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Several aspects of attractor reconstruction and analysis using the method of correlation integrals
have been thoroughly investigated for a speci5c chaotic attractor. Requirements on the experi-
mental data, the generation of the arti6cial phase space, and the evaluation of the correlation in-

tegral are considered in detail. In order to explain the surprisingly smooth behavior of the corre-
lation integrals resulting in an unusually straightforward and accurate analysis, the global scaling
properties of the attractor are derived. They indicate that specific aspects of the analysis are a
direct consequence of the structure of the attractor. Moreover, the scaling properties provide a
useful criterion for an optimum adaption of the length of the required time series to the particular
attractor under consideration.

I. INTRODUCTION

It is presently well known that chaotic (strange) at-
tractors represent a very universal behavior of dissipa-
tive nonhnear dynamical systems, ' leading to remarkable
aspects for fundamental physical concepts. A chaotic
attractor can be quantitatively characterized either by its
metric properties (giving rise to static, time-independent
invariants) or by dynamical invariants describing details
of the temporal evolution of the considered system.

The most commonly used invariants in the latter con-
text are the I.yapunov exponents and the dynamical en-
tropy (Koimogorov entropy) of the system. The metric
structure of the attractor, which will mainly be referred
to in this work, can be characterized by the dimension of
the attractor. More exactly, one can define a continuous
spectrum of dimensions by means of a generalized infor-
mation theoretical treatment. ' We shall discuss these
concepts briefly in Sec. II.

The attractor of a dynamical system can easily be ob-
tained if the (nonhnearly) coupled difFerential equations
for the relevant variables of the system are known.
However, in many experimental situations neither the
relevant variables nor even their total number are
known, so that the attractor of the system is not a priori
accessible. In this case, the attractor can be reconstruct-
ed in an artificial phase space, if a time series of one sin-
gle variable is measured. ' The embedding theorem of
Takens ensures that the attractor is reliably reconstruct-
ed in the limit of a suSciently large dimension d
(d ~ ao ) of the arti6cial phase space.

Based on this theorem, diI'erent procedures have been
developed in order to determine dynamical as well as
static invariants of attractors from experimental time
series of single variables. In particular, we mention (1)
the "nearest-neighbor method, " ' (2) the "correlation in-
tegral method, " ' and (3) the "singular system
method

Some information about the quality of the results ob-
tained with the dilerent methods has been reported re-

cently. ' Although there is only limited experience with
method (3}to date, this method is supposed to be partic-
ularly advantageous in case of rather noisy signals.
Methods (1}and (2} can be considered equally reliable in
case of low dimensions. For high-dimensional attrac-
tors, the nearest-neighbor procedure probably provides
more exact results.

In the present paper we investigate a low-dimensional
attractor by means of method (2). The theoretical basis
of this method is summarized in the context of Sec. II,
which also contains the extension of the correlation in-
tegral concept towards the evaluation of generalized di-
mensions. ' Their relationship to global scaling proper-
ties of the entire attractor'5 mill be described.

Section III gives some details of the investigated sys-
tem and the experimental time series, respectively. This
time series represents the x-ray luminosity of the neutron
star Her X-l, observed by the European x-ray satellite
EXOSAT. An extended discussion of the attractor
analysis with respect to its astrophysical relevance is
published elsewhere. ' ' In principle, the investigated
processes show some rough analogy to hydrodynamical
turbulence.

The original motivation for studying the astrophysical
system Her X-1 was to gain information about the com-
plexity of the radiation transport processes in the neu-
tron star atmosphere. As it turned out, the analyzed x-
ray data give rise to an attractor with the following in-
teresting properties (i) the correlation integral yields
extraordinarily smooth curves with only 1000 data
points per time series; (ii) the spectrum of dimensions of
positive order q turns out to be almost independent of q.
Because of these remarkable features, a detailed descrip-
tion and discussion of the attractor properties appeared
to be interesting from the viewpoint of dynamical sys-
tems theory.

