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The amplitude of the parity-nonconserving (PNC) electric-dipole transition 6s~7s in cesium is

calculated to third order in many-body perturbation theory. Inclusion of the corresponding correc-
tions in calculations of parity-conserving transition amplitudes and atomic hyper6ne constants leads
to agreement with experiment at a level under 5%. We obtain a value of 0.951ieao X 10 "Q~/ —N
with an estimated error of 5' for the PNC amplitude. A determination of the Weinberg angle is
made by combining the present calculation with recent measurements of the PNC amplitude: the
result is sin 8~ ——0.229(24),»t(16),h~r. Issues involved in improving the accuracy of the calcula-
tions of atomic properties of cesium are discussed.

%hile the Weinberg-Salam model' is an extremely suc-
cessful theory of weak interactions, most of its predic-
tions can be obtained from the tree-level structure of the
theory. Since one of the most important features of the
model is its renormalizability, precision comparisons be-
tween theory and experiment are necessary if the loop
structure of the theory is to be rigorously tested. In par-
ticular, the relatively poorly understood Higgs sector can
be probed in this manner because if the Higgs boson is
truly a fundamental scalar, it enters into loop calculations
in a well-de6ned manner. Therefore precision studies of
weak-interaction processes offer a way of probing the
structure of symmetry breaking using available laborato-
ry facilities which complements tests seeking to explore
this structure by, say, directly producing either the Higgs
boson or else uncovering new physics associated with a
more fundamental understanding of the Higgs mecha-
nism.

A direct test of radiative corrections is provided simply
by measuring the masses of the W and Zo bosons. Pro-
vided that the Weinberg angle 8~ is known, and given
the accurately determined Fermi and Sne-structure con-
stants, any deviations from the tree-level prediction

must be attributed to these radiative corrections. Howev-
er, without an independent measurement of 8~, while
still possible, it is more dificult to extract such informa-
tion from the 8' and Zo masses. The status of radiative
corrections has been discussed in a recent paper by Amal-
di et a/. The strongest tests of these corrections are
shown in that paper to arise not from a study of the

weak-boson masses in isolation, but rather from consider-
ing a variety of weak-interaction processes together.
Among such processes are parity-nonconserving (PNC)
electric-dipole transitions in atomic systems„which for
heavy atoms are sensitive to the weak charge, Qn„

eSned as

Qn
——Z(1 —4sin ett ) —N,

where N ig the number of neutrons in the nucleus and Z
the atomic number. This quantity is modified by radia-
tive corrections, and will be further discussed when
comparison with experiment is made. While the theory
of PNC transitions in hydrogen is well understood, PNC
effects have not been detected in this atom despite vi-

gorous efForts. However, PNC efFects have been clearly
seen in heavy atoms. The most accurate published mea-
surements of PNC amplitudes are for the 6s ~7s transi-
tion in cesium; ' these measurements are accurate at
roughly the 10% level. A measurement of the PNC
6p&&z~7p&&z amplitude in thallium accurate to 15% has
also been made. In order to extract values of Qn. from
these measurements in heavy atoms, it is necessary that
the complex atomic structure of the atoms be understood
to at least the experimental level of accuracy. It is this
problem of determining accurate theoretical PNC ampli-
tudes that we address in the present paper. Because cesi-
um is an alkali-metal atom, the atomic structure prob-
1ems are less severe than for thallium or for the other
heavy atoms in which parity nonconservation has been
observed, namely Pb (Ref. 8) and Bi (Ref. 9). We there-
foi'.e restrict our attention to cesium and do not treat
thase other interesting systems here.

A large amount of theoretical efFort has gone into pre-
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where the parity-nonconserving correction ~i ) to the

dieting the strength of PNC amplitudes in Cs: a revie~
of this work has been given by M5,rtensson-Pendrill. '

There have been s variety of potential model calculations,
including a recent calculation that combines the use of
empirical data with many-body perturbation theory
(MBPT), " and also a number of Hartree-Pock (HF) cal-
culations {we start our calculations using a HF potential).
The lowest-order Hartree-Pock value is weH established
to be 0 927.ieaoX10 "Qwi' N. —MBPT corrections at
the next order associated with the random-phase approxi-
mation (RPA) have been calculated by several
groups, ' ' and good agreement between the different
calculations has been found. Inclusion of the RPA effects
reduces the PNC amplitude to 0.890ieao
X 10 "Qw/ —X.

