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Following an analogy to the formalism of statistical mechanics, an entropy function and a free

energy are introduced for multifractals. These functions give a full description of the scaling be-
haviors of multifractals. The method of Halsey et al. [Phys. Rev. A 33, 1141 {1986)]for character-
izing multifractals can naturally be interpreted by the use of these functions. For the invariant set
of a dynamical system, these functions are furthermore related to the measure-theoretic
(Kolmogolov-Sinai) entropy, the topological entropy, and the Lyapunov exponent.

I. INTRODUCTION

In recent years it has been recognized that fractals are
very often encountered in many systems. These are the
sets which have noninteger Hausdorff dimensions. Some
simple examples of fractals like the classical Cantor set,
Sierpinski gasket, etc. , have an exact self-similarity and
can be constructed by applying a simple procedure itera-
tively. On the other hand, fractals which emerge from
nontrivial physical processes do not have the simple scal-
ing structures mentioned above in general and instead
possess a spectrum of scaling indices. Sets of this kind
are called multifractals. '-'

Kadanoff and co-workers ' introduced a powerful
method for characterizing multifractals based on a cer-
tain partition function. For dynamical systems, statisti-
cal mechanical formalism of chaos was considered by
Kai and Tomita, " and Oono and Takahashi. ' The ex-
ample of Julia sets was discussed by Widom et al. '

These works are relevant. Also we mention the highly
mathematical work of Ruelle, ' Bowen, ' and Sinai. '

In this paper we formally follow the method of statist-
ical mechanics to introduce an entropy function and its
Legendre transform, the free energy, for multifractals.
The method of Halsey et al. , is conveniently explained
using these functions. Also these functions are related
to important quantities like the measure-theoretic entro-

py (Kolmogolov-Sinai entropy), the topological entropy,
and the Lyapunov exponent, in the case of dynamical
systems. The work of Oono and Takahashi is related in
this respect.

II. ENTROPY FUNCTION FOR FRACTAI. S

Q(e, }=exp[nS(s)], (2.2)

where we call S(e) the entropy function (per step). We
considered that (2.2) is the fundamental property of the
fractal sets. Conversely, a fractal set is characterized by
the entropy function S(e}. The scaling form (2.2) corre-
sponds to the fundamental property of thermodynamics
that the entropy is an extensive quantity. In fact, this is
a prerequisite for the existence of a thermodynamics.

8. How to calculate the entI oyy function

%e introduce a partition function by

of balls and we have N {n+1)balls which constitute a
partition at the (n +1)th step. In the special case where
each ball is divided into the same number of new balls,
say a, one simply has N(n)=u". Generally, N(n) does
not have to have the exact power behavior, but we ex-
pect that the limit ina=lim„„ I[In%(n)]/n I exists.

Now we are interested in the distribution of the diam-
eter of balls l;. As we will see later, however, it is natu-
ral to consider the distribution of the logarithm of l; or
the scaled variable

e;= —(lnl;)/n .

As n becomes large, l; approaches zero, but s; takes a
finite nonzero value. It can be understood that s; is a
scaling index corresponding to l; if (2.1} is written as
l; =exp( ns; ). —

We write the number of balls whose scaling index lies
between s and s+ds as Q(s}ds. Then we expect that
Q(s) has the following scaling form as n becomes large,

In this section we consider only topological aspects of
fractals. The support of measure is considered here.
The distribution of the measure on the support will be
treated in Sec. III. = g exp( pne, ;) .— (2.3)

A. Entropy function

I.et us consider a fractal set which has a systematic
partitioning. More precisely, suppose the set is parti-
tioned into X(n) balls at the nth step. At the next step
(n +1), each of these balls is divided into some number

F{P)=—lnZ(P)= —ln g exp( —Pne;)
Pl Pl

L

(2.4)

Also the free energy (per step) is de6ned by [note that
the free energy is usually —(lnZ)/P]

T
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dS(e)
dE (

(2.6)

Here note that ( e & depends on P. The free energy is ob-
tained from (2A} and (2.5) as

(2.7)

This is a Legendre transformation. From the entropy
function S(e), one can determine P and F{P) from (2.6)
and (2.7). On the other hand, if F(P) is known, S(s) and
(s& are obtained from F(P). This is done by taking the
derivative of (2.7) with respect to P. The use of (2.6)
gives

( &

dF(P)
(2.8)