In Sec. IV we address some issues and problems which
often arise in the correlation integral method. The fol-
lowing main points will be discussed: (i) requirements on
the experimental time series (length, resolution}; (ii) gen-
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eration of the artificial phase space (phase-space por-
traits, appropriate time delay); (iii) evaluation of the
correlation integral (linear scaling region; convergence of
slopes). These aspects will be exemplified by the corre-
sponding features observed in the analysis of the Her X-
1 data.

In Sec. V the spectra of dimensions and of singulari-
ties are determined, which characterize the global scal-
ing properties of the attractor. These properties can to
some extent explain the unusually smooth correlation in-
tegrals and the corresponding accuracy in determining
the attractor dimensions. More importantly, the global
scaling properties are shown to provide quantitative cri-
teria for a sufficient reconstruction of an attractor, par-
ticularly for a suScient length of the required time
series. The main results are summarized in Sec. VI.

II. SCALING PROPERTIES
OF CHAOTIC ATTRACTORS

As previously iildicated, we i'estf let ourselves to a
characterization of attractors in terms of their metric
properties. This means that we consider an extended
complex object in phase space without explicit respect to
its temporal evolution. This object, the chaotic attrac-
tor, represents that subspace of the entire phase space on
which the trajectory of the considered system is asymp-
totically situated. In principle„ the metric properties of
the attractor are therefore of nondynamical character.
However, it has been shown that there are strong rela-
tionships between metric and dynamical invariants.

A. Generalized dimensions

A suitable quantity characterizing the attractor as a
metric structure is its dimension. For chaotic attractors,
this usually takes on noninteger values, thus generalizing
the traditional imagination of purely integer dimensions.
The latter case denotes regular (stationary, periodic) pro-
cesses. The concept of a fractal (noninteger) dimension
D gd of an attractor in a d-dimensional phase space can
be derived from information theoretical considerations,
where the dimension D describes how the information I,
scales with varying spatial resolution e according to

I,D= lim
~-o log&(1/e)

For a formal introduction of the information I, as we
shall use it, we consider a partition of the attractor into
m boxes of size e. The probability that a point on the
trajectory falls into the ith box is then given by
p; =X,-/N if X is the total number of points. Using this
probabihty, a generahzed information of order q (q E'R )

1s defined as

I'~'= —log& g pf
I —q

which reduces to the well-known Shannon information '

for q~ I.

On the basis of I'qI a continuous spectrum of dimen-
sions of order q is introduced by substituting I ~ into
Eq. (1),

The most frequently used dimensions D'~' are the Haus-
dorff (or fractal) dimension D' ', the information dimen-
sion D"', and the correlation dimension O' '. For the
total set of generalized dimensions it can be shown that

D'q'&D'q' if q'&q

N
1

N
C',q' = hm —g —g e(e—

~
x, —x

~
)

o N,.
1

N.
q —1 1/q —1

Using this correlation integral, the dimension of order q
is given by

For the case q =2, the exponents of both summations
in Eq. (6) are equal to one. This situation considerably
facilitates the numerical work. For q&2 the calculation
is more involved since each individual sum has to be
raised to the corresponding power. However, the in-
crease in numerical effort is tolerable, particularly com-
pared with the computing time required for direct box
counting algorithms.

The spectrum of dimensions D'~' using Eq. (7) con-
tains more detailed information about the metric proper-
ties of the attractor than each single dimension does.
This is understandable as at different order q different

where the equality holds for a completely homogeneous
probabihty distribution p, =I/¹ Hence, the difference
between dimensions of different order measures the de-
gree of inhomogeneity (or nonuniformity) of the attrac-
tor in the sense of whether its different subsets (boxes)
are visited with equal frequency.

For the reconstruction of an attractor from a single-
variable time series„ the method proposed by
Grassberger and Procaccia uses the dimension D' ',

which is derived from the correlation integral,

N

C', '= lim g e(e —
( x; —x

~
) .

e~O Pf, )
Here N is the number of data points recorded with the
temporal resolution r. The points x, have been con-
structed by a time delay (b,t) technique generating the
arti6cial phase space which is used to reconstruct the at-
tractor of the actual process. The Heaviside function
e(e—

~
x; —x~ ~

) serves to count how many pairs of
points (x;,x ) fall within the distance e.

