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Correlation functions and generalized Lyapunov exponents
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Correlation functions of one- and two-dimensional piecewise linear maps are analytically investi-

gated. The asymptotic time behavior is shown to be given by the average inverse multiplier

(p, , (~)), for one-dimensional maps with absolute1y continuous invariant measure. The decay
rate y coincides anth the generalized Lyapunov exponent A{y) at y=2, if the sign of the multi-

plier does not change during the time evolution, while, in general, it is larger than A(2). The
analysis of two-dimensional maps revea1s the importance of the average second multiplier (p2(r) )
and of the average ratio (p2(r)fp&(r) ) which, in some cases, can provide the leading long-time

contribution.

I. INTRODUCTION C„(r)= ( &(x(t))&(x(t +r)) ) —( & ) (& )

In the analysis of dissipative dynamical systems, most
attention has been given to the evaluation of metric en-
tropies, Lyapunov exponents, and fractal dimensions in
order to characterize the structure of the attractors both
from a dynamic and a static point of view. On the other
hand, more standard statistical tools Hke correlation
functions have only been discussed for simple systems,
such as various one-dimensional piecewise-linear maps,
or in connection with particular phenomena like period
doubling, lntermlttency, dlffuslon, and pertodlc
chaos. " The decay of correlations in area-preserving
maps has been investigated in Ref. 6.

In general, however, very little is known about rela-
tions between time correlation functions and the above-
mentioned dynamical invariants, even for strictly hyper-
bolic systems. ' In two and more dimensions, the
diSculties arise essentially from the contribution of all
Lyapunov numbers (multipliers) to the time decay. In
nonhyperbolic systems there is, in addition, no clear sep-
aration between expanding and contracting directions
and any Lyapunov exponent can assume both positive
and negative values, when computed over long, but
finite, times. Finally, even for generic one-dimensional
hyperbolic maps, no exact results are available. Howev-
er, it is usually believed that, in "typical'* chaotic situa-
tions, correlations decay exponentially as, for example,
in the case of the Lorenz system. ' Exceptions are given
by the systems discussed in Refs. 3(b)—3(d) and 4, where
sublinear di8'usion occurs, leading to a power-law behav-
1or.

In this work we evaluate correlation functions of the
form

where A and 8 are functions of the position x(t). Time
t can be either continuous or discrete: in the latter case,
the integral in Eq. (1.1) is replaced by a sum. The aver-
ages can be rewritten as

—f & (x(t))&t =—I A (x)p(x)de,
T~oo T 0

(1.2)

where an invariant probability measure p(x) (ergodic
with respect to the dynamical system) has been defined
and E is the phase-space dimension.

In Sec. II, we compute correlation functions for some
weB-known one-dimensional maps with piecewise-
constant invariant measure p, showing the connection
with dynamical quantities like the generalized Lyapunov
exponents A„(y) (k =1,2, . . . , E) " they character-
ize the fluctuations of the expansion rates along each in-
variant direction in phase space. More precisely, the
correlation function is shown to coincide, up to multipli-
cative factors, with the average inverse multiplier
(p, '(r)), computed over a number r of iterations. The
decay rate y is equal to A, (2) in all cases in which p, ,
has constant sign along the trajectory. In general, y is
larger than A&(2), indicating a faster decay. In Sec. III,
we give an analytic solution of the 2D generalized baker
transformation' in terms of symbol sequences. The re-
sulting exact expansions for the two variables allow the
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evaluation of the correlation functions, performed in Sec.
IV. Three diferent exponentially decaying terms have
been identi6ed. Besides the contributionalready found
in the 1D case, the average second multiplier &1»,2(r)&
and the average ratio &p2(v)/p, (~)& are present. For
some dynamical systems, the new terms may yield the
relevant contribution.

In Sec. V, we discuss possible extensions to more gen-
eric hyperbolic nonlinear systems. In particular, we
show that the average inverse multiplier provides, in all
cases, an upper bound to the decay rate.

