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Spectral density of fluctuations of a double-well DuRng oscillator driven by white noise
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The power spectrum of the archetypal fluctuating bistable system, the underdamped double-well

Dung oscillator, is investigated both experimentally, with use of an electronic circuit, and

theoretically. The experiment confirms previous analytic results for the structure of the spectrum,
including the existence of three distinct peaks within a certain parameter range. The theory is ex-

tended to describe analytically the shape of the peak due to intrawell fluctuations for arbitrary
noise intensities as well as certain other features of the spectrum. Good quantitative agreement of
theory and experiment is demonstrated.

I. INTRODUCTION

The bistable potential has long been a basic element in
the study of dynamical systems in contact with fluctuat-
ing heat baths. Several reviews' serve to introduce the
general topical area and to explore the wide variety of
physical properties of such systems. An early preview of
the very large role to be played by the bistable potential
in fIuctuating nonequilibrium systems and subsequent
discussions of the physical applications has been given
by Landauer. More recent studies on white-noisc forc-
ing have emphasized the Fokker-Planck approach in or-
der to investigate the roles played by additive as well as
multiplicative noise, and to obtain the stationary, mul-
tidimensional statistical densities or escape rates. ' All
these studies have drawn substantially on the original
treatise of Stratonovich; escape rates may also be ob-
tained by use of some other quite general methods. '

More recently, powerful numerical methods for solving
multidimensional Fokker-Planck systems have been set
forth in Risken's monograph, "and a multitude of physi-
cal applications resulting from parametric noise are to be
found in the work of Horsthemke and I.cfever. '

Current emphasis is on systems driven by colored
noise, ' a body of work which once again owes much of
its inspiration to Stratonovich, in the sense that many
analytic, approximate solutions of higher-dimensionality
systems result from expansions of one kind or another
about a white-noise (one-dimensional) theory. ' Al-
though it is the theoretical challenges posed by colored
noise that account in large measure for the high level of
current interest in such systems, the power spectrum or
correlation function of a nonlinear system driven simply
by white noise raises equally challenging problems. In

the present paper, we focus our attention on the
Langevin equation which describes the full (i.e., nonadia-
batically reduced) bistable oscillator.

Though it is possible to obtain an exact theory for the
correlation function (and hence for the power spectrum
through the Wiener-Khintchine theorem) in the limit of
zero damping or zero nonlinearity (for a review, see Ref.
16) the usual difficulties have plagued efforts to obtain
solutions for arbitrary damping and strength of the non-
linearity. Even in the case of weak damping and non-
linearity, as follows from the explicit expressions ob-
tained for this case, the spectrum turns out to be com-
plicated because of "competition" between damping and
nonlinearity and it is their ratio that determines the
shape of the spectrum. A rather large amount of litera-
ture exists commencing with early efForts to obtain the
correlation functions, for arbitrary dampin and non-
linearity with ordinary continued fractions' ' or statist-
ical linearization techniques, and continuing with more
recent discussions2' (see also reviews'6' 3). The prob-
lem becomes much more complicated in the case of a
double-well oscillator. This is due, in particular, to the
characteristic slowing down" of the motion in the vi-
cinity of the top of the potential barrier with weak
damping, so that even weak noise causes relatively
strong fluctuations. The spectrum of an underdamped
bistable system displays some distinctive features, as we
shall scc.

The theoretical approach used herc, based on the
Langevin equation, is particularly convenient for com-
parison with the results of analogue simulation, since in
the latter case it is always the I.angevin equation itself
which is directly simulated. As we show below with
direct measurements made on an analogue simulator of
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the noise-driven, double-well Du5ng oscillator„ three
distinct peaks appear in the power spectra for appropri-
ate values of the damping and noise intensity. Other
groups have also done analogue simulations, ' ' ' but
the power spectra for the system in question have not
previously been measured. Analytically, the power spec-
trum (excluding the zero-frequency peak) was first de-
scribed by Onodera in the limit of zero damping. The
structure of the spectrum for the case of weak damping,
with account taken of all three peaks, and a discussion
of the mechanisms giving rise to this structure, were
given in Ref. 26. More recently developed matrix con-
tinued fraction and associated numerical techniques have
also revealed this structure.