Recently the procedure of Grassberger and Procaccia
has been extended to a calculation of dimensions of arbi-
trary order q by a corresponding correlation integral
C(q) 14
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subsets on the attractor become dominant in the deter-
mination of C'»' and D'»i. Intuitively, the variation of q
provides a scan through all degrees of point density ex-
isting along the trajectory.

8. Spectrum of Singularities

from which it follows that

D(0) f (~)

D'"'=cf.min '

(14)

(15)

(16)

n, (a) =da'p(a')e f' ' . (9)

Here, the continuous function f(a) is an index which
rejects the scaling of n, (a) as a function of e.

Connecting Eqs. (8) and (9) with Eq. (3},Halsey et al.
derived a formal relationship between the spectrum of
dimensions D'»' and the spectrum of singularities f(a).
It consists of a Legendre transformation given by

a(q}= [(q —1)D'»']d

dq
(10)

f[a(q)]=qa(q) —(q —1)D'»' .

Equations (10} and (ll) enable an easy calculation of
f(a) for a spectrum of D'»' which can be obtained using
the correlation integral C'~'.

The function f(a) shows the following universal prop-
erties:

(12)

(13)

The concept of generalized dimensions reviewed in
Sec. II A can be related to the work of Halsey et al. ' in
which the global scaling properties of the attractor are
considered in detail. The unifying element between both
formalisms is given by the probability p; defined previ-
ously. For the present this probability is

a,.(e)
p;(e)=e '

where a;(e) is a scaling index describing how the varia-
tion of probability versus the variation of e departs from
linearity. For decreasing e, the probability decreases
much faster for large than for smaB o;. Therefore, the
scaling index a provides a measure for the density of
points on dim'erent subsets of the attractor. Large values
of 0, characterize the rare5ed subsets, whereas small
values of a represent the dense subsets. Typically, a hm-
ited range o. ;„gag a~„ is obtained for a particular at-
tractor (see the examples in Refs. 14 and 15). The quan-
tity a;„—a,„roughly measures the degree of nonuni-
formity (or inhomogeneity} of the attractor.

The point density spectrum on the attractor is
equivalent to a spectrum of singularities in the probabili-
ties p;. (In this more technical language, the scaling in-
dex a represents the strength of the singularity. } In or-
der to find the "intensities" of the spectral components
a, one has to compute how often singularities of
strength a occur. The singularity density p(a) defines
the number of times n, (a } that a singularity of strength
aE[a,a'+da ] occurs on the attractor partitioned
with resolution e,

In the following we shall see how all these features ap-
pear in the investigated attractor. Moreover, the degree
of nonuniformity wi11 be applied as a criterion for the
choice of experimental and numerical parameters used to
reconstruct the attractor.

BI. INVESTIGATED SYSTEM:
THE ACCRUING NEUTRGN STAR HER X-1

Together with its visible companion HZ Her, the neu-
tron star Her X-1 forms a rotating binary system. Due
to its strong gravitational potential, Her X-1 accretes
gaseous matter from HZ Her. This matter surrounds
Her X-1 in an "accretion disk" from which matter
streams down onto the neutron star surface. In case of
Her X-l, a strong magnetic Seld channels the accreting
matter on to the polar regions. The deceleration of the
infalling matter in the vicinity of the star surface pro-
duces a signiScant x-ray emission discovered by the
satellite UHURU in 1971.

Due to the complex geometry of the entire binary sys-
tem (two stars rotate around a common center of mass;
one of them is surrounded by a warping accretion disk)
distinct time periods coexist. They are attributable sole-
ly to geometrical and shadowing elects. In addition to
these efFects, we have recently' shown evidence for low-
dimensional chaos with a remarkable stochastic com-
ponent determining the process of the x-ray radiation
transport through the neutron star atmosphere (source
mode A in Ref. 16). This evidence has been obtained by
determining attractor dimensions from different x-ray
luminosity time series in diferent geometrical
configurations of the binary system according to the pro-
cedure of Grassberger and Procaccia.

