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A new recently proposed dispersion relation (DR) [Temkin, Bhatia, and Kim, J. Phys. B 19, L707
(1986)] is tested for e-He scattering; the results show that the new DR is not satisfied. Therefore we
start to investigate the analytic structure of the difference amplitude, previously assumed to be non-
singular, on the negative scattering energy axis. Even under severe approximations we find that the
difference amplitude contains both poles and branch points. This suggests, however, a useful ap-
proximation of these contributions to the DR which gives very satisfactory agreement in both e-H
and e-He scattering. We conclude with some brief general remarks on this problem.

1. INTRODUCTION

In the case of electron-atom scattering the question of
a correct dispersion relation has both fundamental
theoretical and practical implications. From the theoret-
ical point of view the problem has been—from the very
beginning—to derive a dispersion relation (DR) which
correctly incorporates exchange (identity of incoming
and orbital electrons). The difficulty manifests itself in
discerning the analytic properties of the forward-angle
elastic scattering amplitude on the negative energy
(k? <0) scattering axis. From a practical point of view,
which includes primarily being able to test the accuracy
and/or consistency of measured and/or calculated cross
sections, a correct DR would provide an invaluable tool
in that direction.

Briefly, developments of a DR in electron scattering
were initiated by Gerjuoy and Krall! (GK). They pro-
posed an e-atom DR based on writing the scattering as a
sum of direct and exchange amplitudes. They assumed
that the direct amplitude was governed by an ordinary
(potential-type) DR relative to a first Born amplitude
with the usual type poles coming from composite bound
state on the negative-energy axis.! The first Born direct
amplitude is subtracted to ensure that on the outer circle
the difference vanishes in the k? plane as k?— . The
new ingredient of the GK treatment concerned the ex-
change amplitude: the hypothesis that it is governed by a
similar DR in which the exchange Born amplitude has
been subtracted. Here the subtraction is not for the cir-
cle at infinity (both exact and Born exchange vanish sepa-
rately), but because the Born exchange itself (which can
be evaluated analytically for e-H scattering) has nonphys-
ical poles at k?<0, whose effect was expected to be
present in the exact exchange amplitude and therefore
had to be subtracted out. Nevertheless, by 1975 good
enough data and calculations had become available to
disprove the GK-DR numerically, as was first shown
convincin§ly in e-He scattering by Byron, de Heer, and
Joachain.

There were numerous further analyses all of which cor-
roborated the inadequacy of subtracting the first Born ex-
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change amplitude; however, none—except for the papers
we shall now discuss—offered an explicit correction. Of
the exceptions, Amusia and Kuchiev® attempted to sum
the divergent parts of the entire exchange Born ampli-
tude series. From a numerical point of view the results
are mixed. In application to e-H scattering the (partially)
summed series gave an analytical result® very similar to
the exchange first Born amplitude with first-, second-,
and third-order poles at k’=—1. When numerically
presented, they are in fact significantly less satisfactory in
the range 0<k?<1 than even the GK result. On the
other hand, when applied to e-He by Kuchiev* the corre-
sponding term now contains an irrational power (i.e., a
branch cut on the negative-k? axis), and here the numeri-
cal results are quite impressive. (Both sets of results are
given below.)

The second approach offering an explicit alternative to
GK-DR has been given by us.” We proceeded from the
idea that the exchange Born series is not a natural way of
including exchange, recalling that the exchange Born
series may not even be convergent.® Thus we proposed
the static-exchange amplitude’ as the basis of comparison
with the full amplitude, and conjectured that the
differences would be well behaved on the negative k2 axis.

The numerical checks of our DR for e-H scattering,®
depending as it does on theoretical calculation rather
than reliable experimental total cross sections at irter-
mediate energies, were not definitive. Therefore, in Sec.
IT we have applied our DR to e-He scattering, where ex-
periment and theory in the appropriate energy ranges are
sufficiently precise that a decidedly negative result cannot
be blamed on uncertainties in those quantities. The ap-
plication requires calculations of accurate static-exchange
e-He phase shifts, and that calculation is the substance of
Sec. II. We shall find that our DR is not satisfied.

Thus we are led to examine analytically the omitted
contribution to f — f© in Sec. III; here we revert back to
the case of e-H scattering. Using the simplest reasonable
approximations, we find that this omitted term contains
branch cuts as well as poles on the negative k2 axis.
(These poles and branch points do not arise in the corre-
sponding e *-H analysis.) Therefore we augment our DR
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with two terms, one to represent the pole and the second
the branch-cut contributions from the negative k? axis.
With such an addition, excellent satisfaction of our aug-
mented DR both in the e-H and e-He examples is ob-
tained.