This paper is organized as follows. In Sec. II we out-
line and review the theory and discuss in physical terms
the effect on the shape of the power spectrum of two di-
mensionless parameters related to the damping and the
noise strength. In Sec. III an explicit expression for the
shape of the peak due to intrawe11 trajectories is ob-
tained. It is valid over a broad range of noise intensities.
The ranges where difFerent parameters strongly in6uence
the peak are set forth. In Sec. IV the shape of the peak
near zero frequency is discussed. Section V describes the
analogue simulator, the measurements made on it, and
compares the results to the theory. Finally, Sec. VI
summarizes the results and draws conclusions.

II. RKVIE% OF THE THEORY AND DISCUSSION
OF THE SHAPE OF THE PG%ER SPECTRUM

By changing the equation describing Brownian motion
of the Duffing oscillator with a bistable potential,

q —cooq+yq +2I q =f(t},
(f(t)f(t') ) =28I 5(t —t'),

to the dimensionless variables "time" coot and "coordi-
Ilate (y /coo)q, olle cail easily see that the dynamics of
the oscillator as a whole and the shape of the spectral
density of 6uctuations of coordinates

Q (co)=—Re f dt exp(i cot )(q (t)q (0) )

are determined' ' by two dimensionless parameters,
I /coo and P, where

y8 8
2a)O4

The former, I /coo, is seen from (1) to characterize fric-
tion in the system, while the latter, P, characterizes the
relative intensity of a random force f (t) which acts on
the oscillator. The physical meaning of P is most evi-
dent in the case when both f (t) and the friction force
—2I q in (1) result from coupling of the oscillator to a
thermostat. In that case 8 =2kT and 4P=kT/b U [the
quantity b, U in (3) is the height of the potential barrier
between the equilibrium states of the oscillator as shown
in Fig. 1].

For the underdamped oscillator,

FIG. 1. Potential energy U(q) of the double™well DuSng os-
cillator.

the function Q(co) can have either two or three distinct
peaks depending on the value of P. One of them is locat-
ed at the frequency co=0. At low noise intensities,
4P&g 1, the shape of this peak near the maximum is
formed by fluctuational transitions between the stable
states. As a result of such a transition, the oscillator
coordinate q changes from a value q =q;, corresponding
to that stable state i (i=1,2) occupied prior to transition
to that corresponding to the other state, q = —q;, where

=(—1 ) qo aild qo =cooy . Respectively, the inten-—1/2

sity of the peak is -qo, while the halfwidth is of the or-
der of the transition probability and thus is exponential-
ly small; -I' exp( —1/4P), as shown previously. ' '

At 4P && 1, the oscillator mainly performs small-
amplitude vibrations about one of the stable equilibrium
positions q;. The contribution of this motion to the
function Q(co} is the peak at the frequency co",'„, which
is close to the eigenfrequency of these vibrations in the
limit of zero amplitude,

max 0{I)

With rising P an increasingly important role in the
formation of Q(co) is played by vibrations with trajec-
tories above the barrier of the oscillator potential U(q}
(the overbarrier vibrations). They give rise to the peak
of Q(co) at the frequency co','„, which at comparatively
small P is given by

co','„=moo/ln(16P ') for ln(16P ') &&1 . (6)

The emergence of this peak is connected with the slow-
ing down of the oscillator motion near the top of the
barrier. This causes the eigenfrequency co(E) to tend to
zero rapidly as the oscillator energy E, which is given by

E=—,'p +U(q), U(q)= ——,'cooq +—,'yq

approaches zero, so that co(E) acln '(b, U/~ E
~

) for

~

E
~

/hU ~~1. As a consequence, the peak turns out to
be relatively narrow for small P. Estimates based on the
analytical results and on numerical calculations
show that for P~0.06, the ratio of the height of this
peak at co~,'x to that of the peak caused by the vibrations
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about equilibrium positions at cu",'„ is ~ 0.2 (at
sufficiently small damping), and increases as exp( —1/4P)
with increasing P. We note that the emergence of all the
peaks stated above is a general property of the spectral
density of Auctuations in underdamped bistable sys-
tems.