It has been shown recently that including a particular
subset of the third-order correlation corrections, those as-
sociated with Brueckner orbitals, in calculations of tran-
sition amplitudes in alkali-metal atoms gives theoretical
amplitudes which agree with precisely measured experi-
mental amplitudes to within a few percent for the heavier
alkali metals, rubidium and cesium. An essential feature
of the work in Ref. 15 wss the use of basis sets construct-
ed from 8 splines and restricted to s cavity of 6nite but
large radius. ' Use of these basis sets allowed the infinite
sums snd continuum integrsls of perturbation theory to
be replaced by finite sums. It is entirely straightforward
to extend the calculations of Ref. 15 to treat parity-
nonconserving transitions since the effect is very small
and can be reliably calculated by treating the weak in-
teraction in first-order perturbation theory. To this end
we replace the basis functions used in the calculation of
parity-conserving amplitudes by parity-mixed basis func-
tions. These parity-mixed basis functions are obtained by
adding to each of the orbitals used in the calculations of
psrity-conserving amplitudes the first-order correction of
the opposite parity induced by the weak interaction. To
determine the (Coulomb ffeld) correlation corrections to
the PNC amplitude we simply linearize in the weak in-
teraction the expressions for the correlation corrections
to the parity-conserving amplitude. For example, to ob-
tain the correlation correction to the parity-forbidden
electric-dipole amplitude for U-uui, where U and w are
valence states of the same parity, from s term in second-
order perturbation theory such as

Z (2 ) g an Mlnua
(2)

n a ~a+~u —~n —~~

we simply evaluate

state
~

i ) satisfies

(HHF ei)
l
i) (hw+VFNc) I i )

The notation used here is explained in more detail in Ref.
14. When expressed in terms of radial functions, minus
signs in the first, third, and fourth terms of Eq. (3) are
present because of an implicit factor of i in the definition
of parity-nonconserving corrections, which requires that
the complex conjugate of these states have ihe factor —i.
The PNC counterparts to core states,

~

a ), are obtained
from the recursive solution of Eq. (4) for a core state a us-

ing standard differential equation techniques, and then
these functions are used to solve the equation for the en-
tire basis set using spline techniques.

While it is in principle straightforward, the evaluation
of the parity-nonconserving corrections

~

i ) requires very
careful treatment in the framework of the spline method.
This added care is required since the weak interaction
Hamiltonian Iiw in Eq. (4) vanishes outside the nucleus,
so that it is important to have highly accurate solutions
for r smaller than the nuclear radius. To accomplish this
using spline basis functions requires the use of a carefully
chosen radial grid. %'e 6nd that by placing 15 spline
knots on a linear grid from r =0-0.000 15 a.u. , followed
by an exponential grid from 0.00015 a.u. to the cavity
boundsry, which was chosen to be 45 a.u. , generates
spline bash functions that agree precisely inside the nu-
cleus with wave functions generated using standard
differential equation techniques. It is, however, necessary
to increase the number of basis functions from 40 (the
number used in Ref. 15 for calculations of parity-
conserving amplitudes in cesium) to 60. We have plotted
in Fig. 1 the large components of PNC corrections to the
6s and 7s radial wave functions obtained using 8 splines.
The norm of these spline-generated wave functions differs
from the norm of wave functions generated by solving the
differential equations (4) by about 50 parts per million.
The lowest-order PNC amplitude obtained using 8
splines was found to agree with that obtained by solving
Eq. (4) with difFerential equation techniques to five
significant figures.

Since the calculation of the correlation corrections to
the PNC amplitude is quite complex it was coded in-
dependently in three different ways. In all three methods
a subset of third-order MBPT corrections, the
Brueckner-orbital contributions in Ref. 15, was evalu-
ated. For parity-conserving transitions these corrections
are given by

z (3) gabmu~an gmiba gmiab )
ZBo = +C.C.

(e; —e, )(e, +e —e, —eb )

gaimn~an (gmnau gmnua )+ +C.C.
(e; —e, )(e„+e —e, —b„)

where c.c. means the operation of complex conjugation
and the interchange of U and m. Here U and m denote
difFerent valence states (6s and 7s for this calculation), a
and b are core states, rn and n excited states including
valence states, and i all states. In the following the erst



J7 CORRELATION EFFECTS IN THE PARITY-NONCONSERVING. . . 1397

2.5 i

~ a.o-

l. 5

I.O

CL

0.5
O

ha

Ch.
CL

-0.5 I I I l

O.OOOI 0.001 O.OI O. I

r ( a.u. )

IO IOO

term will be referred to as the single-excitation term be-
cause it involves a sum over one excited state, and the
second will be called the double-excitation term. Implicit
in both are partial wave summations: this summation is
cut ofF at I =6 in the present calculation.