From (2.7) and (2.8), the entropy function is given by

We will show that the entropy function can be obtained
from F(P). The summation over the balls ln (2.3) can be
replaced by an integral over c using the distribution
Q(s) as

Z(P)= J deQ(s)exp( —Pns)

=I deexpfn[S(s) —Ps]I . (2.5)

When n is large, the integral of (2.5} is dominated by the
maximum of S(s)—Ps. Denoting the value of s which
gives the minimum as ( s &, we then have

for a large n. Here D is the dimension of the space in
which the fractal is embedded. From (2.4), it can be
seen that 5 is given by

5= F(D—) . (2.13)

C. Example: Cantor set

The classical Cantor set is constructed by dividing an
interval [0,1] as follows. First remove the middle one-
third from [0,1]. Remove again the middle one-third
from each of the two remaining intervals. This pro-
cedure is repeated in6vitely many times. We see that at
the nth step the partition of the Cantor set has 2" inter-
vals of equal length 3 ". So s is a constant, ln3. The
free energy is simply calculated from (2.4) as

F(P)=ln2 —P ln3 . (2.14)

The entropy function, the Hausdorff dimension, and the
escape rate exponent are easily calculated from (2.9),
(2.13), and (2.14) as S(e)=ln2 (for e =ln3), S(s)=0 (oth-
erwise), DH =ln2/ln3, and 5 =1n(—', ).

III. FRACTALS WITH MEASURE

Let us generalize the entropy function introduced in
Sec. II for a fractal with a probability measure. At the
nth partition, the ith ball of the partition has a measure
p;. We introduce a scale index a; by

(3.1a)

or

(2.9)

Thus once the free energy is calculated as a function of
P, (s & is obtained from (2.8) for a given value of P, and
S(s) at e = ( s & is given by (2.9).

In order to understand the meaning of (s &, substitute
(2A) into (2.8) and one obtains

(3.1b)

We now have to consider the distribution of the two
scale indices e and a. We write the number of balls
whose scale index hes between s and s+ds, and a and
a+dc as Q(e, a)dada. For multifractals, we expect
that Q{s,a) has the following scaling form for large n,

(s&= g s;exp( Pns;)/Z(P—) . (2.10) Q(e, u) =exp[nQ(e, a)], (3.2)

Therefore (e& is the average of e; with respect to a
probability distribution which is proportional to
exp( —Pn e; ) =lt'.

The free energy also gives some other quantities of in-
terest. The Hausdor8' dimension of the set is given by
DH ——P, where P, is a zero of the free energy, i.e.,
F(P, )=0 [see (2.3) and {2.4)]. For P=P„(2.7} gives
S((e&, )=P, (e&„where (s&, is the value of (s& at
P=P, . The number of balls Q((e&, )=exp[nS((e&, )] is
thus given by

=g exp[ nc;(a; +q—P)] ,.

The generalized free energy is

G(q, P) =—lnI (q,P),1
(3.4)

where we call Q(e,a) a generalized entropy function.
Following Refs. 8 and 9, we consider the generalized

partition function

I (q,P)=gpflP

(2.11)
Obviously, we have the relations

g lD=Q exp( —ns;D)-exp( —n5) (2.12)

where ( I &, =exp( —I ( e &, },and ( e &, can be regarded as
a representative scaling index for I;.

Another quantity of interest is the escaping rate ex-
ponent 5 which is defined as

(3.5}

F(P)=G(q=O, P) .

Using the generalized entropy Q(e, a), (3.3) is written as
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G(q, p)=Q(&e&, (a&)—(&a&q+p)&e&, (3.7)

where (E& and (a& give the maximum of
Q(e, a) —(aq+p)s, so we have

Bg(s,a} =(a&q+p (3.8)

Bg(s,a)
~E=(EI'„~=(O')

=&s)q .