In the region of the minimum between the peaks at
co",'„and corn,'„, the spectrum Q(co) is formed by the
motion near the top of the potential hump with both
positive and negative energies. Generalizing our previ-
ous approach to include the motion with negative ener-
gies one can show that, for ln(16/P) ~~1, the position of
the minimum is given by

~"„=moo[in(16/P) —ln ln(16/P) ]

With further increases in P, the intensity of the peak
due to overbarrier vibrations at ~','„ increases, while the
peak due to vibrations about equilibrium positions at
~",'„becomes smeared and ultimately coalesces with the
former. For P~0.35 it cannot, in practice, be singled
out in the spectrum. At P~~1 the maximum of the
unified peak is located at m",'„=1.2P'"co,.'"""

The explicit analytical expression for the spectral den-
sity Q(co) may be obtained neglecting dissipation
In this approximation Eq. (1) reduces to an equation
which describes free vibrations of the oscillator,

2P « I /coo « 1, (10}

this broadening mechanism is the dominant one, and
near the maximum, i.e., when

~

co —~ov 2
t

&&coo, the
shape of the peak of Q(co) is Lorentzian with a halfwidth
r.

As the noise intensity increases, another broadening
mechanism plays an increasingly important role, namely,
modulational broadening. ' ' It is connected with the
nonlinearity of the now larger amplitude vibrations
about the stable states. This nonlinearity causes a de-
pendence of the vibration eigenfrequency co(E) on the
oscillator energy E. As a result of this dependence ener-
gy straggling, which is due to a random force, gives rise
to frequency straggling and, therefore, to broadening of
the peak of Q(co ). The characteristic modulational
broadening 5' at small P is

5a)-8
~
[den(E)/dE]s

i -Phoo, E;„=—AU—=—
min

0& min

librium positions are practically linear. In the absence
of dissipation they give rise to the 6-function-shaped
peak of Q(co) at their eigenfrequency mov'2. Dissipation
results in the vibration frequency uncertainty -I and
therefore causes the broadening of the peak. For

q oq+yq =0 .

To find Q(co) one can multiply the solution q(t) of (I')
by q(0), average the product over the initial values of
the coordinate q (0) and momentum p (0) with the
wej.ght sr ~

ic„=w„(E)=Z 'exp( 2E/8 ), —

Z = J dq dp exp( —2E/8),
(9)

and then obtain from (2) the Fourier transform. ' The
resulting expression for Q(co) can then be analyzed in
the limiting cases treated earlier.

For 4P~&1 ~~I /mo this "dissipationless" approxima-
tion describes Q(co) well over the whole range of the
broad peak at nonzero frequency. For 4P & 1 and
I /coo«1 the range of its applicability becomes more
limited in frequency. However, it may be used to de-
scribe semiquantitatively the middle peak of Q(co), when
it is distinct, and also to describe the substantial part of
the peak due to intrawell vibrations for @~~I /mo. In
the range P I /coo the dissipation qualitatively
influences the shape of the latter peak. It determines
also the shape of the zero-frequency peak. The depen-
dence of Q(a&) on I is nonanalytic in the corresponding
frequence ranges.

where 8 determines the characteristic width of the ener-

gy distribution [cf. (9)] and where E;„ is the minimum
oscillator energy. For a single-well quantum oscillator
the emergence of modulational broadening was shown
when considering localized vibrations in solids. The
dynamics of such vibrations has much in common with
the Brownian motion of an underdamped nonlinear oscil-
lator. "

In the parameter range where 2P- I /coo both
broadening mechanisms make contributions of the same
order of magnitude, that is 5'-i, and the shape of the
spectral peak under consideration is determined by the
competition between them. The peak may be described
here using previous results "with the aid of a certain
special method, the spectrum of Auctuations was found
for a single-well nonlinear oscillator at arbitrary 5co/I,
neglecting the corrections —I /coo and -4P. The ap-
proximations made in Ref. 17(a) correspond, in essence,
to account being taken only of the linear terms in the ex-
pansion of the vibration eigenfrequency co(E) in E

E;„aswell as o—f only the term ~ (E E;„)' in the-
expansion of the vibration amplitude.