In all three methods we used an extension of the
decomposition given in Eq. (3). In the first method, Eq.
(5) was coded directly as nested loops. Since there are ten
wave functions involved in each term, the PNC calcula-
tion consisted of evaluating each term ten times, with an
opposite parity wave function inserted in each term.

FIG. 1. The large components of the PNC corrections to the
lowest-order 6s and 7s wave functions are plotted against r in

atomic units.

Careful consideration must of course be given to the
difFerent angular momentum channels associated with
changing the parity of the various wave functions. This
direct method permits a determination of "internal" sub-
stitutions, in which the weak interaction acts on the
internal lines of the Brueckner-Goldstone graphs associ-
ated with Eq. (5), as well as "external" substitutions, in
which the weak interaction acts at the outside lines of the
graph. Specifically, internal substitutions involve chang-
ing the parity of the states a, b, or m for single excita-
tions, and a, m, or n for double excitations, while the
external substitutions are obtained by changing the parity
of u, w, and i Th.e results for the external substitutions
obtained using this method are presented in Table I, to-
gether with the contributions to the double-excitation
part from the individual core states a in Eq. (5). Contri-
butions from parts of the calculations in which the
weak interaction perturbs the valence states or their
Brueckner-orbital corrections are shown explicitly to ex-
hibit strong cancellations between the difFerent terms.
These external contributions are combined with the cor-
responding contributions from internal substitutions in
Table II to give the 6nal Brueckner-orbital third-order
correlation correction. It may be seen from these tables
that external substitutions dominate internal substitu-
tions in the 6nal totals, although for individual core con-
tributions this is not necessarily true.

The second and third approaches both exploit the fact
that the correction Ziio is associated with Brueckner or-
bitals. We de6ne a lowest-order Brueckner-type
modification to the valence orbital

~

U ) by

TABLE I. Contributions to the correlation corrections for the 6s~7s amplitude in cesium from
"external" substitutions. Notation: 5p*=Sp i&2, Sp =5psg2 etc. {Uiiiis: ~cup X10 'Qir/ —X.)

(7s i r
~

56') (57s [r i6r) (57r[r (6s) (7s'(r i56s) Sum

—0.039 28
Single sums

0.026 10 —0.01099 0.050 94 0.026 78

Sp

Ss
4d

4p
4
4s
3d
3d
3p
3p
3$

2p
2p
2$
ls

0.145 55
0.067 13
0.012 26
0.027 92
0.018 38
0.003 64
0.001 72
0.000 74
0.001 65
0.001 09
0.000 52
0.000 25
0.000 14
0.000 13
0.00007
0.00003
0.00000

—0.16051
—0.070 17
—0.013 89
—0.029 77
—0.01936
—0.005 34
—0.001 85
—0.000 91
—0.002 36
—0.001 53
—0.000 71
—0.000 32
—0.00020
—0.000 20
—0.000 10
—0.00006
—0.00003

Double sums
0.310 11
0.127 12
0.031 70
0.065 97
0.042 13
0.01144
0.004 37
0.002 50
0.007 54
0.004 83
0.002 20
0.000 91
0.000 63
0.000 70
0.000 30
0.00024
0.000 13

—0.288 83
—0.126 58
—0.025 37
—0.055 58
—0.036 15
—0.007 72
—0.003 49
—0.001 71
—0.004 46
—0.002 89
—0.001 35
—0.000 60
—0.000 37
—0.000 38
—0.000 18
—0.000 12
—0.00005

0.006 32
—0.002 50

0.004 70
0.008 54
0.005 00
0.002 02
0.000 75
0.000 62
0.002 37
0.001 49
0.000 66
0.00025
0.000 20
0.000 24
0.00009
0.00009
0.00005

0.241 94 —0.281 21 0.601 83 —0.504 89 0.057 67
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External PNC

0.026 78

Internal PNC

Single sums
—0.006 25 0.020 53

TABLE II. External and internal correlation corrections to
the PNC amplitude 6$ —+7$ in cesium. Notation: 5p =5p&/»
5p =5@3~&,etc. (Units: ieaoX 10 "Q~/ —X.)

The Brueckner corrections can be evaluated in terms of
one pair function and one g coeScient.