Thus G(q, p) is obtained from Q(e, ,a) using (3.7), (3.8),
and (3.9). On the other hand, once G(q, p) is calculated,
(s&, &a), and g((s&, &a&) are given by

G(q, P), (3.10)

I (q,P)= I ds J daexptn[g(e, a) —(aq+P)s]I . (3.6)

As in Sec. II, the maximum of the exponent dominates
the integral and gives

G(q, P, (q)) =0, (3.19)

and p, (q} ean be regarded as a set of generalized dimen-
sions. The scaling index (s), which corresponds to
p, (q) could be considered as being representative for a
particular value of q. From (3.7), (3.8), and (3.19), we
see that Q(( s ),( a )) at the critical point satisfies a rela-
tion

Bg(., &a&, )Q((s)„(a),)= (s), . (3.20)
s E=(E), )

By solving this difFerential equation, we have

Q(&s&„&a&,)=(e&,f(&a&, ),
where f((a), ) is given by

(3.21)

A. Critical point

Recall that in Sec. II the critical value p, is the Haus-
dorff dimension of the set and the corresponding value
of (e, ), gives the representative scale index. In the
present case the critical value of p depends on q,

(a)&.) =- G(q, P),
Bq

(3.11) Bg(., &a&, )f( a, )=
BE E=(E)

(3.22)

(3.12)g((. & & &}-G( P)- ' "P' -P' "'P'
Bq BP

Since (e) and (a) are functions of q and P, different re-
gions with scaling indices s and a are explored by
changing the values of the parameters q and p. Thus
Q( ( e ),(a ) ) is implicitly a function of q and p. Also
note that from (3.10) and (3.11), ( s) and (a ) are related
by a Maxwell relation

By substituting (3.22) into (3.8) and (3.9), we obtain

f(&a&, ) =(a&,q+P, (q)

df(a)
a=(a)

respectively. And (3.23) and (3.24) give

(3.23)

(3.24)

(&a&(s&) . (3.13)

The entropy S(s) for the scaling index s defined in
Sec. II is related to the generalized entropy as

exp[nS(s}]= J daexp[ng(e, a)] . (3.14)

Since the maximum of Q(s, a) with respect to a occurs
when q =0 [see (3.9)], S(s) is given by (3.12) with q =0.
This also can be seen more easily from (3.5).

%e can also consider an analogous entropy for a
which should be given by

exp[nS'(a)]= J deexp[ng(s, a)] . (3.15)

Since the maximum of Q ( e, a ) with respect to e occurs
when aq+P=O [see (3.8)], (3.7) and (3.15) give

dP, (q)a, =—
dq

(3.25)

f}(&s&„& ), )=exp[ (s&,f(&a&, )]

(l )
— ((a), )

(3.26)

where (l), =exp( —n(s), ) is a representative length.
Here note that (s), and (a), are functions of q [see
(3.10}and (3.25)], and then they are related to each oth-
er. If (3.26} is compared with (2.11), f(a) can be con-
sidered to be a set of generalized dimensions.

Renyi introduced a set of dimensions D defined by

Thus once P, (q) is known by solving (3.19), (a), and
f ( (a ), ) are obtained from (3.25) and (3.23).

In terms of f(a), the number of balls Q(e, ,a) is writ-
ten, using (3.2) and (3.21), as

S'(a) =G(q, P),
where q and p satisfy a relation [see (3.12)]

BG(q,P) BG(q,P)
B

+
BP

and Gf is given by

(3.16)
1 lnX(q)

D&
——hm)-0 q —1 lnl

(3.17} where

X(q) =/pe = I (q, O),

(3.27)

(3.28)

(3 18) and the partition is made by balls with a uniform size l.
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In Ref. 9 it was argued that (q —1)D» = —p, (q), so one
should have

and (3.2) is written as

Q(e, a) =exp[n sf(a)]=l (4.6)
X(q)= I (q, O) -1 (3.29)

In the present approach, however, the distribution of / is
taken into account, so the relation (3.29), in fact, can be
regarded as determining a representative length l or a
scale index e= —(lnl )/n From (3.4) and {3.29), we have

Also, we note that p, {q} is related to D» as
P, (q}/(1 q) =—D» in this case.

B. p; Constant

s=G(q, 0)/P, (q)

I =exp( —ns)=exp[ nG—(q, O)/P, {q)] .

(3.30a)

(3.30b)

Since there is no distribution of p; in this case, the
analysis is essentially reduced to that of Sec. II where a
measure is not taken into account. The measure on each
ball is given by

In general, p, {q) is not simply related to D», since the
partition with balls of uniform diameter is used to de6ne
D». Thus p, (q)/(1 —q) gives an independent set of gen-
eralized dimensions. As shown above, however, f(n }
which is related to p, (q) by (3.23) is a more natural gen-
eralization of the HausdorfF dimension.

IV. SPECIAL CASKS

In this section we examine two special cases where l;
or p; is constant.

