are to be used for the circu-
larly polarized EM field.

C. Explicit forms of some higher-order terms
in laser-modified amplitudes

We may note that in Eq. (64) the field-free scattering
amplitudes foo~constant and f„o~l/q in the Born
approximation when q —+0. Keeping this in mind we find
that in the ease of single photon transfer (i.e., l = 1) in the
region of very small momentum transfer (q~0), the
dominant part of the amplitude for the process corre-
sponds to the photon absorption by bound electron (re-
lated to JI,([q,a])A, term ) and is of order 1/q rela-
tive to that involving the free electron (the
JI,([q„a])foo term ). In another specific case of odd (or
even) number of photons transferred, e.g., l =3 (or 2) we
also expect that for suf5ciently strong laser 6eld the dom-
inant contribution to the amplitude for this process in the
region of very small q is given by the term in Eq. (58)
characterized by l'=3 (or 2) corresponding to the case
when all the three (or two) photons are absorbed by
bound electron. This can be seen from the following de-
tailed expression for AI

I 'f„„ for l'=+2 and +3 writ-
Ky

K-

ten in terms of matrix elements h „'„' with the help of
Eqs. (62) and (63). This is further discussed in Sec IV. .
We have
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h i, ki 121 1 %1
h„i o 1 h„i o(h„lm, o)

N„0+2N N0+N 2

Xfn&l&m&, 0+
I 1,%1

n2l2m2, 0 I 1, T-1
n1ll m1'0

+c.t.
N„0 N n212m2, n111rn1 +

1

(76}

f i
ltd —+Q K)r K

1

N~ 0%3N

h l, kl h 1,21
n212m2, n1l 1 m1 n1l 1 m1'

h i, ki
N %2N N XNn20 n10

ho'nimhnlm Q n313m3'0
+

N+0+N N+ 0+N"3

(h i p ) h i o n313m3, 0i+i n

fn3l3m3, 0

I 1,%1
1 %1

n&l&m&, nlm h„im o

N „0+2N N „0+N
3

hi, +i
11 1' +c.t. .

N. 0
n3l3lFE3 Pl111m1

I

(77)

Keeping in mind the nature of dipole interaction [see
Eqs. (16)-(18)]we can make some observations regarding
the possible values of angular-momentum quantum num-
bers characterizing the transition amplitude in Eq. (58)
for certain special cases corresponding to Eqs. (76) and
(77). In relation (76) possible values, of 12 are 0 and 2 in
the first term and zero only in the second term. The per-
missible value of both 12 and i, is 1 in the case of the
third term in Eq. (76). A study of the coeScient of
fn & m o in Eq. (77) shows that 13 is restricted to the

values 1 and 3. Similarly in the term f„ i m n / m p pos-22 2' 11 1

sible values of I2 are 0 or 2 but that of I1 is 1. The above
analysis shows that when I'=3 (in general for odd values

of I') and i'=2 (or even I'), the term A, ,~ 'f„„ involvesf
among other quantities transition amplitudes f„ i, and

f „, respectively, whose asymptotic values for q~0
mainly determine the nature of the scattering amplitude
for small q,

r

1 e A(t)p+ + V~ Xk ——i'
27tl C

(79)

The quantity Xi(r, t) [already given by Eq. (3)] is the solu-
tion of Eq. (79) for Vd

——0. The quantity g(r, t) then
satisfies the following equation:

2i k—+ V g+ Vd (=ieA . Bg
e

(80)

Neglecting V g in Eq. (80) and writing r=b+z (z taken
along the direction of electron momentum) Chowdhury
and Bhakar' have obtained the following solution for
g(r, t):

g(r, t) =exp —iF(t) f Vd(r„1+z')dz'

In Eq. (80) if one assumes the smooth-phase approxima-
tion, 'o i.e., 8 FlBt~=0 and takes into account the usual
value of the laser intensity and the short-range nature of
the interaction, then one can write

D. Gianber approximation or higher-order approximation
of Laser-modiN[ed Born scattering amplitude

F(t)= 1lu (t),
where

(82)

The complicated problem of determining higher-order
corrections to the laser-assisted scattering amplitude in
the presence of the time-dependent EM field has already
been studied by Chowdhury and Bhakar' in the Glauber
approximation. They have written the wave function of
the projectile electron in the form

X„(r,t) =X„(r,t)g(r, t),
where Xk(r, t) satisfies the following equation for the pro-
jectile electron in the presence of an EM field A(t) (as-
sumed to be almost spatially homogeneous in the region
of electron atom collision} and the atomic potential Vz ..

u(t)= —
i E, (t)

i

1

P7l

K, (t) is the shifted momentum in the EM field A(t) [see
Eq. (1}]and is of the form

e A(t)
(84)

The relations (82) and (83} also result if we assume
Bg/Bt =0 and V' )=0 in Eq. (80}.

