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Statistical mechanics of combinatorial optimization
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A theoretical criterion is offered for the design of a temperature schedule for simulated annealing.

It is based on a measure of distance in probability space. Implementation requires a knowledge of
the heat capacity and the relaxation time. A method of calculating these quantities for a combina-

torial problem is outlined. The theoretical structure involved seems to point to an information-

theoretic measure of computational effort in certain probabilistic algorithms.

I. INTRODUCTION

Simulated annealing as a method of obtaining near-

optimal solutions of complex combinatorial optimization

problems was first brought to the attention of the general

scientific community by Kirkpatrick, Gelatt, and Vecchi.
That article discussed the analogy between equilibrium

statistical mechanics and the Metropolis~ algorithm as a
probabilistic-search method. In this paper we extend that

analogy by presenting a theoretical idea for the design of
the annealing schedule, a notion of central importance to
the efficient apphcation of simulated annealing.

In a typical combinatorial optimization problem, one is

confronted with a very large space of configurations, each
with an associated cost. The task is to find a configura-

tion with the lowest possible cost using a certain number

of function evaluations. A classical example is the trav-

eling salesman problem: Given a hst of N cities and a
cost of traveling betwo:n any two cities, one must find a

route for the salesman which will pass through each city
once and return to the starting point while minimizing the

total cost. Another classical example, treated further
below, is a form of the graph partitioning problem: One
partitions the vertices of a given graph into two equal-

sized subsets in such a way as to minimize the number of
edges which run between vertices in opposite subsets. A
concrete instance of this with considerable industrial im-

portance concerns the problem of placing 6000 circuit ele-

ments (vertices) onto two chips, each holding 3000, so as
to minimize the number of wires (edges) running between

the chips.
The central idea in the paper of Kirkpatrick et a/. was

to identify the cost in a combinatorial problem with the

energy of an associated physical system. At a low tem-

perature, a physical system in equilibriuin samples
predominantly its low-energy states. This is the aspect of
the analogy which one would like to exploit to sample the
low-cost configurations of a combinatorial problem.

In the case of a complex physical system whose low-

energy states are hard to access, true equilibrium is often
hard to reach. Instead, one sees "frozen-in imperfections"
which correspond to the system getting trapped in local

minima of the energy. A carefully controlled lowering of
the temperature known as an annealing schedule can sig-
nificantly increase the probability that the system will in
fact reach equilibrium. In Sec. II we will show how low-
cost states of a combinatorial problem can be sampled by
simulating a corresponding physical process. In fact, it
will be seen that a phenomenon analogous to freezing in
imperfections demands a careful scheduling of tempera-
tures.

In Sec. III we offer a theoretical criterion for the design
of the schedule. Section IV addresses the technical prob-
lem of testing the criterion. Section V gives two more
characterizations of the criterion and connects it with oth-
er theory.

II. STOCHASTIC DESCRIPTION
OF A COMBINATORIAL PROBLEM

We begin by laying out the mathematical apparatus
needed to apply simulated annealing to a combinatorial
problem. We then offer the graph-partitioning problem as
an illustration.

Let 0 be the space of configurations of a combinatorial
problem and let E(to) be the cost function on Q. Follow-
ing Kirkpatrick et a/. , we will refer to this function as the
energy. Let IXx I be a sequence of 0-valued random vari-
ables, forming a regular Markov chain M with stationary
transition probabilities

P(co,co') =ProbIXtt+i ——co'
i Xx ——toI, to, co'EQ .

The requirement of regularity guarantees that each con-
figuration can be reached dynamically from any other,
and that there is a unique invariant distribution (equilibri-
um).

The Xtr can be thought of as a scheme for exploring the
space Q by a random walk. Typically Xz and the associ-
ated transition probabilities P arise in the following way.
For a given combinatorial problem, there is often a con-
venient way to specify when one configuration is a neigh-
bor of another. This confers to the space 0 the structure
of a connected, undirected graph in which configurations
are vertices and neighboring pairs are edges. Possible
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one-step transitions in M are then required to be transi-
tions between neighboring configurations, i.e., P(cu, co')

=0, unless co and ~' are neighbors. A typical approach is
to f'urther require all neighboring transitions be equally
likely, i.e.,

i
X(cu)

i

', eo'EN(co)
P(co co ) = (2.2)

where X(co) is the set of neighbors of co, and

P(cu, co'}=P(cu', cu} . (2.3)

P( T;cu, cu) = 1 — g P( T;cu, cu'),
~' (+~)

where

b.E=E(co') E(co) . —

(2.4b)

It can be seen from (2.4) that the Metropolis factor,
exp( —bF-'/T), severely attenuates the probability of up-
hill transitions at low temperatures. Since the sets N(co)
are usually not large, it may happen that all possible tran-
sitions from cu are uphill. In this case co is called a local
minimum. Such local minima threaten to trap the process
M( T) for small T; whence, the idea of gradually lowering
the temperature, or annealing.