A. l~ constant

F(P)=ina —Ps, (4.1)

where 1na= —[lnN(n)]/n. However, we have a non-
trivial distribution of the measure and the generalized
free energy is written from (3.3) and (3.4) as

There is no distribution of e;= —(lnl;)/n. For the
general case discussed previously, (s& depends on the
parameters q and p and is determined by (3.12). More-
over, if one chooses P=P, (q). (I &, =exp( —n&s&, ) is
the representative length. In the present case of
I; =const. all the previous formulas are, of course, valid
but ( s & [or (1 & =exp( —n ( s & )] does not depend on q
and p and is simply given by a constant s {or 1). The
free energy which is related to the distribution of s is
simply given by

p = I/N(n)=1/a" . (4.7)

As seen from (2.3), (2.4), (3.3), and (3.4} the generalized
free energy is related to the free energy as

G(q, p)= —q Ina+F(p) . (4.8)

From (3.10) and (4.3), the scaling index ( s & is written as

(4.9)

This implies that the generalized entropy is nonzero only
when (4.10) is satisfied, and it can be shown that

Q(e, a) =S(s}=S'(a)=sf (a) . (4.11)

Thus the analysis in this case reduces to that of Sec. II
with the free energy F(p). This is simply because the
distribution of a is essentially identical with that of s
due to the relation ae, =inc.

At the critical point, p=p, (q) (4.8) gives

q ina =F(P) . (4.12)

This equation was previously considered to identify q
with the free energy. '

Thus (e & does not depend on q and is given by the same
value as that of Sec. II [see (2.8)]. From (3.1) and (4.3),
&a & is related to & s & by

(4.10)

G(q, p)= pe+G(q, O) . — (4.2)

The generalized entropy is written from (3.12) and (4.2) V. INVARIANT SET OF A DYNAMICAL SYSTEM

Q(e, (a&)=G(q, O) —q
' =—q [G(q,O)/q],BG(q, O) i 8

Bq Bq

(4 3)

where (a & is given from (3.11)as

A fractal object often appears in a dynamical system
as an invariant set with an invariant measure. An im-
portant quantity characterizing the chaotic behavior of
the dynamical system is the Kolmogolov-Sinai entropy
h. ' lf a series of partitions is appropriately chosen, h is
given by

( &

1 BG(q, O)

e Bq
(4.4)

h = ——gp;lnp; (nao) .1

Pl

Note that S'(a), the entropy for a defined by (3.14), is
the same as Q(e,a) in this case. Also f(a) is given by
Q(e, a)/e (we do not need to adjust p to the critical
value, since (a & does not depend on p). Thus we have

S'(a ) =sf (a)=Q(s, a },

Using (3.3), (3.4), and (3.12) it can be shown that the
Kolmogolov-Sinai entropy and the entropy function
Q(q, p) are related'z by

(5.2)
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Also the topological entropy' is given by h „p
=( 1/II )111;+1,so froln (3.3) lt ls wrlttcll as

h„p ——Q(q =0, P=O) . (5.3}

I; =[dg'"'(x;)/dx] (5.4)

where x; is a fixed point of g'"'(x). The partition func-
tion (3.3) is written as

I (q, P) = g pjs[dg
("'(x, )/dx ] P, (5.5)

where the summation is over all the fixed point of g'"'.
The Lyapunov exponent y is the average of
[In(dg'"'/dx)]/n with respect to the invariant measure,
so it can be shown that

Let us consider a one-dimensional escape problem of a
map x„+1——g(x„)=ax„(1—x„}with a &4. Most of the
initial points on [0,1] go to —oo. The remaining set has
a Lebesgue measure zero and forms a (fractal) Cantor
set. Also all the points in this set are unstable, and they
are repellers.

A partition at the nth step of this Cantor set is given
by a set of intervals with tx ~0(g'")(x)&1), where
g'"'(x) is an nth iterate of g(x). There are 2" intervals
in the partition. Each interval contains a fixed point of
g'"'(x), and for a large n, dg'"'(x)/dx is almost constant
in an interval. Let us approximate g'"'(x) in an interval
by a straight line with a slope dg'"'(x; )/dx, where x; is a
6xed point in the interval. In this approximation, the
length of an interval is written as

havior of multifractals is contained in the generalized en-
tropy function Q(e, a).