At the end of the article we shall make some more gen-
eral remarks concerning the validity of an ordinary DR

J

Ref(k2’0)=Ref(°)(k2,0)+ZITP
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The scattering energy k? is related to the total energy E
in the usual way,

E=£0+k2 R (2.2)

where €, ( <0) is the energy of the ground state of the tar-
get atom. The superscript zero in (2.1) and below always
refers to the corresponding quantities in the static ex-
change approximation. P in (2.1) represents the principal
value of the integrals in question, and the sum over v in
(2.1) is the contribution from the bound state poles of the
composite system. [But since there are no He™ bound
states, those terms will not enter the (e-He) application.]

Of the quantities that are required in (2.1) (g, and €,
being the ground and first excited state energies of the
target, respectively), then for k2 <, —¢,, the scattering
amplitude is in the elastic region and can be convention-
ally written in partial wave form,

Fk%0)=k~"3 (2¢ +1)e siny,P (cosd) . (2.3)
/

In particular the forward angle scattering amplitude
f(k?0) can be trivially evaluated from very accurately
calculated phase shifts of O’Malley et al.® and Nesbet,’
which for our purposes can be considered identical. The
elastic cross sections obtained from them are in turn con-
sistent with measured cross sections in the elastic range,
within the error of the experiment. On the right-hand
side (rhs) of the DR we therefore also use the calculated
cross section®® in the elastic range, and measured cross
sections'®~!3 in the range 19.6 eV <k2<700 eV range.
Beyond 700 eV we use the asymptotic formula

6.1772  24.6256 3931.47
((k")?)= —
or k2 T (k) (k®
3.01
29 (k"] | . 2.4)
+ k) n[(k") ]]

The (k’)~* and (k') coefficients in (2.4) are obtained by
fitting to the data at (k’)?=700 and 800 eV. The
coefficients of the first (k’)~2 and logarithmic term for e-
He are taken from Ref. 14.

’ "2
fow k'o((k’) )dk
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for the direct scattering amplitude, and its violation for
exchange.

II. APPLICATION OF DR TO e-He SCATTERING

In the k? plane the new (forward angle —6=0°)
dispersion relation® (DR) is (Rydberg units throughout):

B f " k:a(O)((kl)Z)
0

(k')?—k? dk”

(2.1

What has not been uniformly calculated but is needed
for this application are the static-exchange scattering re-
sults. This is a one channel problem in which the phase

shifts 7’ are derived from the radial functions « '’ with
asymptotic forms
lim u P (r)=sin(kr — L6+, (2.5a)

which satisfy the integro-differential equations coming
from

(@oYso |H—E | W) =0. (2.5b)

Here, the full partial-wave exchange approximate func-

tions ¥'?’ are given by (suppressing spin variables)

u(O)(r )
VO =~ ¥,0(Q,)@y(rps)
1
1 2 3 1 2 3

where the symbols in the last two terms represent terms
with the appropriately permuted indices. There have
been many calculations of this approximation starting
from its inception with Morse and Allis.” But what has
not been carefully tested in this approximation is the
dependence of the phase shifts 7'°’ on the quality of the
approximation to the ground state ¢, To that end we
have used basically four types of target functions listed in
Table I. Note that none of the functions is of Hylleraas
type; even W, contains only even powers of r,,. Never-
theless, for the accuracy we require we believe that these
@o are quite sufficient, as is explained in the next para-
graph.

Selected static-exchange phase shifts are given in Table
II. Here we see that the most important correlation
beyond the closed shell is the radial (i.e., in-out correla-
tion) followed by the angular correlation centered at
equal radial distance (W;). From W, we see that all
these correlations can be represented by a single non-
linear parameter configuration interaction function pro-
viding there are enough linear parameters available.

The static-exchange cross sections obtained from these
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TABLE I. Helium target state approximations.

Nonlinear Ground-state
Designation Description Form parameters energy (Ry)
W, closed shell e Tt y =1.6875 —5.6953
W, open shell e TN | (1) v, =2.1832 —5.7513
7,=1.1886
W, open shell aW,+be At )cosen 5=2.4960 —5.7903
plus closed shell
correlated u(r, 4y, 8 terms
w, configuration e "V S fimn p=2.15 —5.7942
integration Fimn =Clrn (PP +rmrl)r2s
Exact energy® —5.8074. ..
“Reference 24.
. "2 i K2
phase shifts are smoothly extrapolated for (k') >25 us A(k?)= A +£ln LA 2.8)
ing the formula I+k? k2 I

4.1362  13.60821
(k')? (k'y*

305.1067
(k")®

Ok )P)=m
2.7)

Here, in contrast to the asymptotic formula for the total
cross section (2.4), there are no logarithmic terms due to
the absence in this (static-exchange) approximation of
long-range forces. Curves of total- and static-exchange
cross sections are given in Fig. 1.