Mathematically the annealing process is described by a
Markov chain M I Ttc I with nonstationary transitions

ProbIXx+i co'iXx coI =P(————Tx,co,co'), ' (2.5)

where P is as in (2.4) and I T„I is a decreasing sequence
of temperatures, called the annealing schedule.

The distribution of Xtc we denote by

etc(co) =ProbIX+ ——cu] . (2.6)

In practice, the ensemble is usually "prepared" at high
temperature, so, to be definite, we may suppose the ini-
tial distribution po(co) to be uniform, i.e., equilibrium at
infinite temperature.

Finally, regarding M(T), it can be shown that if (2.3)

In the physical language, (2.3) is known as microscop-
ic reversibility. If Eq. (2.2) is adopted, then this follows
if the graph with vertices 0 is regular, i.e., N(c0) is the
same for all cuEO. Equation (2.3) is suflicient to guaran-
tee that the Markov chain M is doubly stochastic and
therefore has the uniform distribution on 0 as its equi-
librium distribution. In this sense, it is analogous to a
master equation model of the approach of a physical sys-
tem to equilibrium ai in6nite temperature. Next, we
combine this high-temperature chain M with
temperature-dependent Metropolis factors to obtain a
one-parameter family of Markov chains M(T) with sta-
tionary transitions, each of which corresponds to a sto-
chastic model of approach to equilibrium at some tem-
perature, T. The transition probabilities for M(T) are
defj[ned by

P(co,c0')exp( bE/T) wh—en bE ~0,
P( ,cuc)owhen co&co' and bE &0,

(2.4a)

holds then the equihbrium distribution of (2.4) is

p (T;co)=exp[ E—(cu)/T ]/Z(T),

where

Z(T) = g exp[ E—(cu)/T] .

(2.7)

This fact makes available the formalism of equilibrium
statistical mechanics and, as we will see, that formalism is
far from vacuous in this context.

To illustrate the machinery of this section, we use the
example of the graph partitioning problem mentioned in
Sec. I. For a given undirected graph G, let V(G} denote
the set of vertices and X(G)C V(G)X V(G), the set of
edges.

A configuration is constituted by assigning each vertex
to either set A or set 8 so that both sets receive an equal
number of vertices. In the language of graph theory a
configuration co is a disjoint partition, V(G) =A UB with

[ A
~

= [8 ~, where [ [ denotes cardinality of the set.
The energy E(c0) is the number of edges crossing the par-
tition, i.e., the number of pairs (ui, ui)GX(G) such that
uiEA and uiCB. For

i
V(G)

i
=100,

i
0

i
=10, so

that 0 is typically an enormous set.
c0' is a neighboring configuration of c0 if it is obtained

from co by exchanging two vertices across the partition,
~'=~UIu2/XIui]»d &'=&Utui]X[uiI

some u& EA and uz EB. P is now defined by (2.2) and
clearly satisfies (2.3). For

~
V(G)

~

=100,
~

N(co)
~

=2500
for every cu 6Q.

III. THEORETICAL CRITERION
FOR CHOOSING ANNEALING SCHEDULE

The fact that annealing schedules will vary in the effi-
ciency with which they bring the process to low energy
follows heuristically from the possibility that local mini-
ma may become traps or frozen states. However, we will
examine a general point of view which leads to a natural
criterion for choosing an annealing schedule.

We will call the time-varying distribution P in (2.6) the
state of the system. It can be thought of as a nonequilibri-
um statistical-mechanical ensemble, and represents the ac-
tual time evolution of the process MITx I. There is
another time-varying distribution, which, in a sense,
represents the ideal evolution of the process: P in (2.7),
where the time dependence enters only through the an-
nealing schedule I TtcI. This p will be called the state of
the target, as it is the equilibrium distribution toward
which the system would relax, if the value of T were held
fixed at the current value Ttc.