Using Eq. (81) we obtain the following expression for
the direct Glauber amplitude f„'"„(or simply f„„)f i f i
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I (rz, b, to)=exp — I Ve(rz, b+z')dz' —1,
u(to)

(86}

u(to)= —
i K;(to) i,1

7tl
(87)

where the time to, occurring as the argument of A(to) in
the general case of elliptically polarized laser, is obtained
by using the stationary-phase approximation of
Chowdhury and Bhakar's who have considered the case
of the plane-polarized EM field.

%'e have

toto =cos '(l/[a, q])—(5q+n/2) . (88)

which can be used in place off„„in Eqs. (64) and (65):
KIK' ~

iK;f = d rid bg„' ' (r2) r(rz, 1,to)P„' '(rz)e'
f m' 2 ~ 2 2 0

(85)

G Gf00 f is~is

ik (2—lao) — Io(A, , q)3 1 8
ax A, =2/ao

(89)

ready been defined immediately after Eq. (54). In the case
of the plane-polarized EM 6eld characterized by
A(t) =e~ Aocostut we obtain A(to) =e Aol /(a. q). For
very low-frequency laser K(to) can then be approximate-
ly replaced by k;.

%e may point out that Byron and Joachain have used
the EBS amplitude f„„instead of the Glauber ampli-

tude f„„to calculate the field-free elastic (ls ~ ls} am-
f i

plitude occurring in Eq. (64). If we retain the V' g term
but neglect t}g/t}t in Eq. (80) we obtain more accurate
transition amplitudes which can be used in place of 6rst-
Born-approximation transition amplitudes appearing in
Eq. (58) for the low-frequency laser.

In the following we give asymptotic values of foo and

f„z 0 determined by Thomas and Gerjuoy' when q~0
for low-frequency laser so that K; =k;.

The quantities on the right-hand side of Eq. (88) have al- where

Io(k, ,q~0)= 4ir}r(1+—i')I (1—iri)A, '"(A, +q ) '+'"iFi[1 i', ir—t, 1;A, (A, +q )]

2 4 2

(90)

ri=e mlk, ,

c, =1+—,(1+—,
' )+—,(1+—,'+ —,

' )+—(1+-,'+ —,'+ —,
' )+1, 1, , 1

(91)

1, 1 1, , 1 1 1c, /2 =—(1+-')+—1+—(1+-'+ -')+ —1+—+—(1+-'+ -'+ -')+
22 2 32 22 2 3 42 22 32 2 3 4 (93)

A, = (1/ 0 }(1+1/ }

PJ ( n ) =[( n+ 2)J /j!(4—)J. ](2/na o }' .

We have

0)= 4qr(1+—&q)r(2 tq)X '"—(X +q )
'+'"

1 —2l 'g 2 'Ir 4 7T
X ~ . 1+q 6+q 1

A,
2

' —1

1+ 2 2E, [1 irt, irt, 1;X /—(A, +q }]

'+i

where p is the polar angle or q in the plane normal to g which is chosen perpendicular to q, and p is

(94)

(95)

+(1+ii}) (1+iri)+(rt +inst ) —1 +(rt +inst )

(
6 120

m'
+ 1 +q + 0 ~

6

We may note that in the evaluation of limiting values of Io(A, ,q} and I, (k,,q) for q ~0 we retain terms at least up to
O(i}6) whereas Thomas and Gerjuoy' have shown terms of O(ri ) and O(rt'), respectively. Exact forms of Io and I,
have been given in Ref. 19.
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E. Exchange scattering amplitude

To take into account exchange effec in the scattering process we consider the following S-matrix for laser-assisted
elastic-exchange scattering for the general case of elliptical polarization:

i 1
dt exp[i(EI, —Zk )t i q—ap.]X(t),

& (2m) f (97)

X(t)=I J dr&dr, exp i k,. + r, z (r,2
—z, i)'"exp[iqrz]4'(rz, t)F(rz, r, 2, t),

F(r&, ri2, t)=4 (r, +r„,t)][ I r2+ri21 —(r2+ri2)'Z]

Using Franco and Halpern's' method of approximation we get

X(t)= . ( 2i—K; z)'" drie @p(rz, t)F(ri, O, t},4wl (1+i tr) . ~;& iq r2

/K
/

—2 —2lg

(99)

(100)

where K, (t) is given by Eq. (87). For the low-frequency
laser K, (t) is to be replaced by k; as before, and the quan-
tity ri is already defined by Eq. (91).

