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Critical slowing down near a noise-induced transition point
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Transient behaviors of a nonlinear model system perturbed by external white noises are studied
numerically. Results derived with both Stratonovich and Ito interpretations of stochastic calculi
demonstrate that instability occurs at a transition point associated with a critical value of the noise
parameter. It is found that the critical slowing down familiar in the equilibrium systems occurs
near this nonequilibrium instability point. It is also found that for both calculi and over a broad
range of initial conditions, the relaxation time diverges with an exponent which is in accord with

the classical mean-6eld value.

I. INTRODUCTION

Considerable efforts have been made in the studies of
nonlinear systems far from equilibrium. ' Though these
noncquilibrium systems are far more complicated than
the equilibrium ones, similarities and analogies between
them do exist. With the excitement of the tremendous
breakthrough in the phase-transition and critical phe-
nomena of the equilibrium statistical physics, ' the
nonequilibrium phase transitions have attracted consid-
erable attentions. Besides the familiar transition of
the first and second order, new aspects of the noise-
induced nonequilibrium phase transitions are also ex-
plored. Systems demonstrating such interesting transi-
tion phenomena cover many 6elds in the natural sciences
and beyond. '

The phase transition in nonequilibrium systems refers
to the transition among di8'erent branches of stable
steady states (SS). The critical behaviors appear as the
relevant control parameter approaches such a unique
value that the stable SS turns out to be unstable. As a
system approaches the marginal stability, the relaxation
processes become slower and slower. This is reminiscent
of the well-known phenomena of critical slowing down
in equilibrium systems.

Owing to the complexity and diversity of the systems,
various types of slowing-down properties have been ob-
served experimentally and concluded theoretically. '0

The estimated exponent which characterizes the diver-
gence of the relaxation time varies considerably from
system to system. The terminology of critical slowing
down was widely used to describe all these time-
dependent processes, some of which possess nondiver-
gent relaxation times. There are also some theoretical
reports rejecting the existence of critical slowing
down. ' The transient behaviors deserve more investi-
gation in order to elucidate the nature of the slowing-
down processes in noncquilibrium system.

It is mell known in the equilibrium statistical mechan-
ics that the van der %'aals theory of Quid systems and
the I.andau-Ginsbcrg theory of magnetic systems predict
critical phenomena, and that both theories are similar in
the sense that they can be described by a simple-cubic

equation in terms of the relevant order parameter. '

The multistability which is required for a nonequilibrium
transition is a result of the nonlinearity in the rate equa-
tion governing the time evolution of the system. ' It is
not surprising that one is tempted to adapt the cubic
nonlinearity in investigating the critica1 slowing down
and other critical properties in nonequilibrium systems.
The simple quadratic nonlinearity, which can be used to
describe various physical, chemical, and biological sys-
tems, ' ' should not be excluded from the list since the
instability does occur very naturally in these simple sys-
tems. In this paper, we shall investigate a quadratic
nonlinear system which was introduced by Eigen and
Schuster to study the self-organization at the macro-
molecular level. The rate equation and its slowing down
in the deterministic sense are discussed in Sec. II. The
stochastic treatment, by considering the random white
noises, is presented in Secs. III and IV. Numerical re-
sults and discussions of the critical slowing down near
the noise-induced instability arc presented in Secs. V and
VI.

II. MODEL SYSTEM AND DKTKRMINISTIC
SLOWING DOVVN

The model system describing the macromolecular
self-replication under constraint can be expressed in the
rate equation

= Ax —Wx /0,
dt

where x denotes the number of molecules which dupli-
cates themselves precisely with a net replication rate W
and 0 stands for the system size limited by a dilution
process which is controlled externaHy. The reacting sys-
tern is assumed to grow with 8' ~ 0 from an imtial state
of xo &Q. The deterministic equation (1) allows two SS
solutions„

X) =0, x2=Q

The stability analysis reveals that the first one is unstable
and the second one is stable if W' p 0. Marginal stability
and instability of the SS with x =0 will be encountered
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W't, =15 . (4)

This, together with Eq. (3), demonstrates that there ex-
ists a deterministic slowing down as the marginal stabili-
ty of 8'=0 is approached and that this slowing-down
phenomenon possesses a mean-field type of exponent

y =1, since we may rewrite Eq. (4) as

if 8'decreases through zero. In this model a negative 8'
would mean that the replication process is slower than
the degradation one.

The time evolution of the system is found by solving
Eq. (1) and can be expressed as

x (t)=x,Q[x, +(Q —x, )e
- ']-' .