From these cross sections and phase shifts as described
above, we can evaluate the rhs and the left-hand side
(ths) of the dispersion relation (2.1) in the elastic region
of k2. Results for the DR are given in Table III. Let us
straightaway note and acknowledge that the lhs and rhs
of (2.1) are decidedly not equal. The conclusion is clear:
Our original dispersion relation (2.1) is not correct! In
the next to last column of Table III we have added a term
A'(k?) to the rhs of (2.1),

with 4 and B chosen so as to minimize the difference
from the lhs of (2.1). I is the ionization potential for the
last electron (i.e., the first ionization potential) of the tar-
get atom; in the case of He 7=1.8075 Ry (cf. Table I).
The form of A’(k?) will be discussed in Sec. II1; suffice it
here to say that it is not an ad hoc “‘discrepancy func-
tion.”

In the last column of Table III we give the rhs of the
dispersion relation of Amusia and Kuchiev applied as
modified to e-He scattering by Kuchiev.* It is important
to state that the rhs of this DR is different from our DR
(as well as the GK-DR). In particular it does not involve
the static-exchange approximation at all. Given the fact
that there are no adjustable parameters, the agreement
with the lhs [which is Ref (k2,0) in all these DR’s] is
very impressive. However, a better assessment of that
DR will necessitate a consideration of e-H scattering, and
that will be the subject of the next section.

With regard to static-exchange versus total cross sec-
tion, note that they cross in three places in Fig. 1. One

TABLE II. e-He static exchange phase shifts for various target wave functions. (Results in radians.)

Target approximation

L k W, W, W, w,
0.3 2.7130 2.4750 2.7071 2.7071
0.5 2.4430 2.1341 2.4378 2.4326
0.7 2.1994 1.9636 2.1959 2.1905
1 0.5 0.031 60 0.048 57 0.046 62
1.0 0.1538 0.1915 0.1828
3.0 0.3335 0.3496 0.3470
5.0 0.3245 0.3358 0.3358
1.0 0.7443x 1073 0.3084 x 10~* 0.3641x10~*
3.0 0.4761x 1072 0.8481 1072 0.8468 < 1072
5.0 0.2243 107! 0.2918x 10! 0.2917x 107!
3.0 0.1692 % 102 0.3715x 1072 0.3707x 102
5.0 0.1182x 10! 0.1693x 10! 0.1692x 10!
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FIG. 1. e-He cross sections. Solid curve, o, is total cross
section based on calculations and data cited in text. Dashed
curve, ¢'?, is presently calculated static-exchange cross section
(cf. Table II).

can expect that some unevenness of the principal value
term of our DR, Eq. (2.1) in this energy region. In Table
IV we present results at a finer mesh in the low-energy re-
gion and what we find is a slight deviation from mono-
tonicity on the lhs [i.e., Re(f)] and the same for some of
the individual terms of the rhs. When one combines
those terms the small nonmonotonicity on the rhs cancels
out. Also, our augmentation term A’(k?) is monotonic;
we suspect that in order to obtain a precise enough dupli-
cation of Re(f) one will require a more accurate repre-
sentation of the poles and branch points on the negative
k? axis. This will clearly represent an interesting area of
future study.

III. ANALYTIC CONSIDERATIONS: e-H SCATTERING

A. Exact expressions

Having shown that the DR (2.1) is not correct, or more
precisely not complete, we must examine the analytic
J
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structure of the difference amplitude,

Af =f(k2,0)—f"%k20), 3.1)
particularly on the negative k? axis. The requirement for
analytic results excludes the helium target, so we here re-
vert back to e-H scattering. Even here what may appear
as severe approximations are required, but we emphasize
our basic assumptions: it is highly unlikely (although pos-
sible) that the exact expression can be analytically less
complicated than the one we shall evaluate, based on the
simplifying approximations we shall make. If we find
that our approximation for Af contains poles and branch
points for k2 negative (as we shall), then we believe the
exact Af must have at least that complicated an analytic
structure.