For nonlinear vibrations about the stable states of the
oscillator under consideration, where, to first order in

29
Emin ~

co(E}=coov'2(1—
—,', e), e=(E E;„)/b U, e «1, —

In the limit of a vanishingly small "reduced'* noise in-
tensity P, the oscillator vibrations about the stable equi-

one obtains, by generalizing slightly the previous re-
sults, ' that at small but 6nite damping
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Q(co)=Q(0), 0=co—copv'2,
i
0

~
&&coo,

Q(0)=C&Re I dt exp(iQt)Q(t),

Q(t) =exp( I t )[cosh(at )+(I /a)(1 —2ia)sinh(at )]

onant vibrations, including the overtones, contribute to
Q(co) in the dissipationless approximation] is E E- ;„
= ——,'80/Qo according to (12}and (15), and that the os-
cillator distribution in energy is of the form (9). The
maximum of the function (15) lies at

(13a) co",'„=coov'2(1 „'P—),—2p&) I /coo (P & 0.03 } . (14')

a = I (1 4—ia)', a = —,'&2P r
v'Z a'

Ci =—C, (0)=CiC't'(0), C'i ——
3

Z 'exp
~o

C')'(0) = 1+
2+2coo

We note that to lowest order in P,

1 2.Z=~&2a~ exp(1/4P), C; = qp'P; qo=~py
4m

(13b)

Just this value of CI was used, in essence, in Ref. 17(a)
instead of C, . C', coincides with C, near the maximum
of peak (

I
0

I
«coo) with the accuracy to P, I /coo

adopted in Ref. 17(a). The additional approximating
factor C", (0) is introduced in (13a) in such a way that it
is close to unity at

~
0

~
&&coo and describes here

correctly the addition —
~

0
~

/cop for P &&I /coo [within
the framework of the model adopted in deriving (13a), in
particular, when (12) is fulftlled]. At the same time the
factor C t' (0 ) makes it possible to use (13a) when
describing the wings relatively far from the peak for
small P «1.

It is seen from Eq. (13a) that the shape of the peak de-
pends on the single parameter a which is proportional to
a ratio of two small quantities, P and I /coo. The func-
tion Q(0)/Ct, for difFerent a, was analyzed in detail in
Ref. 17(a) [for convenience the sign of the parameter a
in (13a) is opposite to that in Ref. 17(a)]. At 4a «1 the
shape of peak of Q(0) is close to a Lorentzian, and the
maxlIIlum lies at

co",'„=coo~2(1——32P), 2P && I /cop .

With rising a the deviation of the shape of' the peak
from a Lorentzian becomes more and more substantial,
the asymmetry of the peak becomes appreciable, and at
4n «~1, near the maximum,

Q(0)=Q' '(0),

Q (0)=m C& exp — 8( —0),—(o)

Qo

Qo= —Pcoo )
0

~

))I
~

a
~

~~2 2P))1'/coo,
2&2

~here &(x) is the step function. The expression (15)
does not contain the friction coeScient I . It coincides
with the expression for Q (co} given b~ the dissipationless
approxlmatlon lI1 the range c0 coov 2. This may be easi-
ly understood if one notes that the energy of the vibra-
tions with the eigenfrequency co(E)=co=coov'2 [only res-

Near the maximum, 0= —Qo, the dissipation-induced
corrections to Q

' '(0) are -a ' «1.' "'
The function Q' '(0) is seen from (15) to have a

singular point at 0=0, that is, when co=cop&2. The
derivative dQ' '/dco is discontinuous here. This point
corresponds to the end point in the spectrum of in-
trawell vibration eigenfrequencies. The presence of a
singular point in the eigenfrequency spectrum results in
a nonanalytic dependence of Q(co) on I in the respective
frequency range,

Q(0) C 0 'a ' iQi &a' I (16)

Q(co)=Q' '(co)+Q (0)—Q
' '(0), (18)

where Q' '(co) is the result of the dissipationless approxi-

that is, Q (0 ) ~ I'
In the wings of the peak where

~

0
~

&&I,Qpln(1
+a), the function Q(0) is also determined by dissipa-
tion. According to (13a),

Q(0) =8cooCI I'(co 2coo) —
~

0
~

)&I ~Qoln(1+a)

(17)

The spectrum (17) coincides with the spectrum of a har-
monic oscillator with an eigenfrequency coo&2 and a
friction coef6cient I". Weak nonlinearity of the vibra-
tions about the stable states requires corrections of the
order of P in the range