II. ONE-DIMENSIGNAI MAPS
KITH PIECEWISE-CONSTANT

INVARIANT MEASURE

In this section we show the relations between the de-
cay of the correlation function C(r) and dynamical
quantities like generalized Lyapunov exponents for one-
dimensional maps of the type y„+i——F(y„), exhibiting
invariant measures composed of a finite number of con-
stant parts. We first consider the (asymmetric) Bernoulli
shift

y„ /p if y„(p
(y„—p)/q if y„&p,

and the tent map

p /p if' &p

(1—y„)/q ify„~p,

(2.1)

(2.2)

where the constancy of the measure [p(y)=1] has been
taken into account and F'(yo) denotes the rth iterate of
the initial condition yo. The function Ii (y} is composed
of N =2' straight lines, the slope of which is the multi-
plier p, (v) p'q' ', computed over r steps (the index i
indicates the number of times y„was &p). Therefore
the integral (2.3) can be evaluated as a sum over N inter-
vals of width 5 =[y, ,(v )]

C(r)= g f y +'(y )dy —&y &

j=] j

y f F'(y, +M)du
i=&

+ f uF'(y, +u)du —&y &

J

{2A)

where the change of variables yp
——y. +u has been made,

with yj denoting the abscissa of the midpoint of the jth
interval. The first integral in Eq. (2.4) is just equal to
&y & multiphed by the width b» of the interval, since the

with p+q= l. The correlation function C„(v) for these
transformations has been studied in Ref. 1{a) by solving
the eigenvalue equation for the Frobenius-Perron opera-
tor. We follow a different approach which allows dis-
cussing extensions to more generic systems. Equation
(1.1) can be rewritten as

(2.3}

in agreement with Ref. 1(a}. There, however, the results
were given explicitly as functions of the parameters,
without making connections with dynamical quantities.

To elucidate better the meaning of relation (2.5), we
recall the notion of generalized Lyapunov exponents, "'2
which provide a detailed description of the chaotic prop-
erties of dynamical systems. Let us first define the
effective Lyapunov exponent

A (ix 0;1)= ln g ~F (x;) (
= in~pi(T)

~

(2.6)
p

as the expansion rate over a finite number ~ of iterates.
The first generalized exponent A, (y } is then defined as

A, (+)= lim in& e
r(1 —y)

(2.7)

In the limit y~ 1, the usual definition of Lyapunov ex-
ponent is recovered. From Eqs. (2.5)-g.7), in case of an
everywhere positive (or negative} multiplier, we have

—wA l(2)
(2.8)

~
Cyy(r) )

~ e

The reason for the occurrence of the argument y=2 is
that C~~(r) is a two-time correlation function: this is
reminiscent of the theory of generalized (Renyi) dimen-
sions D (y }which, for integer values of y, can be related
to the estimate of y-point correlation functions. ' In
particular, the exponent D(2) is called correlation dimen-
sion.

In our case, the complete identification of the decay
rate of C~~(r) with Ai(2) only applies when the multi-
plier does not change sign during the time evolution [as,
e.g., for the Bernoulli shift (2.1)], since- the average in
Eq. (2.7) involves the modulus of the multiplier, at vari-
ance with Eq. (2.5). Therefore, the decay rate

y = —lim sup —ln
~ Cyy {r )

~

1

Tm 00

is, in general, larger than A, (2). For the tent map (2.2),
the average multiplier is 0, in the limit case p =q =—,'.
Accordingly, Eq. (2.9) yields y= 00, indicating a 5-
correlated process.

Although the exact result (2.5} has been derived for
two special maps, it is not diScult to verify that it ap-
plies to any piecewise-linear map with constant invariant
measure. The next degree of complexity is represented
by maps with only piecewise-constant measure. As an
example, we discuss the roof map""

distribution is uniform. Therefore, after performing the
sum, this term yields &y & . For the second integral, no-
tice that F'(y~+a)=F'(y~)+u I», , (y~;v ), where p, ,(y;r)
is the mult1plier computed over ~ iterations, with initial
condition yj. Insertion of this relation into the integral
yields a linear and a quadratic term in u: the erst one is
zero and the second one gives, after the sum is evalu-
ated,

(2.5)
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c +y„(1—c)/c if y„&c
In+i= '

(y„—I ) /(c —I ) if y„)c . (2.10)

Oy( r r r r r r r r r

From the solution given in Ref. 1(a), we already know
that C„~(~) is the superposition of three distinct terms.
On the basis of Eq. (2.5), we conjecture that for r
sufficiently large, the slowest contribution to C (~) is
proportional to (p r

'( ~) &

In
~

Cyy(~)
~

lim sup . (2.11)
In ((Mr '(~)