Let us start by deriving an exact formal expression for
Af. From the Feshbach formalism'® and the exact equa-
tions for f and f'© (recall the superscript zero signifies
the exchange approximation),

(PHP +V,,—E)P¥=0, (3.2a)

(PHP —E)PV'"' =0, (3.2b)
we have

PY=PVY4+G,V PY, 3.3)

where W*'=PW'? is given by (2.6), and G, is the P-space
Green’s function. In the elastic range, Gp can be decom-
posed in partial wave form [and recall we are here
confining ourselves to the two-electron (e-H) problem,
and the subscripts or superscripts (1) mean singlet and

triplet scattering]

(ri,ry)
Gp(r],ri;rz,rlz)= E g(/i)_rl*;l—Y/m(Ql)Y/m(Q'l)|¢0(r2)><¢0(r’2)| :*:(121’2) ’ (34)
£m 171
TABLE III. e-He dispersion relation. The parameters [Eq. (2.8)] are 4 =—0.77156 and
B = —0.143 45, and recall that I=1.8075 (see text).

k lhs rhs (2.1) rhs (2.1) + A'(k)? Kuchiev?
0 —1.157 —0.663 —1.169 —1.090
0.1 —1.117 —0.591 —1.095 —1.024
0.2 —0.954 —0.447 —0.943 —0.870
0.3 —0.722 —0.245 —0.729 —0.674
0.4 —0.457 + 0.006 —0.462 —0.422
0.5 —0.170 0.271 —0.178 —0.157
0.6 +0.112 0.527 + 0.099 0.101
0.7 0.381 0.793 + 0.387 0.372
0.8 0.619 1.006 0.623 0.593
0.9 0.824 1.171 0.811 0.768
1.0 0.997 1.347 1.009 0.957
1.1 1.145 1.465 1.149 1.087

*Kuchiev, Ref. 4.
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TABLE IV. e -He DR at low energies. All results interpolated by a spline fit from
k =0,0.1,0.2,. .. results. J and J, are the integrals on the right-hand side of Eq. (2.1).

k Ihs=Re(f) Re(fy) J —J, A'(k?) rhs
0 —1.157 —1.468 2.584 —-1.779 —0.506 —1.169
0.25 —1.160 —1.465 2.552 —1.729 —0.506 —1.148
0.05 —1.154 —1.457 2.557 —1.731 —0.505 —1.136
0.075 —1.140 —1.445 2.558 —1.727 —0.505 —1.119
0.100 —1.117 —1.429 2.558 —1.720 —0.504 —1.095
0.125 —1.086 —1.408 2.555 —1.709 —0.502 —1.064
0.150 —1.048 —1.383 2.550 —1.695 —0.500 —1.028
0.175 —1.004 —1.354 2.544 —1.679 —0.498 —0.987
0.200 —0.954 —1.320 2.534 —1.661 —0.496 —0.943
0.225 —0.905 —1.282 2.522 —1.641 —0.493 —0.894
0.250 —0.844 —1.240 2.506 —1.618 —0.490 —0.842
0.275 —0.784 —1.196 2.489 —1.594 —0.487 —0.788
0.300 —0.722 —1.148 2.471 —1.568 —0.484 —0.729
0.325 —0.658 —1.098 2.453 —1.541 —0.480 —0.666
0.350 —0.593 —1.045 2.433 —1.512 —0.476 —0.600

where the radial Green’s functions g'*' (r,, ) satisfies
(L) —k21g B () =k 718(r —r) . (3.5)

LLE)(¢) is the radial static-exchange operator'® operating
the radial Green’s functions g'*’(r,7}): specified in the
form

g =l ol

+ . .
where u*) and v’ are regular and irregular solutions of

the homogeneous part of (3.5) (i.e., solutions of the ex-
change approximation), with the irregular solution obey-
ing the asymptotic condition

(3.6)

(r.),

i(kr —mwd /2)

lim v (r)«e 3.7)

r— o0

Then the function P¥'*) of (3.3) is indeed a solution of
the Schrddinger equation, from whose asymptotic form
we obtain our basic expression for the exact scattering
amplitude f(E, @) in terms of static-exchange amplitude

f(E,0)=f""%E,0)
u, (ry)
+2< \r

'4 1

Y/D(Ql)cpo(rz)‘\fopP\l’,>. (3.8)

[Here and below we shall drop the (£ ) superscripts.] The
optical potential is formally given by'’

1

id E —QHQ

op=PHQ QHP , (3.9

which may conveniently be expanded in terms of the
eigenfunctions of QHQ,

QHQ®, =6,9, (3.10)
giving rise to [cf. Eq. (3.14) below]
PHQ |®,){(®, | QHP
Vop= 2 | £% . (3.9

E_¢,

n

One may show that QHP in (3.9) involving the com-
plete Hamiltonian reduces to'” (for the two-electron
problem)