The parity-mixed version of these equations follows in
the usual way. The Brueckner correction

I
5U ) has a

PNC counterpart
I

5U ) with the same j as
I

U ) but of the
opposite parity. In addition, each pair function has a
PNC counterpart,

Sp

5p
5$

4d

4p

4$
3d
3d*
3p
3p
3$

2p
2p
2$

1$

0.006 32
—0.002 50

0.004 70
0.008 54
0.005 00
0.00202
0.00075
0.00062
0.002 37
0.001 49
0.00066
0.00025
0.00020
0.000 24
0.00009
0.00009
0.00005

Double sums
0.00077
0.009 35

—0.003 88
0.00149
0.001 31

—0.00023
0.00046

—0.00043
0.000 22
0.000 17

—0.00005
0.000 21

—0.000 19
0.00000
0.00013

—0.000 12
0.00001

0.057 67, 0.002 97

I
&& Iv„I.&

I5u
l, U &U

—&I

V
I

) y gQbltlU gboNlU gtNlbQ( — )

Ea +6b EU 6m

(grnnau gmnua )gaimn

+a ++U ~m +n

0.007 09
0.006 85
0.000 82
0.01003
0.006 31
0.001 79
0.001 21
0.000 19
0.002 59
0.001 66
0.00061
0.00046
0.00001
0.000 24
0.00022

—0.00003
0.00006

0.060 64

I' &&' I + I' &&'
I

lqU &U
—&I.

l+U

I'&&'
I Vao I

~&
I
i &&i

I Vao IU &

l+U l+U

(12)

The third term on the right-hand side corresponds to the
internal substitutions.

Formally these first two approaches are very similar;
however, they lead to completely dilerent organizations
of the calculation, and this provides a valuable check
against the possibility of computer coding errors in what
are quite complex calculations. The pair function ap-
proach tends to be more efficient, although it places
greater demands on computer memory and is somewhat
more diScult to code.

The final calculation uses the fact that differential
equation techniques allow for an evaluation of the exter-
nal part of the calculation by solving the equation

(e„—HHF )
I
50 ),„,

glmab +gnihab +gnmdb +gnmab

&a+&b —&n —&m

corresponding to a sum of g coeScients that always
enters the equations in the above combination. The PNC
Brueckner correction

I
50)is gi'ven by

so that the sum
I

U ) + I
5U ) gives an approximate

Brueckner orbital correct to the lowest nonvanishing or-
der of perturbation theory. In terms of these functions
we may write Z z as

Z,",'=&5~Ix IU&+&~Ix I5. &. (g)

In the second approach, we evaluate the Brueckner
corrections with relativistic pair functions. Pair function
techniques have been used extensively by Lindgren and
co-workers, ' and provide an elegant and powerful
method of organizing MBPT. Although our method is
based on finite basis sets, it is still possible to create the
pair functions in lowest order by direct summation;

gmnab
P b(rl r2) y 1 (rl) 4(r2)

m ~ &a+&b —&m &n

In practice, however, we 6nd it more convenient to work
with the expansion coeScients of the pair function in the
finite basis set:

gnmab
P tlPllQb

=(iiw+ VPNc) I
»& —e'"

I
U &+ Vao I

0»
where e' '—= & U

I Vao I
U ). Equation (13) is formally

equivalent to Eq. (12) without the third term on the
right-hand side. Vao in Eq. (13) is still evaluated with
splines, although the sums over

I
i ) and

I
i ) are

performed with differential equation techniques. This ap-
proach provides a check on the completeness of the
parity-mixed basis set

I
i ) + I

i ); we obtain results that
agree to three digits with the results for the external sub-
stitutions obtained from the other two approaches. %e
did not evaluate internal substitutions with the third
method.

Adding the final correction from Table II, 0.061ieaQ
X 10 "Qa / N, to that prev—iously obtained' ' at
the level of the RPA, 0.890ieao X 10 "Qii / N, we ob-—
tain the new result, 0 951ieaoX10. "Qa / —X. We can
use this calculation to predict the strength of the PNC
amplitude that should be seen in cesium. If we use the
present world average for the %einberg angle,

sin 8g. ——0.230(5),

Qa from Eq. (1) is —73.6(1.1). If the standard assump-
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@=27.2(4)ao . (16)

Combining these terms leads to the prediction for the ra-
tio of the 6s ~7s PNC amplitude to P,

A =1.65(3),„,(8),h„,mV/cm, (17)

which is to be compared with the presently available
measurements

A,„p,=1.65(13) mV/cm (Ref. 6),
A,„,=1.56(17)(12) mV/cm (Ref. 5) .

(18)

(19)

The first error in Eq. (17) refers to the uncertain value of
the Weinberg angle, snd the second is our estimate of
atomic structure uncertainty, to be discussed below. One
can infer from the first measurement a value for the
Weinberg angle, which is

slil egr 0 229 (24)ex t ( 16)thcog (20)

Significant improvement in the experimental result is ex-
pected soon, so the question of the accuracy of the
theoretical prediction is raised, and we now turn to a dis-
cussion of this issue.