The time series used in the analysis have been ob-
tained by the x-ray satellite EXOSAT. The data contain
integral counts of the source (including background) in
the energy range 1-50 keV and were recorded with a
temporal resolution of 9.67 msec.

Further astrophysical details are given elsewhere. '6 In
Sec. IV attention is directed to some extraordinary
features occurring in the attractor reconstruction and
analysis.

IV. SPECIFIC ASPECTS
OF THE A I.-x RACTOR ANALYSIS

The Her X-1 data investigated here provided an ex-
ceptionally "mell-behaved" attractor analysis using the
correlation integral method. Even with 1000 data points
per time series, the reconstruction of the attractor
worked out perfectly. The correlation integral curves
(logzC', ' versus log2e) showed a smoothness unusual for
experimental time series data as short as mentioaed. An
example is showa in Fig. 1 of Ref. 16. This behavior
suggests a further investigation with particular respect to
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its system theoretical issues. The present section is con-
sequently organized following the successive steps of the
correlation integral procedure.

A. Requirements upon experimental data

The main points under this title concern the length
and the temporal resolution of the measured time series.
To start with the latter one, the resolution v has been
proposed2 to be chosen in a way that some ten data
points fall into a correlation period of the investigated
process. This correlation period r„„itself can be deter-
mined by an autocorrelation analysis. Too few data
points per correlation period incorrectly yield an un-
correlated (stochastic) process.

There is no basic upper limit to the number of data
points per correlation period. However, a practical limit
exists if the signal amplitude becomes very small due to
high temporal resolution r. Then the (stochastic)
influence of counting statistics prevents an identification
of possibly underlying deterministic chaos.

The process investigated exhibits correlation periods
of 10&3 sec. ' A proper temporal resolution ~ should
therefore be given by some 100 msec. Indeed, a corre-
sponding value of v has impressively confirmed the
above arguments. Too low and too high values of r did
not lead to a convergent behavior of the slope of the
correlation integral curves with increasing embedding di-
mension (see also Sec. IVC). Excellent convergence has
been obtained for v=770 msec [see time series (6d) in
Table II of Ref. 16]. This resolution was simply pro-
duced by integrating the original 9.67-msec resolution
data.

The length of the time series, i.e., the total number N
of data points, represents a second significant problem
for the attractor analysis. %ithout any respect to possi-
ble experimental constraints on X, time series of 500 to

1000 data points have been shown to be sufFicient for a
reasonable estimate of the attractor dimension D' '.
However, the accuracy of the determination of this di-
mension is generally not very high if N is substantially
smaller than 10 .

Nevertheless, we emphasize that the smoothness of
C,' ' (as an important precondition for an accurate deter-
mination of D' ') often depends critically on the number
X of data points per time series. In addition, N Hmits
the reasonable embedding dimension d of the artificial
phase space. %'ith increasing dimension, the number of
pairs of points with small distances decreases, thus lead-
ing to statistically poor results for too high dimensions.

The question of a suScient number N of data points is
important since the required computing time varies qua-
dratically with ¹ Moreover, experimental cir-
cumstances may arise which restrict a measurement of
time series to less than an optimum number of correla-
tion periods. (Here we meet the requirements on ~).
Thus, it is desirable to have a reliable criterion for a
suScient value of ¹ In Sec. V we derive such a cri-
terion and demonstrate its operation.

B. Generation of the artificial phase space

The experimental time series is used to generate the
artificial phase space in which the attractor is to be
reconstructed. As shown in Sec. II, the delay technique
shifts the time series by a time delay b, r =1~, where I has
to be chosen so that the desired sequence of time series
is linearly independent.