As taboo, x(t)~X'=Q. In practice, numerical results
show that for all initial states xo~Q, x(t)-Q as
Wt ~ 15.0. By defining the evolution time t, as the time
required for the system to relax towards the SS of
x'=0, we have numerically that

An analytical solution of P(x, t) is unlikely. The SS
properties can be found with less efFort by solving the
stationary P, (x ) in the form of the P functions. Since
our objectives are the transient behaviors of the system,
approximation schemes are therefore needed to treat the
problem.

IV. STOCHASTIC TRANSIENT BEHAVIORS

&x"&= I"x"P(x, t)dx .
0

From Eq. {9),we find that

d(x") = nW(x "(1—x/Q))

(10)

+(2 v)n —(x "(1—x/Q)(1 —2x/Q) )S/2

Being unable to find P (x, t) in closed form, we turn to
the moments of it,

t, =15(W —W, ) ', W, =O. (5) +n (n —1)(x"(1—x/Q)2)g)/2,

III. %HITE-NOISE FORMULATIONS

Stochastically, the parameters in Eq. (1) are subject to
ftuctuations since various types of noises may afFect the
replication and dilution processes. It was found that'
the noise in 0 is most destructive to the system that the
growing process might be subjected to the fluctuation ca-
tastrophe. In this paper we consider that the net repli-
cation rate fluctuates randomly in time as

W, = W+v'ng, ,

where W and 2) are the mean value and the noise inten-
sity of the replication rate, respectively. g, is the gen-
eralized Gaussian process described by

(g, ) =0, (g„g,, ) =5(t —t') .

(x")=&x)" '[(x &'+n(n —1)o/2], (12)

where o = (x ) —(x ) is the variance. This approxima-
tion involves expanding the third and higher moments in
terms of the first two and so is expected to be valid if the
relative fluctuation

R(t)=v'o(t)/(x (t) ) (13)

remains small. After some mathematics we finally find
that the mean and the variance satisfy the following cou-
pled equations in closed form:

where angular brackets represent the averages. Since
most stochastic features are described by the first two
moments, we truncated the infinite hierarchy of coupled
difFerential equations (11) by using the moment expan-
sion approxlmatlon

This white-noise realization is usually valid since the
correlation time between random noises is negligible as
compared with the macroscopic time scale of the react-
ing systems. The deterministic rate equation (1) is now
written in a form of the stochastic differential equation,

dt
= W(1 —x/Q)+v'Sx {1—x/Q)g, ,

dg
dv

=A i @+A i2n

d'g

dT
=A~, g+A2, rf .

In the above, we introduce the reduced variables

g=(x ) /Q, q=o/Q', r= Wt,

(14)

(15)

where x is now a random variable. Due to the random
nature of g„stochastic calcuh must be chosen. We shall
consider both the Stratonovich and Ito interpretations of
the stochastic calculi. The probability function P(x, t)
is then found to satisfy the following Fokker-Planck
equation:

a, P(x, t) = —a„ I [W+(2 —v)(1 —2 /Q)2)/2]

and

A i i
——1+a(2—v)/2 —gf 1+3a(2—v)/2] +a(2—v)g

A, ~
= —1 —3a(2 —v) /2+ 3a(2 —v)g,

A2, =a/(1 —g)

A~i=2+a(3 —v) —[8+6a(5—2v) g'+6a(7 —3v)g

(16)

&& x (1—x /Q)P (x, t) I

+(2)/2)B„„[(1 x/Q) P(x, t)]—,
where v=1 and v=2 stand for the Stratonovich and Ito
interpretations, respectively.

where a=2)/W is the relative noise intensity. The tran-
sient behaviors are now approximately described by g(t)
and rt(t), which can be solved numerically from Eq. (14).

The stochastic SS is defined here as the state with sta-
tionary g and g. In the framework of the present ap-
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proximation, it means that the Gaussian P(x, t) will have
its peak location and width unchanged. %e find that for
both the Straton. ovich and the Ito interpretations.

100

80-

These are similar to the deterministic SS and agree with
the most probable value of x allowed by the SS probabil-
ity function P, (x)

Numerical results show that the time evolution of
&x & is essentially deterministic with relatively small
o (t), which depends on the noise intensity and the initial
conditions. By comparing the transient R(r) with those
resulting from additive, linear, and quadratic multiplica-
tive noises, it was found that' the fluctuation catas-
trophe is least possible for the present case. The
deterministic-type SS, together with the insignificant
A ( t }, allow us to probe the transient behaviors in detail
since the approximation scheme remains valid even
when the system encounters the instability.