For simplicity in the following discussion we will
denote the time by t, a continuous variable, i.e., X(t),
T(t), P (co,t), and P (co, t), instead of Xx, Tx, Ptc(co), and
P ( Tx,'co). Also, for distributions, one or both of the vari-
ables co and t may be suppressed for emphasis.

A useful view of the annealing process is to focus on
the time-varying separation between these two probability
distributions: the system at p following the target at p .

It is p, as an equilibrium distribution, that preserves
the functional link between mean energy and temperature
on which the principle of annealing is based. In the limit
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of an infinitely slow process, p and p are equal, so that
link is never broken. %hen annealing becomes limited in
real time, a delicate compromise must be effected—
moving the target as rapidly as possible awhile maintaining
the link to within some tolerance. That is, the effective-
ness of annealing implicitly presupposes an approximate
identification of the distributions p and p; we propose
below to quantify that approximation by means of a mea-
sure of statistical uncertainty along a line of argument in-

spired by Wootters. 6

For the moment let m be any distribution on Q. Imag-
ine a multinomial experiment performed by extracting a
sample of size N from the ensemble in the state rt. Let
y(co) be the random variable representing the fraction of
occurrences of the state co in the sample. If we suppose
that N is large enough for the Gaussian approximation to
the multinomial distribution to be valid, then it can be
shown that for any a ~ 0, a number r ~ 0 can be found,
which depends on a and

~

0
~

but which is independent of
the distribution m and the sample size N and which has
the following property: For any sampling experiment
with the ensemble, the probability that the y(~) satisfies
the following inequality is 1 —a, i.e., virtual certainty
when a is small:

"(p p)= g[5p(co)]'/p (~)=(5E')'/a(E )' (3.4)

E = QE(co)p (co), E= QE(co)p(~)

than offset by the time-consuming relaxation required to
reestablish it.

We do not propose to prove the optimality of this con-
stancy criterion here; it is offered as a promising theoreti-
cal conjecture, which, as we show below, is testable when
translated into thermodynamic terms describing the relax-
ation dynamics.

For purposes of deriving the consequences of the con-
stancy criterion, the equivalent condition of constant
discrepancy =(p,p) is the most convenient mathematical
starting point. Indeed, as we show in Sec. V, :- is related
to a number of interesting theoretical structures.

With the view of putting this criterion in a testable
form, let us make the approximation that the system is it-
self a canonical distribution and a small perturbation of
the target, i.e., p p +5p. It is a direct calculation from
(2.7) to show that

g [y(co) —m(co)] /rt(~) & r/& (3.1)
[o(E )]'= g[E(co)—E ]capo(co) .

:-(p,p)=—g [p(co) —p (~)J'/p (co) . (3.2)

This quantity and the associated sample size

N (p', p) =r /:-(p, p ) (3.3)

can be given an operational meaning as follows. Suppose
the exact probabilities p(co), associated with the system,
were instead reinterpreted as relative frequency data from
a sampling of p . Would they be acceptable'? Evidently,
if the sample were of size?i? &E(p,p), they would be;
otherwise, they would not.

Thus the annealing process may be viewed as follows.
At each instant of time the system p may be identified
with the target p, so long as that identification is subject
to the statistical uncertainty associated with samples of
size N (p,p ).

%hen viewed in this way, a natural condition to impose
on the annealing process is that the level of this statistical
uncertainty remain bounded by some constant throughout
the process. But, for any schedule which seeks to lower
the temperature as rapidly as possible subject to this con-
straint, it is clear that the condition "bounded by some
constant" can be replaced by the apparently stronger con-
dition "equal to some constant. " The supposition here is
that any time gained by pushing the target so far ahead of
the system as to dissolve the identification would be more

This provides a setting in which to discuss quantitatively
the approximate identity of the system and the target.
In the following we assume a value has been specified for
a and fixed once and for all.

Define a quantity =(p,p), called the p discrepancy of
S' by

In view of (3.4) the criterion of constant discrepancy
can be written

5E=E E=ucJ(E ), — (3.5)

where U is a constant equal to the thermodynamic dis-
tance, [:-(p,p)]'~, between the system and the target (see
Sec. V). We note here that it is given by the energy
discrepancy 5E measured in the natural units of o(E). In
Sec. V we will see that U is also equal to the thermo-
dynamic speed of the process.