A clever idea to determine an optimum value of b, t is
based on the concept of mutual information. Its appli-
cation is, however, problematic, if only a low number of
data points per time series is available. The reason is the
following: Each particular shift causes a number of
I =br lr data points out of the measured time series to
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FIG. l. Phase-space portraits of the investigated time series containing %=1000 data points. X(i) is plotted vs X(i +I). The
time delay used to generate the artificial phase space is given by ht =1~, where ~ is the temporal resolution of the time series. (a)
and (b) show the situation for I = 1 and I =5, respectively. Both situations provide a distribution of points which clearly deviates
fram X(i)=X(i + I ). This case would indicate a linear dependence of the shifted data sets.
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become unutilizable for the analysis. Since the optimum
b, t according to the mutual information concept is usual-

y considerably larger than the correlation period Ecorr&

there may be up to some hundred data points per time
series which remain unused. For a d-dimensional phase
space, this means that possibly some hundred data
points more than Snally required have to be measured.

As this procedure is not practicable for short time
series, we use the approximate test of a suitable ht by
means of two-dimensional representations of the time
series X(i) versus X(i+1), giving a phase-space portrait
of the attractor. In Fig. 1 we show such a phase-space
portrait for 1=1 [Fig. 1(a)] and !=5 [Fig. 1(b)]. The
plotted points represent a series of 1000 data points
recorded with a resolution of 770 msec. Neither in Figs.
1(a) and 1(b) nor for I =2,3,4 is there a tendency of ac-
cumulation around the line X(i ) =X(i +1). Hence, there
is no significant linear dependence between both time
series. Moreover, the similarity of Figs. 1(a) and 1(b)
shows that the analysis is not very critical with respect
to bt. (This is also noted in the determination of C', '

for different values of ht. )

We now inquire into changes in the phase-space por-
traits with decreasing number N of data points. The
corresponding plots can then provide a qualitative ides
of whether the representation with few points is a good
or bad approximation for a representation using more
points. Figure 2 visualizes the phase-space portrait
(I =1) for only 200 successive points out of the time
series shown in Fig. 1. The qualitative impression of the
distribution does not much differ from that in Fig. 1.
Moreover, it is even not remarkably different for
difFerent sets of selected points [Fig. 2(a): 201-400; Fig.
2(b}: 401-600]. In spite of the subjective nature of this
argument, it provides some indication for low require-
ments on a sufficient length of the time series. We shall
quantitatively confirm this argument at a later stage.

C. Evaluation of the correlation integral

Using Eq. (5), the correlation integral C,' ' is calculat-
ed for successive embedding dimensions d. Two salient
points are [cf. Eq. (7)]: (i) the determination of the linear
scaBng range of log2C,' ' versus log&@, required to derive
the slope v; (ii) the convergence behavior of v for in-
creasing d.

A linear scaling range can be demonstrated by a plot
of the slope v between successive calculated values of
log2C', 2' versus log2e. The embedding dimension d is an
additional parameter in such a plot. Figure 3 shows v as
a function of 1ogze for 1~d ~40. The analyzed time
series is the same as used for Fig. 1. The smoothness of
the plots reNects the smoothness of the correlation in-
tegral curves.

A pronounced plateau exists at 2 g v ~ 3. For
sufficiently high embedding dimension (d & 8) it extends
over hlog2e=0. 5. The plateau corresponds to a con-
stant slope of log2C', ' versus }og2e, and thus represents a
linear scaling range. The increasing slope toward lower
values of e means that only at high signal amplitudes
(corresponding to high values of e) does a low-
dimensional attractor appear. For small amplitudes, the
behavior of the measured luminosity indicates stochasti-
city, probably noise. Such a feature has already been ob-
served in the analysis of numerically simulated as well as
experimental data. ' The extension of the linear range
toward low e is limited by stochastic contributions. For
example, d =20 provides e g 2 for the noise dominated
regime and e =2 ' for the characteristic size of the at-
tractor, i.e., a noise level of 50%. For a further integra-
tion of the raw data, yielding a better statistics, we ob-
tain no linear range since v becomes too large to show
correlated behavior.