V. NOISE-INDUCED SI.O% ING DO%N
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FIG. 1. Time ~, =8't, required for a system to relax to-
wards the surviving SS plotted against the reduced noise inten-
sity u/a, . Results derived from Stratonovich calculi (solid
curves) are compared with those from Ito calculi (dashed
curves). Broad range of initial conditions is included. (a)

go
——0. 1 and {b) go ——0.9.

Numerical results show that deviation from the deter-
mnistic behaviors remain insignificant unless the noise
intensity 2) approaches a marginal value at which the
surviving SS turns out to be unstable. There follows a
new type of transition which is purely stochastic in na-
tul e.

The linear stabi1ity analysis result in that smal1 devia-
tion from which the SS will relax in time as e '. It is
found that for the surviving SS,

A. , = —1+a(2—v)/2,

A, ~= —6+(11—v —2v )a .

down phenomena occur only in a narrow region a 5 o;, .
This resembles the critical slowing down in the equilibri-
um systems. Away from the critical region, the relaxa-
tion towards the SS from arbitrary xo is essentially
deterministic, i.e., the relaxation time equals the deter-
ministic value,

which is also independent of xo.
In Fig. 2 we plot with log-log scale the reduced excess

time
Hence this SS is stable if max(A, ) (0, or

0(a(3v/(5 —v ) .
( (det))/ (det)

t s s S (22)

The SS system becomes marginally stable if

a=a, =0.75 (v= 1),
a=a, =6.0 (v=2} .

In the above, the subscript c stands for the critical value
of cx. As a g a„ the surviving SS becomes unstable, and
we expect that a stochastic transition from surviving to
extinction will occur.

Numerical results demonstrate that the restoring of
the SS from deviation or the transient towards the SS
from a giving initial state xo will take a longer and
longer time as o;~o, This slowing-down phenomenon
is triggered by the noise parameter and is not predicted
in deterministic theory.

In Fig. l we plot the time needed for a system to relax
towards the stochastic SS, r„versus the scaled noise fac-
tor a/o, It is surprising to find that ~, diverges as
n~a;, in a unique fashion which is almost independent
of the stochastic calculi employed and the initial state
with which t4e system starts.

By inspecting Fig. 1 we also find that the slowing-

0.1

0.01

FIG. 2. Reduced relaxation time R, plotted against the re-
duced noise parameter. Results of Stratonovich (a) and Ito (b)
calculi are compared. For both curves, $0=0. 1 is assumed.
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versus the reduced noise parameter

8 =(a, /a)/a,

which measures the relative distance from the criticality.
This enables us to derive the critical exponent y for the
slowing-down process. It is interesting to find that
y=1.0 for both stochastic calculi employed and over a
wide range of initial conditions.

In Figs. 1 and 2 we intend to choose the scaled and re-
duced noise factors as an ordinate. These enable us to
bring together all the curves derived from different cal-
culi and xo. These properties resemble the universality
of the equilibrium critical phenomena.

VI. DISCUSSION

We conclude that the transient behaviors near the
nonequilibrium instability resemble the equilibrium criti-
cal slowing down, The critical exponent is found to be
in accord with the mean-field value; this is a result of the
fact that we do not consider the spatial inhomogeneity
of the reacting systems.

The slowing-down phenomena demonstrated in our
model system are induced by a mixed-order multiplica-
tive noise. Mannella et al. ' ' have investigated the
mixing effects of the additive and linear muitiplicative
noises by using the electronic simulations and have
found that the diverging properties of the slowing-down
processes are rounded off. This resemb1es the round-off

efkcts of the earth's gravity on the equilibrium Quid sys-
tems in the critical region.

The critical slowing down of our model system
possesses more features than in equilibrium systems. It
describes not only the unique transient properties in re-
storing to the SS after perturbations but also the relaxa-
tion of the system towards the SS from an arbitrary ini-
tial state. The critical slowing-down behaviors are also
found in the Kramers problems, ' in which the activa-
tion process becomes very slow near the metastable-
stab1e transition.

The nonequiiibrium systems are far more complicated
than the equilibrium ones. Many more factors have to
be taken into consideration, especially when external
noises becomes signi6cantly large. The noise-induced
transition, which is essentially stochastic in nature, is a
distinct type of phase transition. The transient behav-
iors and particularly the interesting slowing-down pro-
cesses near the transition point surely deserve more
efforts.
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