QHP =Q(2/r,)P (3.11)
(and similarly for PHQ). Thus the optical potential is

written finally

P(2/ry) [ Q9,){®,0 | (2/r,,)P
=3 E—¢ . B9

n

From (3.9"”') one sees that in using the projection opera-
tors P and Q one can completely eliminate the core terms
from the interaction. For the two-electron system, P and
hence Q = 1— P are explicitly given by'®

Q=1-P,—P,+P,P,, (3.12a)
where
Pi=¢’o(’i)><¢’o(’i) . (3.12b)

Finally, the fact that the spectrum &, is bounded from

below (6, > 6, >¢y= —1) well into the scattering contin-
uum, k2 <k? (k? <(g,—¢)), implies E — &, <O for finite
range of scattering energies k%> where E =—1+k2.
Hence,

E—-6,<E—-6,< - <0, (3.13a)
for all k2 < k2. But (3.13a) implies
0> ! ! . (3.13b)

E-6,2E-6,> 2E-g2 "

and, using the fact that Q |®,)(®,|Q is positive
definite and (by completeness in Q space),

S0 (e,){®,|0=0, (3.14)

we have from (3.11)
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2 —2 ik 3, 43
T L (3.15) k)= [ [ e gyrrige pglryd’r d’r,
- 2
tLoRTe = [ [ ddrortdirdr, . (3.20b)
In this form the P operators have no further effect and o
may therefore be omitted. We shall use (3.15) as the basis ~ Similarly,
(I);"I(gxe of our central approximations as detailed in Sec. Fy(k?)=— j‘ [{golr, )rx_zl%(rz))rz]zd .. (3.200)

B. Approximations

Only if one knew the partial wave functions PV, ex-
actly and analytically would the above formulas,
specifically (3.8), be useful for the purpose of analyzing
the DR rigorously. Over and above that, one would have
to sum analytically over partial waves ¢, because it is
known that the analytic properties of the full amplitude
(as a function of k2) may be different from those of par-
tial wave amplitude.!® Since our motivation here is to
derive an expression of least complexity (cf. italicized
statement, Sec. III A) we institute the following approxi-
mations (constants of proportionality are not included
here):

u,(kr)/kr—i‘j, (kr), (3.16)
yit = Z\P‘,t)-—»eik'r'%(rz)i Rpo(ry ) =¥
/
(3.17)
v, > —— 2<e“‘" rz)-—Q \v“—*’> (3.18)
* E-& AT

This gives for the forward angle (=k,=k; =k) DR:
fz(k2,0)=f(0)(k2,0)
+(k2__lz2)_1<eik'l’l¢0(r2 )_Z_Q...E._\I;(Bi)> .
Fp rp

(3.19)

[The tilde now emphasizes the fact that the scattering
amplitude given by (3.19) is no longer exact.]

The question we want to explore is the analytic depen-
dence of the last term on k2 for negative values of k2.
Note first, since the mean energy k2>0, that in this
mean energy denominator approximation the denomina-
tor (k*—k?)~! will have no singularities for k<0,
therefore we may ignore it. The remaining integral can
be written with the use of Q, Egs. (3.12) and (3.17), in an
obvious notation,

(" Mipy(ryr 5'Or i W)
=Fy(k2)+F (kY +Fy(k*)+F,,(k?)
£[Gok)+G (k) +G,(kH)+G (kD] . (3.20)
For example,
FO(kz)z(eik'r‘cpo(rz )rﬁlrﬁleik.rl%(’z)) ,
(3.20a)

ik-r

ikr i
Fy(k)=—(e lgorrp'Pyrple ‘gor,)) .

More explicitly,

The infinite contribution of each of these integrals will
cancel in the sum F,+F,, but additionally we see from
(3.20b), and (3.20c) that these terms are independent of k.
Since only these terms would arise in positron-hydrogen
scattering, we also see that our approximation is con-
sistent with the more rigorous assertions? that the DR
for positron-atom scattering (without anomalous thresh-
olds?!) holds in its original form.

With regard to the remaining integrals it is important
to realize that all of the remaining terms, F,, F,, as well
as all the G’s arise, in one way or another, because of ex-
change: the F’s because of the extra terms in Q, Eq.
(3.12), necessary to describe exchange; and the G’s be-
cause of the exchange term in W4/ as well as (3.12). All
of these terms, with the exception of F,(k?) and
G,(k?)=G,(k?), can be done analytically as an explicit
function of k2. Details of the latter are given in the Ap-
pendix. Here we consider F,(k?),

(3.21a)

( e"k‘r’%(rz) >
'z k

. ik- . . .
Expanding e ™ and r' in spherical harmonics and
spherical Bessel functions, j,(kr,) in the usual way al-
lows F, to be reduced to a discrete but infinite expansion

—2r2

Fi(k))=—6473 (n +1)"! f0°° dryr3Wik,ry)e 2,
n

(3.21b)
where
W, (k,r,)= fo“‘dr,r%jn(kr,)e"'(r'; /iy, (3.22)
and r, =max{r,r,} and r_=min{r,r,}. Each W,

and hence each term of F; can be evaluated analytically;
for example, the n=0 term yields

F](k2)|"=0= —64:1'2 4(7 k )
(1+k2) (1+k?)(9+k2)

41—5k?
8(1+kH)H4+k?)