In Fig. 3 it seems that the slope is slowly increasing
with embedding dimension d. This impression is, due to
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FIG. 2. Phase-space portraits of two difFerent temporal sections of the time series used in Fig. 1. These sections contain N =200
points and are both plotted for I=1. Points 201-400 and 401-600 are showa in (a) and (1), respectively. They indicate a suScient
covering of the attractor with a very lorn number of data points.
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log& g

FIG. 3. Slope v of the logarithm of the correlation integral (log2C', ') vs log2t. up to d =40. The distinct plateau with v=2. 3 in-

dicates the linear scaling range for each particular d as well as the convergence of v for increasing d. This situation describes low-

dimensional chaos 4,
'D(2'= 2.3).

the fact that there appears an increasingly pronounced
hump where the linear range is left toward larger e. A
possible reason for this is boundary effects of the attrac-
tor; when e approaches the size of the attractor, its
boundary contributes a larger amount of data to C„
thus locally increasing the slope. The influence of this
effect grows with d, since the relative number of data
points constituting the boundary increases.

V. GLOBAL SCALING PROPERTIES
OF THE HER X-1 ATTRACTOR

In Sec. IV the main issues brought out were (i) quali-
tatively identical phase-space portraits with different
subsets of points; (ii) exceptional smooth curves of
logzC', ' versus log&a as well as for v versus log2e.

%e now explore the origin of these remarkable results.
To this end, we use the extended concept of dimension
D' ' of arbitrary order q and the spectrum of singulari-
ties f(a) as introduced in Sec. II. As in Sec. IV, we
consider only the attractor representing time series (6d)
in Table II of Ref. 16.

A. Spectrum Of dimensions

The determination of D'q' is carried out according to
Eqs. (6) and (7) of Sec. II. For the present purposes, the
correlation integral C,'~' is determined for d =20 which
ensures a complete embedding of an attractor with
D' ' ~ 3. The suSciency of d =20 will become evident if
the spectrum D'~' does not provide dimensions consider-
ably larger than D' '.

The calculated correlation integrals C,'~'

( —22~q ~22) for d=20 are given in Fig. 4(a). For

reasons to be discussed below, time series of 2000 data
points have been used. As it was the case for C,' ', the
smoothness of the curves is impressive. In order to ob-
tain D ~' from C,'~', we proceeded as described in Secs.
IVB and IVC.

The resulting spectrum of dimensions D '~' for a
stepwidth b.q=0. 25 is shown in Fig. 4(b). The errors
have been obtained as the standard errors of a least-
squares 6t over the linear scaling range of C,'~' for each
particular value of q. The general form of D'»' as a
function of q is in agreement with the condition given by
Eq. (4): D'»' decreases with increasing q. For high
values of

~ q ~, D'»' converges towards D'+'=2. 2 and
D' '=3.5. The low latter value con6rms that a dimen-
sion d =20 still provides complete embedding.

A striking detail of the D'q' spectrum is the almost
constant dimension for q &0. Of course, D' '=2. 30
agrees with the formerly determined value. ' The value
of D' '=2.37 is still not much larger than O' '. A con-
siderable increase of D'~' only appears at negative q.
The errors are smallest for small

~ q ~
.

C',»' and D'»' in Figs. 4(a) and 4(b) have been calculat-
ed from a time series containing 2000 data points. This
deviation from %=1000 is motivated by the idea of
comparing the D'~' spectrum for time series of different
length. If a time series were too short to reflect the en-
tire scaling properties of an attractor reliably, it is ex-
pected that the point densities within the attractor are
more inhomogeneously distributed than for a suf6cient
number of data points. This fact has been clearly
demonstrated for numerically simulated time series. '

Figure 2(a) in Ref. 14 shows a signi6cant increase ofa,„—a;„=D' "'—D'"' [cf. Eqs. (15) and (16)] in the
f(a) spectrum if the length is lowered from 4000 to



1320 H. ATMANSPACHER, H. SCHEINGRABER, AND %.VOGES

iog, C,(qI

- (G)

1.0
I

1.5

7. 0

D(q]

.:{b)

3 5

I i I
I

e. o ~og&E

2000 points. The difference O'-"' —D'"' just provides
the required measure of inhomogeneity. This di8'erence
should converge if the attractor is covered by a sufBcient
number of points refiecting its inherent scaling behavior.