The only statement about error that we can make with
certainty is that the calculation presented here is precise-
ly analogous to calculations of parity-conserving atomic
properties' that are accurate to 2.9% for the 6s
hyperfine splitting, to 4.8% for the 7s hyperfine splitting,
and to 2.8% for the 6s —+6p transition amplitudes. It is
in this sense that we assign an error of 5% to the theoret-
ical value presented here. It is worth noting that the
three standard calculations above involved larger shifts
than the PNC calculation: for example, the change from
lowest-order 6s hfs to the RPA level is +12.5%, while
the additional change due to Brueckner orbitals was
+28%. By contrast, the lowest-order PNC result
changes by only —4% on adding RPA corrections, and
by +6.4% upon addition of the Brueckner-orbital
corrections. For this reason the present result may be
more accurate than 5%. On the other hand, as one can
see from Table I, the relatively small size of the third-
order corrections results from a cancellation between
various similar terms, giving a final result that is an order
of magnitude smaller than the individual contributions.
If this detailed cancellation does not occur in higher or-
der then our error estimate may be too optimistic. There
is at least one approach towards making s more quantita-
tive statement about the accuracy of the calculation, and
that is to perform a complete third-order calculation of
the standard properties listed above. There are, in addi-
tion to the numerically dominant third-order corrections
included above, a large number of smaller terms. These

tion that the top quark mass is 45 GeV and the Higgs
mass 100 GeV is made, the radistively corrected value of
the weak charge Qii is then'

Qii ———71.8(1.1) .

Since the experiments actually measure a ratio of the
PNC amplitude to the vector part of the Stark polariza-
bility, P, we need a value for P, which we take to be'

terms are somewhat analogous to the internal substitu-
tions discussed above inasmuch as the one-body operator
acts inside a Brueckner-orbital correction. The evalua-
tion of these terms, which enter at the few-percent level,
is presently in progress. If matrix element calculations
improve to the 1% level upon the inclusion of such
terms, and if the analogous PNC terms enter at under the
1% level, we would take this as evidence that our result is
valid at roughly this 1evel.

We now turn to a discussion of a major discrepancy be-
tween our prediction and another calculation that in-
cludes the Brueckner-orbital effects considered here, that
of Dzuba et al. ' Their result of 0.90ieao
&10 "Qa, / —N is smaller than ours by 5.7%, which is

significantly greater than their estimated theoretical error
(2%) and much greater than our numerical error (0.2%).
There are two possible sources of the disagreement, one
numerical and one involving the implementation of
MBPT. While the present calculation is restricted
rigorously to the subset of third-order terms associated
with Brueckner orbitals, Dzuba et al. include all third-
order terms and in addition a subset of fifth-order terms
arising from the "chaining" of Brueckner orbitals and a
subset of fourth-order terms corresponding to mixtures of
Brueckner-orbital and RPA efkcts. The authors' esti-
mates of the sizes of these additional corrections, howev-

er, are much less than the 5.7% discrepancy between our
result and theirs: they find that the chaining of
Brueckner orbitals decreases their result by 2%, while
the inclusion of the remaining third-order terms and the
RPA-Brueckner cross terms causes a change of less than
1% in each case. Thus it appears that there is a substan-
tial disagreement arising from purely numerical con-
siderations.

We have previously noted' a discrepancy with the re-
sults of an earlier work by Dzuba et al. concerning the
evaluation of the second-order energy. In that case, for-
mally identical calculations gave the results —0. 14511
a.u. (Ref. 15) and —0. 14325 a.u. Subsequently we
learned ' that the cause of the discrepancy was the limit-
ed basis set used in Ref. 20. It is possible that this prob-
lem could propagate into the more complex calculation
of the PNC matrix element in such a way as to produce
discrepancy.

In summary, we present here a new calculation of the
parity-nonconserving transition 6s ~7s in cesium includ-
ing the effects of correlation. We find the result
0 951ieao X.10 "Qs / —X, with an error estimate of 5%
extracted from the behavior of analogous calculations of
known matrix elements of the atom. The discrepancy
with the previous calculation that included correlation
corrections is certainly partly due to numerical problems
with the basis sets used in that calculation, and possibly
also partly due to the diferent implementation of MBPT.
Calculations needed to reduce the theoretical error have
been discussed. We w'ould like to close by remarking
that, although a very specific demand is being put on our
understanding of the relativistic many-body problem by
the increasingly accurate measurements of PNC in cesi-
um, this field of physics is of very great interest by itself.
The spur provided to our theoretical understanding of
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these systems and the calculational techniques needed to
attack such problems numerically is certain to be valu-
able in many other branches of atomic and many-body
physics.
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