(3.23)

From (3.23) we see that this =0 contribution alone has
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poles at k= —1, —3, and —4. However, this does not
allow any analytic conclusions about the series when
summed over 7.

One may avoid the n summation altogether by using
the integral representation of 7 ',

256 p gt

1421

e —ip:(ry—ry)
rn =@4n?)"! fd3p 5 (3.24)
p
Inserting this into (3.21), one arrives at an integral repre-
sentation of F,,

We have not been able to integrate this expression analyt-
ically; hopefully in the near future we (or someone else)
will be able to evaluate it or analyze its analytic structure.

From the Appendix, we see that F,(k?)=G,(k?) and
G,(k?) can be evaluated in closed form,

=16m[(1+k>) 1= (15+k2) /(9+k?)?],
(3.26)

Golk)=4m[(3+kY) /(1 +k*)?+(tan"'k)/k],  (3.27)

revealing poles at k= —1 and —3.
The remaining integrals are G,(k?) and G,(k?), which
are in fact equal to each other, but cannot be done in

J

— 167

G(O) k2)___~______
L k(1+4k2)?

In addition to poles, G\” is seen to contain branch points
at k?=-—1,—4. As regards G(]“(kz), with use of
MACSYMA (copyright owned by Massachusetts Institute
of Technology and Symbolics, Inc.). Dr. Drachman has
kindly evaluated it for us. The result is too complicated
to warrant being given here: suffice it to say it also con-
tains branch points at the same values of k= —1,—4.
Noting then that individual terms G{”(k?) contain
branch points, we think it is very unlikely (but not impos-
sible) that they can completely cancel out the sum corre-
sponding to G(k?2). Thus we conclude that G,(k?2) does
contain branch points on the k%<0, at least at k2= —1
and k2= —4.

Concerning f as a whole, note that if certain terms
cancel in one spin state [i.e., F ,(k?)—G,(k?) in the
triplet state], they will not cancel in the other spin state.
Thus there is no way that these singularities and particu-
larly branch points can vanish in general by cancellation.

IV. AUGMENTED DR: APPLICATIONS

The foregoing analyses and numerical results convince
us then that a correct DR (for e ~"-atom scattering) will

tan~ 'k +tan— 'k /2)—2tan" Yk /3)—

d3p d3q . (3.25)
r
closed form. We have reduced them to
G (k)= —(S(k,1,)pg(ry)e' I (ry)) , (3.28)

where S (k,r,) is the same integral that arose in (3.21a),

S (k) ={e" g rigt ), (3.29)

and

I(ry))={@d(r)rp! de=ri'—e BRES +r;h). (3.30)
Again one can expand the integrals in terms of spherical
Bessel functions and evaluate them term by term, or one
can convert them to momentum space integrals. If one
expands G, = ¥,_,G\"” in analogy with (3.21b), then
one can readily evaluate G{*:

44+ k?
1+k2

1—k
4k

2k 4 1
9+k?  2k(4+k?)

In (3.31)

have a multiplicity of poles and branch points on the neg-
ative k2 axis. However, we consider it hopeless (or very
difficult at best and only for the H target) to calculate
them and their residues exactly. Therefore, we shall
adopt a different point of view: We shall ask to what ex-
tent can one replace the analytic structure on the left-
hand cut by, say, one pole and one branch point and still
maintain a useful, if not exact, dispersion relation.

If, for example, as guided by the considerations of Sec.
IT1, we take in the general case such a pole and branch
point at k2= —1I, where I is the (first) ionization potential
of the target atom in question, then an augmented DR
would read

Ref (k%,0)=R+A'(k?), (4.1)

where [repeating Eq. (2.8)]
2

k
1+I

4
I+k?
and R represents the right-hand side of Eq. (2.1). The

test of the utility of this augmented DR is whether
reasonable values of 4 and B can be chosen (say, by

A'(k?)

B
+ Fln
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TABLE V. DR'’s for e-H scattering.