Now let dE/dt denote the time rate of change of mean
energy of the system during the annealing process. %'e
take the following equation as the definition of e:

dE/dt = ( —1/e)(E E), — (3.6)

and proceed to its interpretation.
For each T, M(T) is a stationary Markov chain whose

relaxation to equilibrium is known to be asymptotically
exponential. That is, mean energy E satisfies an equation
like (3.6) asymptotically, where e= e( T) is the relaxation
time characteristic of the temperature T.

Now in this section we have recast the annealing pro-
cess so that each instant can be viewed as an instant in a
virtual process, namely, relaxation to the (target) tempera-
ture T(t). For that reason we identify e, defined in equa-
tion (3.6), with the asymptotic relaxation time of this vir-
tual process.

How justified we are in this identification depends on
how close these virtual relaxations are to asymptotic mode
at the instants in question. For an annealing process in
which T(t) varies slowly this seems quite plausible. In
any case, this assumption is the device by which we relate
the (stationary) relaxation dynamics of M( T) at each T to
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the (nonstationary) dynamics of annealing, where T is a
function of time.

%e now obtain the annealing schedule. Let
C =dE~/dT denote heat capacity of the target. Combine
the well-known relation

cr(E )=TV C,
with (3.5) alld (3.6), e11111111atlilg E and E, to obtalll

(3.7)

(uT—/e)(u8+~C ) (3.8)

where

dT —UT

dt (ev C)
(3.9)

Schedules incorporating various features of (3.9), such
as direct variation with T or inverse variation with e or C,
have been proposed by several previous authors, ""
with, however, only rough plausibility.

In any case, (3.9) is testable as soon as e(T) and C(T)
are known. Preliminary experiments in fact support the
conjecture that (3.9) gives optimal annealing schedules, s

IV. HEAT CAPACITY AND RELAXATION TIME

For most combinatorial problems, the calculations of C
and e from first principles along the lines sketched below
range from difficult to intractable. The primary purpose
of such calculations is to test the effectiveness of
schedules such as {3.8) and (3.9), and thereby to clarify the
theoretical role of C and e in optimal annealing.

If this role is to have practical significance, C and e
must become available by other means. This could be
achieved, for example, by determining reliable statistical
estimators for C and e, so that their values can be moni-
tored during an annealing process and used to guide its
progress by feedback. Alternatively, C's and e's may be
calculated and used for a family of problems. In either
case, this is a separate theoretical enterprise, which we do
not address here.

Finding C(T) and e(T) from first principles is a two-
phase endeavor. The first phase calculates the density of
states g and a matrix II, which represents the density of
neighbors. The second temperature-dependent phase,
which we sketch below, derives C(T) and E(T) from this
combinatorial information.

The mean energy and heat capacity are calculated in
the usual way from the partition function

Z ( T) = g g (a )exp( a/T), — (4.1)

where the sum is over values of the energy and g(a) is the
number of states with energy a. We have

8( T) =1+(T/2C) T'
Note that if u is small or C(T) is slowly varying, (3.8)

slnlpllfles to

C(T)= T' (4.2b)

The relaxation time, not unexpectixily, depends on the
transition matrix P from Sec. II, which represents the
"move class" or dynamical framework of the problem.
From one point of view e can be obtained from the
modulus of the second largest eigenvalue of the matrix P.
Since I' is so large, a more practical, albeit approximate,
approach is to consider the relaxation dynamics of the
"macroscopic" observable, mean energy.

Suppose a canonical ensemble with mean energy E un-
dergoes one step of the process M( T) in (2.4). Let b,(E,T)
denote the average energy change over the ensemble.
Since one step is our unit of time, we may identify b, with
dE/dt. We show below how b. arises from Z( T) and the
matrix P, but first, we establish its connection with relax-
ation time e.

Let E =E(T) denote the mean energy of the canonical
ensemble at the relaxation temperature, T. Then, by defi-
nition, b,(E,T) =0, so a first-order expansion of b{E,T)
about Ec becomes

(E (4.3)

Comparison with (3.6) gives us the formula for e(T):

(4.4)

We now derive h(E, T) in terms of P and g as follows.
We obtain in (4.6) the expected value of the energy change
during one step of the process M(T) for a configuration
with a specified energy. '1 Then, in (4.7a) weights are ap-
plied to these expectations based on the energy distribu-
tion in a canonical ensemble of temperature, say T'. The
T' dependence is then eliminated by means of the thermo-
dynamic equation of state, E =E(T'), in (4.7b).