For the low-frequency laser field we use the
stationary-phase approximation' to evaluate the time in-
tegral in Eq. (97). This is equivalent to replacing X(t) by
X(tp) where tp is given by Eq. (88). Unlike Prasad and
Unnikrishnan we do not expand the term
exp[ie A r&i/c], part of the term

eA
exp i k;+

occurring in Eq. (98), in terms of Bessel functions [as in

Eq. (11)]before carrying out integration over the coordi-
nate r, 2. So the expression for the laser-assisted
exchange-scattering amplitude f,';" determined in this
paper is somewhat different and simpler than that of
Prasad and Unnikrishnan. The above method of ap-
proximation shows that, for low-frequency laser-assisted
elastic-exchange scattering, f;';" is obtained from Eqs.
(64) and (72) by replacing direct transition amplitudes fpp

and f„p by corresponding expressions for the field-free
exchange amphtudes fepp and f„~p.

IV. RESULTS AND DISCUSSION

%e have performed numerical calculations for field
strength 8=0.02 in atomic unit (a.u. ) and angular fre-
quency of the EM Seld co=0.074 a.u. for laser-assisted
elastic electron scattering by hydrogen atoms at 100-CV
electron energy using both Born and Glauber approxima-
tions. %e have already mentioned in Sec. I that there are
some inadequacies of the Glauber approximation. Byron
and Joachain" have shown that the second-order term of
the Glauber series for ls —+1s and 1s ~ns transition am-
plitudes unlike the corresponding second-Born-
approximation term docs not contain any I'cal paI't which
is connected with the polarizabihty of atom. The "imagi-

nary part" of the second-order Glauber term is weakly
divergent when q-+0 due to the fact that the average ex-
citation energy of the intermediate states is neglected in
the derivation of this term. However, the above imagi-
nary part closely agrees with the corresponding part of
the second-Born-approximation amplitudes except when

q is extremely small. Byron and Joachain" have used the
eikonal Born series amplitude defined in Sec. I in place of
the Glauber amplitude. We have already noted that the
small-angle region is of great interest since the effect of
laser modification of the atomic state (especially for odd
number of photons transfer) is very large because the
1s~np field-free transition amplitude is strongly peaked
in the forward direction. In this connection we briefly
mention some results given by previous investigators' '
for field-free transition amplitudes obtained by using the
EBS method and the Glauber approximation. For field-
free 1s-np transitions the first-order Glauber amplitude
term which is identical with the first Born term, is strong-
ly peaked and gives the most dominant contribution and
consequently the Glauber approximation is expected to
give a satisfactory result in this case. It appears from the
numerical result given by Byron and Latour' that there
is a close agreement between the values of the differential
scattering cross sections evaluated by the Glauber ap-
proximation and the EBS method in the ease of is~2@
transition and excitation of n =2 state of the atomic hy-
drogen when q is small. From Refs. 12 and 13 we also
find that the values of differential scattering cross sections
calculated by using the EBS amplitudes for ls~ls and
1s~2s transitions agree more closely with the corre-
sponding Glauber results than with the Born results.
From above observations it is expected that the results
for laser-assisted electron atom scattering cross sections
obtained by Glauber approximation are likely to be quite
close to the corresponding EBS results in the small-angle
region for transfer of odd number of photons.

The laser-assisted differential cross sections (for direct
scattering) evaluated by using the relation (64) which
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takes into account the efFect of dressing of the ground
state by the laser, are plotted in Figs. 1 —3 for transfer of
no photon, one photon, and two photons, respectively.
The photons are taken to be plane polarized along q.
Plotted results are given in both Born and Glauber ap-
proximations. In the above diagrams we also show the
results considering unperturbed atomic wave functions
which are related to the first term in Eq. (64). We may
note that Byron and Joachain in their numerical calcula-
tions based on a relation like Eq. (64) have replaced only
the field-free elastic Born amplitude frN by the eikonal
Born series amplitude frN (or f,~

) but used the Born
amplitudes f„~o for the ls~np transition amphtude

f„~o. Since for very small] moinentum transfer the
1s ~np transition amplitude gives the dominant contri-
bution to the difFerential scattering cross section for one
photon transfer, we also use the Glauber amplitude fG

0
(which is expected to be more accurate) for the is~np
transition term. We may note that the asymptotic forms
of both f„~o and f„o vary as q

' as q~0, but they
difFer by a factor to be determined from the relations
(94)-(96). Similarly, the asymptotic forms of fco and fOo

b
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i a a a I
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t
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8

13 16

FIG. 2. The same as in Fig. l but with the one-photon
transfer case.