Singlet

Right-hand side of DR’s

Amusia and Gerjuoy and

k lhs rhs (2.1) rhs (2.1)4+A" Kuchiev® Krall®
0 —5.965 —6.999 —5.952 —2.684 —7.240
0.1 —4.257 —5.419 —4.392 —0.920 —5.403
0.2 —1.503 —2.397 —1.425 + 1.959 —2.680
0.3 +0.292 —0.601 + 0.287 3.236 —0.730
0.4 1.170 0.458 1.242 3.861 + 0.262
0.5 1.544 0.943 1.613 3.782 0.770
0.6 1.723 1.086 1.640 3.742 1.049
0.7 1.846 1.425 1.869 3.762 1.267
0.8 2.027 1.636 1.978 3.701 1.514

Triplet
Right-hand side of DR’s
Amusia and Gerjuoy and

k Ths rhs (2.1) rhs (2.1)+A" Kuchiev® Krall®
0 —1.768 —0.819 —1.755 —5.104 —0.547
0.1 —1.484 —0.539 —1.458 —4.764 —0.281
0.2 —0.833 0.045 —0.826 —3.994 +0.281
0.3 0.006 0.778 —0.020 —2.973 + 0.994
0.4 0.859 1.538 0.831 —1.897 1.702
0.5 1.576 2.159 1.551 —0.735 2.276
0.6 2.102 2.601 2.094 —0.010 2.683
0.7 2.469 2.892 2.482 + 0.454 2.949
0.8 2.722 3.090 2.768 0.938 3.125

*The constants in A’ singlet are 4=2.86 and B = —1.81.

®Amusia and Kuchiev DR, Ref. 3.
°Gerjuoy-Krall DR. Results from Ref. 5.

9The constants in A’ triplet are A = —2.46 and B=1.53.

fitting experiment to calculation) such that the lhs and
rhs of (4.1) are usefully equal over the whole range (or at
the very least in the elastic range) of k2.

To test this hypothesis we apply (4.1) first to e-He
scattering. The results and discussion have already been
given in Sec. II in conjunction with Tables I-1V and Fig.
1. Repeating the main conclusions: With the addition of
the augmentation term A'(k?), very good agreement of
lhs and rhs of the DR is highly satisfactory, even better
than Kuchiev.* However, since the latter contains no ad-
justable parameters, this comparison by itself could be
grossly misleading. We therefore will include e-H results
of Amusia and Kuchiev® as part of the e-H application to
which we now return.

In Table V we give separate singlet and triplet e-H re-
sults for several DR’s. The left-hand side, Ref (E,0), is
the same for all of them and is numerically taken from
our first paper.® The various right-hand sides are marked
in the table. Our original [rhs of Eq. (2.1)] as well as the
Gerjuoy and Krall DR results are also repeated from Ref.
5. We see first that the term A’(k?) can certainly be ad-
justed to give fine agreement in the rhs+ A’ column. On
the other hand, the results of Amusia and Kuchiev? (AK)
are seen to be quite poor. They themselves have noted
that other singularities may exist on the k% <0 axis. We
would only stress our belief that these consist of branch

points as well as poles. The existence of branch points on
the k? <0 axis is also consistent with the conclusions of
Gerjuoy and Lee.?

We believe therefore that the uneven performance of
the AK-DR makes it an unreliable guide for use in other
systems. Our own augmented DR is not really better un-
less one has an independent way of determining the semi-
phenomenological parameters 4 and B. As we have
shown, this is certainly the case in e-H and e-He scatter-
ing. In future work we shall consider the next sequential
(Li) target: i.e., the e-Li system. Because of both theoret-
ical and experimental problems involving e-Li scattering
and some discrepant results that already exist in the
literature, this promises to be a very informative investi-
gation.

We conclude this section with the following observa-
tion that we believe gives confirmatory evidence for an
ordinary DR governing the direct amplitude as opposed
to the exchange amplitude. If one writes singlet and trip-
let amplitudes in terms of direct (f;) and exchange (g)
amplitudes,

f(+)=fd+g >
f(_)zfd_g >

then it is clear the exchange amplitude (g) will cancel in

4.2)
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the sum. It has also been argued very cogently that the
direct amplitude by itself will satisfy an ordinary (i.e.,
one-body potential type) DR (cf. in particular Gerjuoy
and Lee??). In Table VI we present results, taken from
our Table V, for summed singlet plus triplet amplitudes:
they demonstrate that the summed (singlet plus triplet)
lhs is equal to the summed rhs in each case (to reasonable
accuracy). We believe this supports not only that an or-
dinary DR does hold for the direct amplitude, but it also
confirms the accuracy of the cross-section calculations,
particularly in the intermediate energy range, on which
the evaluation of the dispersion integral on the rhs is
based. Note that the identity of rhs for the GK and AK
dispersion relations is not a coincidence, but is
guaranteed by the fact that these DR’s differ only in the
form of the exchange amplitude that goes into them, and
which therefore cancels out the sum.