~

The evaluation of the average (pr '(r }& for map (2.10) is
not as trivia1 as in the previous examples, because the
multipliers computed over a single iteration are correlat-
ed to each other. In fact, the interval I, —= [O,c] is

mapped onto Ii =—[c,1] and Ii onto I =I, U Ii ——[0, I ].
Therefore, since each trajectory must visit the interval I2
after having visited I„the allowed multiplier values can
be decomposed into products of uncorrelated terms: a
two-step multiplier equal to —I/c, corresponding to the
sequential visit I I I I2, and a single-step multiplier
—I/(I —c), given by the sole visit of Ii after Ii. This is

suScient to derive a recursion relation for the moment
of order I —y of the multiplier (in modulus), defined by

61—
rr 9,)(w) ~ r(1 —

r) )Ar(v)
(2.12)

M(y, ~) can be written as the sum of two distinct terms

M(y, r) =c&M(y, r 2)+( I c—)rf'M(y, r—I ), —(2.13)

—(I —c) tur '(~—I) & . (2.14}

The largest eigenvalue (in modulus) yields the growth
rate —y of (((r, r

'(v) &

T

( I )2+ [( I )4 4 2]1/2

2

which coincides with the slowest term of C„~(~) comput-
ed in Ref. 1(a). Hence, we see that the validity of Eq.
(2.11) extends beyond the class of maps discussed above.
Numerical simulations suggest that whenever the mea-
sure is absolutely continuous, the asymptotic time behav-
ior of the correlation function coincides with that of the
average inverse multiplier. As an example, we display,
in Fig. 1 the logarithm of the modulus of the normalized

where c is the probability of the subsequence I],Iz
which contributes with a multiplier

~
(Mr(2)

~

= I/c,
raised to the power I —y, whereas 1 —c refers to the
subsequence I2 [with multipher I)ur( I)

I
= I/( I —c)].

The linear equation (2.13) can be easily solved, yielding
the growth rate Ar(q) of M(y, i) [see Eq. (2.12)]. The
standard sigmoid shape is recovered with the two hor-
izontal asymptotes A, ( —oo ), A, ( oo ) given by ln(1 —c),
(lnc)/2 (their ordering depending on c).

Since the estimate of the decay rate y [Eq. (2.9)] re-
quires considering the multipliers with sign and the ex-
ponent y=2, we rewrite Eq. (2.13) as

-5-
OJ

-10-

r r i i l I I r i r r i I ) r r r

0 5 10 35 20
TlME

FIG. 1. Dashed curve: plot of the logarithm of the modulus
of the normalized correlation function C(v ) =C» {~) /
((y~) —(y )i) for a modification of the roof map (2.10) vs time
~ (number of iterations). Solid line: curve ln

~
M(2, ~)

~

vs ~.
In the simulation, 6&(10 iterations have been used for the
correlation function and 10' for the multiplier.

correlation function C(~)= C~~( r) /(( y &
—(y & ) for a

roof map with the maximum belonging to a period-4 cy-
cle. The resulting probability distribution is composed
of three constant parts. In the simulation, 6)&10 itera-
tions have been used for the correlation function and 10
for the multiplier. The convergence of C(~) to its
asymptotic limit is slow for large ~, but a comparison
with runs with lower statistics indicates the tendency to
a very satisfactory agreement between In

~

C(~)
~

and
ln

~
M(2, ~)

~
(dashed and solid lines, respectively, in the

figure) also for large values of ~.

III. GKNKRAI. IZED BAKER TRANSFORMATIQNS

In this section we investigate how the results found
for ID maps are modi6ed in higher-dimensional cases.
In particular, we consider generalized baker trsnsforms-
tions' of the following form:

ax„ if y„&p
~n+]= '

Px„+ I —P if y„&p, (3.1)

where a+p ~ I and the equations for the y variable are
the same as Eqs. (2.1) and (2.2). The asymptotic attrac-
tor can easily be recognized as s product of a continuum
by a Cantor set. In fact, the action of the map can be
described as follows. The unit square is cut horizontally
at s height y =p and the two parts are contracted in the
x direction by a factor pz which can either be equal to a
or to p, depending on the value of y [see Eq. (2.1)], with
probability p and q, respectively. The two resulting rec-
tangles are then stretched along the y direction by a fac-
tor p„which assumes the value 1/p in the lower part
and +I/q in the upper one (according to the equation
for y). The (Lyapunov) numbers pr and ((ri are the local
(i.e., position-dependent) multipliers. The average
Lyapunov exponents A, (1),A2(1) are given by



R. BADII, K. HEINZELMANN, P. F. MEIER, AND A. POLITI

A, (1)=p ln(1/p)+q ln(1/q),
(3.2)

Az(1)=p lna+q lnP .