As schematically shown in Fig. 1(a), Q(E, a) is
nonzero in a domain of the c-o. plane. On line 308,
Q(e, a) is maximum with respect to the variation of a
and we have S(e)=Q(e,a), where S(e) is the entropy
for the scaling index c.. The corresponding line in the q-

P plane of Fig. 1(b) is q=O [see (3.9)]. The entropy
S'(a) for the scaling index a is given by Q(e, a) on line
DOE where Q(e, a) is maximum with respect to the vari-
ation of e. The corresponding line in the q-p plane is
qa+p=O [see (3.8)). On line CED, we have G(e, a) =0
and Q(e, a) gives f(a) by

f(a)=Q(e, a)/e,

f(a) =BQ(e,a)/Be

[see (3.21) and (3.22)]. This line corresponds to p=p, (q)
in the q-P plane. The Hausdorff dimension is given by

p, (0). Note that p, (q) could be formally defined beyond
point C or D where the corresponding entropy is zero as

p, (q)= —a,„q or —a;„q, where a,„(or a;„) is the
value a at point C (or D} in Fig. 1(b). However, p, (q) in
these regions does not give any information on the scal-
ing behavior of multifractals.

We now have three functions S(e), S'(a), and f(a)
for the scaling behavior of multifractals. In some special
cases like those discussed in Secs. IV and V, these func-

G(q, P) (5.6)

Moreover, the invariant measure in this approximation
can be taken to be proportional to I;, so we have

(5.7)

Then it can be shown that

G(q, p) =G(O,q+p)+q5, (5.8)

where 5 is the escape rate exponent defined by (2.12). So
from (3.12), (5.2), (5.6), and {5.8) we have a relation

G(q =1,P=O) =h —y+5, {5.9)

which connects the Kolmogolov-Sinai entropy, the
Lyapunov exponent, the escape rate exponent, and the
generalized free energy.

It has been emphasized by Halsey et al. that the func-
tion f(a) characterizes a distribution of a singular mea-
sure on a fractal. The function f(a) can be considered
to be a generalization of the Hausdorff dimension [see
(3.26)]. Howcvcr, more information oI1 thc scallIlg bc-

FIG. I. (a) Schematic diagram of c-a plane. The general-
ized entropy Q(s, a) is nonzero only in region ACBD (b).
Schematic diagram of q-P plane. Points 0, A, 8, C, D, and E
correspond to those in (a).
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tions are not totally independent. However, for general
multifractals, these functions are independent and give
separate inforIDation on the scaling behavior. The sup-
port of the measure has a scabng structure, i.e., distribu-
tion of I; and it is characterized by the entropy function
$(c). Similarly, the distribution of the scaling index a
for the measure is represented by 5'(a). The function

f(1x ) glvcs a sct of gcncra11zcd dllllcllslolls.
All of these functions are related to the generalized

entropy Q(s, a) which is most conveniently calculated
from its I.egendre transform G(q, P). In a special case
like p; =const (Sec. II 8) or p; col; (Sec. V), it is possible
to write G(q, P) in terms of F(f3), since the distributions
of e and a are not independent. So an analogy to statist-
ical mechanics is possible. However, we note that in
general a partition with p; =const is not a natural choice
so that we have to deal with the generalized free energy.
Although one may wish to have a complete analogy to
statistical mechanics, it is not possible in general and
perhaps it is not necessary. We simply consider a "sta-
tistical mechamcs" based on the generalized entropy
Q(c,a) and the generalized free energy G(q, P).

In the ordinary statistical mechanics P= 1 /kite is al-

ways positive since a state with a higher energy must
have a smaller probability than a state with a lower ener-

gy. In the present analysis of fractals, the scaling index
c plays a role of the energy and we explore di8'erent
values of c by changing the parameter P. At P=O, all c,;
have the same weight and ( c ) is given by the simple
average of c;, ( e ),„. If P is positive, we are focusing on
the scaling index (c) which is less than (s),„. In the
case of a negative P, we have ( E ) which is larger than
( c ),„. So there is nothing mysterious about a negative P
here.

Note added. After submission of this manuscript, Pro-
fessor D. Rand informed me of the work by Bohr and
Rand, ' in which they discuss a thermodynamic formal-
ism of certain dynamical systems and introduce an en-

tropy function for characteristic exponents. Their work
is closely related to Ref. 12, and for some dynamical sys-
tems like the escape problem discussed in Sec. V their
entropy function is related to the entropy function S(e)
introduced in Sec. II of the present paper.
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