O
Q7l

I 1 1

8 ~0 &2 &4 ~6
e

FIG. 1. The differential cross section for elastic electron-
hydrogen scattering with the transfer of no photon (I =0) at an
incident electron energy of 100 eV. The electric Seld is parallel
to momentum transfer q and the 6eld strength is IO Vcm
and angular frequency m=2 eV/h: —"—,the 6rst-Born-
approximation dilerential cross section (neglecting dressing);—.—,the same including dressing of the target;
Glauber difkrential cross section neglecting dressing of the tar-get;, the same including dressing of the target. The angle
8 is measured in degrees.

can be obtained from Eqs. (89) and (93). The above
asymptotic forms together with relation (64) determine
the nature of the curves in the various diagrams. The
great enhancement of the cross section for one-photon
transfer (I =1) in Fig. 2 is due to the second term of Eq.
(64) involving fo„and f„~o which is multiplied by
Bessel functions (depending upon q) of order zero. In
view of the discussion given in the beginning of Sec. III C
we may remark that in the above case the one-photon
transfer process mostly involves the bound electron when

q ~0.
For two-photon transfer (1 =2) the first term in Eq.

(64) which corresponds to the case where both the pho-
tons are absorbed by the free projectile electron, varies in
the Born approximation as q as q~0. On the other
hand, the second term in Eq. (64), which involves the
product of the Bessel function of order 1 and the 1s ~np
transition amplitude, becomes constant as q ~0 and so
dominates over the first term when q~O. In this case
one of the two photons is absorbed by the free projectile
electron and the other by the bound electron. The above
asymptotic behavior as q ~0 can be seen also from the
nature of the curves in Fig. 2. Keeping in mind relations
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FIG. 4. The full differential cross section for elastic electron-
hydrogen scattering with the transfer of one photon {l=+1)
considering both direct and exchange scattering amplitude.

FIG. 3. The same as in Fig. 1 but with the two-photon
transfer case.

(58}and (76) involving the A&. term and the discussion

at the end of Sec. III C we may note that when both the
photons are absorbed by the atomic electron the scatter-
ing amplitude related to this term becomes constant for
very small-angle scattering in the Born approximation.
The above A, , term, which is of second order in dipole

interaction, gives a smaller contribution to the laser-
assisted scattering cross section than the previously men-

tioned second term involving A+, in Eq. (64) which is of
first order in dipole interaction. The AI. term is not

taken into account in our numerical calculation.
In view of the discussion given after Eqs. (76) and (77}

we find that for three-photon transfer, the scattering am-
plitude related to the A,. (or A,. ) term in Eq. (58}

corresponding to the case when all three photons are ab-
sorbed by the free (or bound) electron, varies as q3 (or
1 iq) in the Born approximation when q ~0.

It has already been mentioned that the exchange
scattering amplitude is quite small compared to the direct
scattering amplitude in the region of small moincntum
transfer where thc effect of laser modification of the
atomic wave function on the scattering amplitude is
significant. In Fig. 4 we plot the dilerential cross section

including the exchange emect for the scattering of unpo-
larized electrons by hydrogen atoms in the case of one-
photon transfer. Comparing the curves of Figs. 2 and 4
we Snd that when the exchange e8'ect is considered the
differential scattering cross section at the Born minimum
is considerably changed, but the corresponding change in
the Glauber minimum is quite small.

The relations (64) and (72) show that for plane-
polarized photon transfer (l&0), the laser assisted direct
scattering "amplitude" depends upon the angle between
the momentum q and the electric field vector C. The
above amplitude is maximum when 8 is parallel to q and
vanishes when q is perpendicular to C. If we take the
propagation vector of the laser along z axis then the
scattering amplitude depends only on the magnitude of
the perpendicular component q~ (=e„q„+e„q~) of the
momentum transfer q and is independent of the direction
of q~. Furthermore, this amplitude vanishes when q~ is
zero.

APPENDIX

Explicit forms of some expansion coeScicnts 8„"',b„"'
and P2, &

associated with spectral representation of per-

turbed wave functions are given below:
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g 1,+1 g 1,+1 g 1,211
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3, k3 I
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b3, %) ' ~ l 1, Tvb2, +(1+v) ~ ~ e2, Tq l, kq~e2 +lb), kl '
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$30 2p2'0 y (l 1, —q )4 b i, —q

q=1, —1

(A8)

(A10)

(Al 1)

(A12)

P +P= g[($ +q)~b3 +(P q)+(b3 +q)4b +(P —q)+(b3 +q)~b»*(P-q) ]
q

p 1 4 p 3 2,P] 2, (p p) )

Pl

p+ 3 ~ »P~-4 tp —pl)+ 4,pt 2, tp —p&) 5 ~ ~ 2,P) 2,pz 2, (P —
p&

—p&)8~ &s ~M
Pl P) P2

The quantities like ez) in the above equations are given by Eq. (39).
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