In order to test this for the Her X-1 attractor we used
the spectrum D'~' for additional time series of 560 and
1000 points. The difFerences D ~~~ —D z Ia)o and

O'IIIeij —D2(gz for each particular q then yield a spectrum
of residua (Fig. 5) which clearly shows the equivalence of
the spectra of dimensions. There are no additional inho-
mogeneities caused by the lower numbers of data points,
compared with %=2000. (Note, however, that slight
deviations occur in the range of negative q. ) This quan-
titative result confirms the impression from Figs. 1 and
2. The correct structure of the attractor is available
from relatively short time series. This information is
valuable for the application of the correlation integral
method since various steps of the method sensitively de-
pend on the length of the time series (see Sec. IV).

3. 0

8. Spectrum of singularities

The spectrum of singularities f(a) can be obtained
from D(v' using Eqs. (10) and (11). jsj direct application
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FIG. 4. Derivation of the global scaling properties of a
low-dimensional chaotic attractor reconstructed from 2000
data points in a phase space of dimension d =20 according to
the correlation integral method (Ref. 14). (a) Logarithm of the
correlation integral C',ji' vs log2e, obtained from Eq. (6). The
di8erent curves show the range —22 & q ~ 22 in steps of hq =2.
(b) Generalized dimensions D''j' [Eq. (7)] as derived from the
relevant linear scaling range. The errors represent the stan-
dard errors of the least-squares St yielding the slope v for each
particular q (stepwidth hq=0. 2S). The errors grow with de-
creasing q. (c) The f(a) spectrum due to Eqs. (10) and (11), as
obtained from the dimensions in (b). Although the typical
shape of an f(a) curve can already be recognized, there are a
lot of irregularly distributed points. Note particularly the
steep branch marginally appearing at a =3.6.
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FIG. S. Differences in the spectrum of D(~' for difFerent
numbers N of data points per time series, shown using the resi-
dua Dg' DNitI (a) Dijon —

D jib—; (b) D I~i —D2j~j. Both figures
give clear evidence for the fact that the spectrum of dimensions
is almost identical (within its errors) for difFerent X. Conse-
quently, the investigated attractor is suSeiently reconstructed
with time series of only S60 data points.
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of these equations to the spectrum D'»' as shown in Fig.
4(b) yields Fig. 4(c). Within a couple of scattered points,
the familiar form of an f(a) spectrum with the proper-
ties expressed by Eqs. (12)-(16)can be recognized.

Many of the scattered points result from the fact that
the spectrum D'»' according to Fig. 4(b) partly provides
positive derivatives (d jdq)[(q —1)D'»'j in Eqs. (10) and
(11). Since such Iiositive derivatives contradict Eq. (4),
the spectrum D ~' must be smoothed before being
transformed into f(a). We used a very simple smooth-
ing procedure by performing a linear regression over
b,q =2 for each q. The smoothed version of Fig. 4(b) is
shown in Fig. 6(a).

The f(a } spectrum corresponding to the smoothed
D'»' is presented in Fig. 6(b). The familiar shape shows

up much more clearly than in Fig. 4(c). The left branch
(corresponding to positive q) does not reach f(a;„)=0.
This behavior, revealed only after smoothing of D'~',
refiects the fact that the most concentrated subsets on
the attractor do not represent ideal points (with dimen-
sion zero) but extended sets of points with dimension
f(a;„)=1.75. The right branch provides still f(a,„)
=0 for +max=3 5.

The regularly shaped f(a) spectrum in Fig. 6(b) only
contains the D'»' spectrum for q y —4.5. All values of
D'~' with —12 «q « —4.5 transform into negative values
of f(a) which cannot be seen in Fig. 6(b}. The dimen-
sions D'~' with q « —12 account for the peculiar steep
branch arising at a=3.6 in Fig. 4(c). The negative
values mentioned above represent an extension of this
steep branch (see below).