Since the baker maps (2.1) and (3.1) are hyperbolic
(

I p, I
& 1 everywhere), one can construct Markov parti-

tions' and identify any point x—= (x,y} with the associat-
ed symbol sequence. The generating partition is ob-
tained by cutting the square horizontally at y =p. Ac-
cordingly, it is possible to give the "bit" expansion for
each variable. %e illustrate the procedure for the case
of the Bernoulli shift, discussing then the difkrences
with the tent-baker map. It is convenient to write Eqs.
(2.1) and (3.1) as

The use of expressions (3.8) and (3.10), in place of the
corresponding ones [(3.5) and (3.6)], considerably
simpli6es the evaluation of correlation functions, because
the only dependence on the symbols a„ is, now, in the
exponent of the parameters o and p.

Usually, in experiments on chaotic systems, a single
scalar time series m„ is available for a reconstruction of
the attractor, through embedding technique. In the
case of the baker map, neither x nor y can be used for
this purpose: indeed the variable y is decoupled from x,
while the evolution of the variable x cannot be inferred
from the knowledge of its own past history alone.
Therefore, it is convenient to consider the linear com-
bination

&~+ 1 =X~ Q
Q

+(1—P)a„,
n =+n+yn (3.11)

yn =ye+1 p +pa„,
(3.3)

as an appropriate embedding variable for this system.

IV. CORRELATION FUNCTIONS
where S„=Ia„}is the symbolic sequence whose ele-
ments a„are given by

1+sgn(y„—p)
2

(3.4)

00 l

&. =p o + X o + p II p
i =I j=l

where the abbreviations o =p/a and p=q/p have been
introduced. These expressions can be simpli5ed by mak-
ing- use of symmetry properties of the Bernoulli-baker
map. By exploiting the invariance of Eq. (3.1) under the
transformation

Q~ ~1—Q~

it is possible to transform Eq. (3.5) into
cc i—a+(1—a} g a' II o " (3.8}

and take the values 0 or 1, depending on whether y„ is
smaller or larger than p. Iteration of Eq. (3.3) allows to
write the expansions in the form

QQ

x„=(1—P) a„,+ g o„, ;a' II o " ' (3.5)

In the case of the generalized baker transformation,
the autocorrelation function C = & w„m„+,) —(m )
can be evaluated by forming averages over the symbols
a„, using the expansions (3.8) and (3.10). Since the se-
quence S„ is a random process satisfying

q ifn=m
(a„)=q and (a o„)=

q ifn m
(4.1)

C»»(r)=(p'+q )'C»»(0),

C „(v)=a„„(ap+Pq)'+z (p +q )'

(4.2)

+a»„(ap +Pq )',
where the constants ~,j and the average values
(x ), (x ), (y), (y ) are given in the Appendix. From
Eq. (4.2), we see that not only the correlation function
C» (~) of the Bernoulli shift decays exponentially (as al-
ready seen in Sec. II},but all correlation functions of the
two-dimensional map exhibit this behavior. The auto-
correlation function for the "embedding" variable w„ is
then a linear combination of Eqs. (4.2), which can be
written in the following form:

all the expectation values can be explicitly calculated.
Noticing that the correlation C„»(~)= (xoy, ) —(x ) (y )
is identically zero, because the variable y does not de-
pend on the variable x at all, one gets's

C„„(~)=(ap +Pq) "C„„(0),

Similarly, for the y variable, the invariance of Eq. (3.6)
under the transformations

( )= &p, '&'+, &}u,&'+,&p /p &', (4.3)

where we have introduced the average values of the
one-step multipliers

p~q

Q~ ~1—Q~

(3.9)
&ui '& =p'+q'

&C 2& =ap+I3q

&~/. &= p'+aq'.
(4.4)

co i—p+q gp'II p" '" Notice that successive values of p„p2 are completely un-
correlated from each other, therefore (pl, (1))'
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=()Llk(w)). By comparing Eq. (4.3) with the 1D result
(2.5), we see that two new terms contribute to the corre-
lation function. In the case analyzed in this section
(Bernoulh shift for the y variable), the dominating long-
t1mc term of C~~ 1s st111 thc one %'h1ch dcr1vcs from thc
expanding multipber. In fact, from the inequalities

1
&P2 &

P&
(4.5)

between single-step quantities (p„pl ~0), it is clear that
& p, l ) ' is the slowest term.