In the process M of Sec. II the one-step conditional
transition probability from co&A to any state co' with
E(to') =p, given that E(co)=a, is just

11(a,P)=[g(a)] 'QP(co, co'), (4.5)

where the sum is over all pairs ( , cu)ruwith E(ca)=a and
E(co') =P.

If we start from a state co with E(co)=a, the expected
one-step energy change for the process M( T) is then

5(a, T) = g (P—a}II(a,P)
p(&~)

+ g (P—a)II(a, P)exp[ —(P—a)/T],
P ()a)

(4.6}

whereupon, for a canonical ensemble with temperature T',
we must apply Boltzmann probabilities as weights to ob-
tain

&(E,T) =[Z(T')] 'gg(a)exp( —a/T')5(a, T), (4.7a)

E(T)=T
T

(4.2a) E=E(T')=[Z(T')] ' g ag{a)exp( a/T') . —(4.7b)



STATISTICAL MECHANICS OF COMBINATORIAL OPTIMIZATION

Since (4.7) defines 4 implicitly as a function of E, a
convenient way to calculate M /BE is to differentiate the
identity h(E(T), T)=0 with respect to T.

Preliminary results' of experimental tests of these for-
tnulas for a special class of graphs appear very encourag-
ing. Predicted and observed e's differ by about 10%%uo.

V. CHARACTERIZATIONS AND CONNECTIONS

The form of (3.2) shows that the Riemannian metric on
probability space defined by

(ds)'=:-( p, p+dp) (5.1)

(5.2)

i.e., u is the distance traversed per unit time where both
distance and time are expressed in natural dimensionless

units; hence, the apellation constant tItermodynamie speed
for the criterion (3.5) or (5.2).

For a final characterization of our criterion, two more
facts need to be connected. First, it is known that for a
(slow) quasistatic process that brings a physical system

along a one-parameter family of equilibrium states in a
given time and with given initial and final states,
minimum entropy production and constant thermo-
dynamic speed are equivalent. ' To state the second fact,
let

K(p,p )= g p( to)l n[p( co)/p (to)j (5.3)

be the Kullback separation of the system and the target.
A corollary of Sch]ogl's result ' characterizing entropy

is precisely the one studied originally by %ootters '" and

independently by Cencov. ' ' The restriction of this
metric to the submanifold of canonical distributions is
just the thermodynamic metric studied by Ruppeiner'
and Salamon and co-workers. ' '

The constant U in (3.5) can be written as the ratio of
two natural scales. The first is the differential displace-
ment in energy, ds =dE/tr(E), measured in units of the
local energy standard deviation. The second, dg=dt/e, is
the differential displacement in time, measured in units of
the local relaxation time. Note that ds represents a natur-
al scale for displacements in the set of states, while dg
represents a natural time scale for the process. Using Eqs.
(3.5) and (3.6), we see that

production is that the entropy produced in a target system
process is the quantity

+ BK(p(to, t),p (to, t)) d
Bp (to, t)

dp co, t

i.e., the sum over the process of the partial changes in
Kullbaek separation due to the system's instantaneous
response to the target.

Thus, it seems that minimizing (5.4) is equivalent to
constant thermodynamic speed. This information-
theoretic characterization of our criterion is very tantaliz-
ing. Is it possible that, when a theory of computational
complexity for probabilistic algorithms is fully developed,
the quantity (5.4) will turn out to be a natural measure of
computational effort'?2 If so, the sense in which constant
thermodynamic speed is optimal will have been made pre-
cise.

VI. CONCI. USION

%e have presented a system-target view of the anneal-
ing process which relates the problem of choosing a
schedule to that of determining an appropriate measure
of distance in probability space. We have chosen a natu-
ral one, which quantifies the separation between the sys-
tern and the target as the nMasure of statistical uncer-
tainty associated with their dhstinguishability.

Expressing our criterion for the schedule in testable
form, as constant thermodynamic speed, brings into play
two quantities, heat capacity and relaxation time, whose
importance had been recognized on heuristic grounds. It
is gratifying to see these quantities emerge in a natural
way from a single theoretical idea. As part of a program
to test the criterion experimentally, a method was outlined
for calculating these quantities from first principles for a
combinatorial problem.

Finally, we have pointed out that if our criterion is in
some sense optimal, an intriguing connection exists be-
tween computational effort of simulated annealing and
what would be entropy production or dissipation for a
physical process.
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