The above point has been forcefully made by our col-
league, Dr. R. J. Drachman.?> Nevertheless, in our own
opinion, it is not obvious that an ordinary DR should
hold for the direct scattering amplitude. The reason is
the following: If one considers say e-H scattering as a
sum of two separate asymmetric solutions, direct ¥, and
exchange V,, then we know that W, has asymptotic
forms

ikr,

lim W,(r,1,)= e“”‘+fd(9)—e—r— Polry),  (43a)
r—o 1

eikrz
lim ¥, (r,,1,)=g(6) @olry) (4.3b)

T, r,

[with W, (r,,r,)=¥,(r,,r;)]. But if we are dealing with a
truly asymmetric case, say positron-hydrogen scattering,
then there is only a single solution, with asymptotic
forms

. ikr1
lim W(r,,r,)= e““‘+f(e)er oolrs),  (4.4a)
r—o 1
lim W(r,r,)=0. (4.4b)

r,—w

The comparison shows that for et scattering there is no
probability for the initially bound electron (coordinates
r,) to come out [Eq. (4.4b)] below the positronium pick-
up threshold, whereas for e ~-scattering [Eq. (4.3b)]
shows that there is no way of avoiding it coming out.

TABLE VI. Summed singlet plus triplet DR’s for e-H
scattering.

k lhs rhs (2.1) rhs (2.1)+ A’ AK=GK
0 —17.733 —7.818 —7.799 —17.787
0.1 —5.741 —5.958 —5.932 —5.684
0.2 —2.336 —2.352 —2.336 —2.399
0.3 + 0.298 +0.177 + 0.190 + 0.264
0.4 2.029 1.996 2.005 1.964
0.5 3.120 3.102 3.107 3.047
0.6 3.825 3.687 3.689 3.732
0.7 4.315 4.317 4.315 4.216
0.8 4.749 4.726 4.721 4.639

Thus there is a fundamental distinction between the two
situations, and the apparent fact that the direct scattering
amplitude satisfies an ordinary DR must have deeper
significance.
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APPENDIX: EVALUATION OF F,,(k?), G, (k?),
AND G,y (k?)

We start with

ik- ik-
F,z(k2)=<e r‘qoo(rz)—rl—P,PZ——I~<]J(,(rZ)e r'> .
12

T2
(A1)
Use the definition of projectors P;, Eq. (3.12b), then
2 ik-r 1 2
F]Z(k )= [{e ¢0("2)T‘¢70(r1)¢70("2) (A2)
12
But
1 _1 - 1

<¢0(r2) P @olr, )>,2—— , e 1+ Py ] ,  (A3)

hence,

2

’

FlZ(kz)z l(eikvrl [~1_
r

_e——Zr‘ '1+_l_
r

Qo(rl)]>

ik- . .
of which only the s-wave part of e " contributes to give
finally

(A4)

1 15+4k?
1+k2  (9+k?)?

FykY) =167 . (AS)

We next consider

ik-r)

Glz(k2)=<e ¢70(r2)'r1—P|P2—1'“¢0(r1 )eik.r2> N (A6)

12 Fi2
which, using the same projectors P, and P,, reduces to

Glz(k2)=<eik.rl¢’o("z) L @olr )@o(ry )>

T2

> <<po(r1 oo Fy ) —— ol )e“‘"2> . @A

T2

Interchanging dummy variables r,<>r, in the second in-
tegral shows that it is identical to the first, thus
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2
1 1 —i .
G (k2= <e 'polry)—— q)o(rz)wo(r,)) (A8)  Golk))=-— f d3p— | (@olrie ~I(PrkIT) |2 (A12)
This is identical to (A2), hence we have shown =le6m f f [1+(p+k)]* dpdQ, (A13)
F(k?)=G,(k?) . (A9) 16,, f°° 1
We consider finally T 0 [1+(p +k)?)?
ikt ik-r 1
Go(k2)=<e 'oolry) | == e olr )> . (A10) - (A14)
rh ‘ [1+(p —k)?]
. . . —2
Using the integral representation 7 15", which can be straightforwardly integrated to give
s 1 3 1 —ipr;—ry)
n2=——1[dp—e ) (A1D) . 2
4" "p Gotkt=dr [BEE | 5 (A15)
reduce (A10) to 1+k (1+k%)
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