The most remarkable features of the f(a) spectrum
are the finite value of f(a,„) and its strong asymmetry.
Both properties indicate that subsets with high point
density on the attractor (corresponding to the left
branch) are concentrated in a very narrow density range
(a range). Higher values of a correspond to the more
rare6ed regions on the attractor. The frequency of their
occurrence decreases continuously towards zero. Halsey
et al. present similar situations in Figs. 5 and 12 of Ref.
15. They also report problems with the calculation of
the flat branch of f(a) although performing a different
kind of analysis. In addition, we mention that previous
determinations of f(a) from experimental data for a
Rayleigh-Benard system ' show increasing errors for
increasing 0!.

The particular form of the f(a) spectrum of the Her
X-1 attractor suggests a possible reason for the repeated-
ly mentioned accurate results from the correlation in-
tegral analysis. The attractor is apparently dominated
by its concentrated subsets of almost equal density
(a;„). Hence, the dominant properties of the attractor
can be extracted using a rather low number of points;
most of them are situated in the dense subsets character-
ized by positive q.

This line of argument also gives a possible reason for
the problematic determination of those f(a) correspond-
ing to large negative orders q. For even with N =2000
the number of points might be too low for a sufhcient
representation of the scaling behavior in the rarefied re-
gions of the attractor. Thus, the values of f(a) corre-
sponding to q & —4.5 would indeed turn out to be
caused by a paucity of data points in the rarefied regions
of the attractor.

FIG. 6. (a) Spectra D'»' and (b} f(a) after smoothing the
curve shown in Fig. 4(b). The applied smoothing procedure is
described in the text. (b} represents f(a} as calculated for

q ~ —4.5. D'o", D' "', and D'"' are indicated according to
Eqs. (14)-(16). The most characteristic features of f(a) are its
strong asymmetry and the finite value of f(a;„)=1.75. All
those points which are irregularly spread in Fig. 4(c) are now
bound to the correct f(a}curve. However, we stress the pecu-
liar behavior of f{a}corresponding to q ~ —4.5 which em-

phasizes the steep branch at o;=3.6 in Fig. 4(c). See text for
more details.

The presented investigations pursue the following two-
fold intention.

(1) They describe a couple of methodical details com-
plementary to our recent work on deterministic chaos in
an astrophysical context. ' These details might be valu-
able and helpful under the general viewpoint of the
analysis of at tractors.

(2) The attractor of the investigated system revealed
speci6c properties leading to essential eases for its
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analysis. Its global scaling behavior indicates reasons for
the accuracy of the results obtained by the correlation
integral method. '

The attractor analysis has been carried out for the
process generating irregular variations of the x-ray radi-
ation from the neutron star Her X-1. The global scaling
properties of the attractor, i.e., the spectrum of dimen-
sions and the spectrum of singularities, have been deter-
mined, respectively. The analysis provided extraordi-
narily smooth curves of the correlation integral for time
series of only 1000 data points, thus enabling a clean and
unproblematic determination of D 'eI As a second
surprising result, dimensions of positive order q turned
out to be almost independent of q.

A relation between these two features has been estab-
lished using the spectrum of singularities of the attrac-
tor. It is roughly characterized by a strong asymmetry
which stresses the dominance of subsets with high point
density on the attractor. This asymmetry rejects the
constancy of B'~' for q &0. Simultaneously it gives an
idea of how to explain the low requirements on the
necessary number of data points. These arguments show

that the particular structure of the investigated attractor
is responsible for the smoothness of the correlation in-
tegral curves and thus for the accuracy in determining
D(q)

A valuable criterion for a suScient length of the ana-
lyzed time series has been proposed. It makes use of the
fact that too less data points cause inhomogeneities addi-
tional to those originating in the attractor itself. Since
the degree of inhomogeneity can be quantified by the
global scaling properties, a comparison of these proper-
ties for diferent numbers of data points allows for a
determination of the minimum number needed for reli-
able results.
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