A similar derivation of C (I ) can be performed by
letting y evolve according to the tent map (2.2). More-
over, in both cases [(2.1) and (2.2)], the contracting mul-

tiplier may be allowed to assume negative values (a and

p are taken with sign). However, the resulting lack of
symmetry in the series expansions of x„,y„does not al-

low a simplified approach as in Sec. III and a more
lengthy procedure has to be followed. The final result'
con6rms the presence of three distinct contributions to
C~~ ( t), pfoportlollal to (p, I ), (pl ), ( ILIA//l ) ), IIl tllls
more general map also. As a consequence, either

~
(p,2)

~

or
~

(p,2/II, &)
~

can yield, in suitable ranges of
parameter values, the leading contribution to the corre-
lation function, rather than

~
(p, ' )

~

(see, for instance,
the symmetric tent map where (p, ') vanishes identical-

ly, for I ) 1). Therefore, the sign of the multipliers has
such an efFect on correlation functions that it is not pos-
sible to infer the time behavior from a simple unique
prescr1pt1on.

V. CONCI, USIONS

In Sec. II we have shown that the leading behavior of
the correlation function is determined by the average in-
verse multiplier, for one-dim. ensional piecewise-linear
maps with absolutely continuous measure. This is c1ear-
ly seen from our derivation: the amplitude of C~~(v ) can
be interpreted as the difference between the exact value
of a suitable integral and its "approximate" estimate
from the area below a histogram constructed on the ele-
ments of a Markov partition [see Eq. (2.4)]. Therefore,
the correlation function is of the same order as the width
of the elements used.

Moreover, our approach al1ows discussion of the limi-
tations of this result and the possibility of future exten-
sions to more generic maps. In fact, a crucial property
of the map, exploited to derive Eq. (2.5), is the assump-
tion that the invariant measure over any element of the
Markov partition be transformed into the global invari-
ant measure of the interval [0,1], in a finite number r of
ltcI'atlolls. This ls thc case of thc IIlaps [(2.1) aIld (2.2)],
since any uniform distribution remains uniform under
the action of a linear transformation. Qf course, the
same does not hold for nonlinear maps, where an addi-
tional characteristic time enters: namely, the relaxation
time of a probability distribution towards the invariant
measure. On the basis of these arguments, we expect

i (pI '(~))
i to provide an upper bound to the decay of

the correlation function. Preliminary simulations
con5rm this conjecture showing, however, a finite
di8erence between the two rates.

The analysis of simple two-dimensional maps revealed
the existence of three terms in the correlation function.
The general question of the possible occurrence of other
combinations of the multipliers remains open.

The determination of the decay rate, even in simple
dynamical systems, is a much more involved task than
that of relating fractal dimensions and metric entropies
to Lyapunov exponents. The preliminary results derived
in the present paper suggest a promising approach to the
problem.
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Here we give the values of the constants appearing in

Eq. (4.2). Since the sequence Ia„ t is 5 correlated [see
Eq. (4.1)], the evaluation of average values is straightfor-
ward; for example, one gets

(
a a„) ll+qtr lf m =n2

0 0
(p +qcr ) if m &n .

For convenience, the following abbreviations are used:

r =p +q, s =pQ+qp, t =p tI+q p ~

Notice that, in the text, these three quantities are recog-
nized as average multipliers [see Eq. (4.4)]. Accordingly,
wc obtain

( ) q(1 —P)
1 —s

(&I ) (1 p)2
1 I ++qp

(1—s)(1 —pa —qP )

The constants k,, in Eq. (4.2) are given by

2$

(1—s)(s r)(a+P) '—
I'

(s —r)(t r)—
(P —q)(II —P)

(1 s)(r —t)(a+P) '—
where ~o=pq (1—a)(1—P)/2.
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