~

0
~

cop.
For P& I /cop an inaccuracy of Eq. (13a) is due to the

neglect of both the corrections —I /coo and those of the
order of P, with the result that it weakly depends on fre-
quency. At P&) I /coo the main source of inaccuracy is
the neglect of the terms of higher order in
e=(E E;„)ISU in (12)—and in the expression for the
vibration amplitude. For such values of Pcoo/I the inac-
curacy grows as co moves toward the low-frequency wing
of Q(c0), since for a given co(

~
0

~

-Qo) the spectrum is
formed mainly by vibrations with co(E)=co and, there-
fore, an increase in

~

0
~

causes an increase in the value
of e for resonant vibrations [e= —4PQ/Qo according to
(12)]. It follows from the explicit expressions for the vi-
bration parameters that if one wants the expression (15)
to differ from the exact result of the dissipationless ap-
proximation by &20% up to frequencies 0 for which
Q

' '(0) «0.2Q ','„(0), the values of P should be limited
to P&0.03 (then e &

—,'). This limitation is adopted in
(14'). It follows from these results that it is practicable
to obtain an expression for the spectrum Q(co) in the
range of the peak, located at co=coo&'2, which includes
the effects of dissipation, on the one hand, and on the
other hand, is not limited to the range of very small p;
this is one of the aims of the present paper. The
relevant expression is shown below to be of the form
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mation while Q(Q) and Q' '(0) are given by (13a)
and (15).

For small (0101/2 —01)/010''2 the main term in Q' '(0j)
goes ovcf llllo Q (0)»

=81 (5U) cp» RIld Dy=2I p/c'. Tllc c11Rfactcflstlc
value I, of the time, within which the spectrum Q(co) is
formed at

~

0
~

& I a', and the characteristic value
e=@„are determined obviously by the condition

~

I0 0j0—V'2
U&
—

~
I, -(D&t, )'~ —1. This gives I,

-(I a' ) ', c, -P/v'a-(PI /010)' {for such values of
e„ t„ the change of the vibration phase due to drift and
diffusion in energy is -1 as well). Thus C, -P/v'a
indeed, and therefore the inaccuracy of (18) is —P/
I/a-(PI /co0)'~ .

In the range of the wings relatively far from the peak,
and at sufficientl small p where Q(0j) is deterlnined by
dissipative processes and (17) holds, the relative inaccu-
racy of (18) is -p, but Q(01) itself is very small here. At
higher p this inaccuracy decreases in the range 010''2
p co Q Qpp clue to a sharp increase of the contributions
from processes unrelated to dissipation. As a result of
this, the halfwidth of the peak increases as well. In par-
ticular, for P as small as 0.07 the halfwidth turns out to
be of the order of mo.

In the range 0I &010 an addend Qs, which is nonanalyt-
1cln I,

0)0+2 —0j

670+2
~

Q(0j( ) Q(0j(~) Q (Oj(II)
~ /Q (0j

010+2—0j «1 .

' 1/2
COO 1

Qs - — exp (20)
'Y 0jo

should be taken into account in (18) at not too small P.
It is caused by motion within a narrow energy band near
the top of the potential barrier,

~

E
~

(E„where
E, =(p1 /f00)'~ bU. This motion is essentially random
and aperiodic. The term (20) gives the main correction
to the result of the dissipationless approximation in the
range coo~ co ~~I „ if

I I 1»jg exp
No

(21)

The aperiodicity of motion with energies
f
E

~
E,

causes the middle (in frequency) peak of Q(01) to be
somewhat different in shape from that of Q' '(0I). The
difrerence is most prominent in the frequency ranges
co (co, and 0j"„(0j(20j„with 0j, =co(E, ) =Ifco0/
ln(646, U/E, ), where Q' '(0j) is formed just by vibrations
whose energies E [determined from the equation
01(E)=co] are (E, in absolute value. In particular, the
smearing of frequencies of the respective vibrations
causes Q(co) to be smaller than Q' '(0j) in the vicinity of
c and 2c

IV. THK WING OF THK ZERO-FRKQUKNCY PEAK

The form of Q(I0) at very small frequencies is deter-
mined by dissipation and turns out to be quite compli-
cated. At 0j=0 the function Q(0j) was mentioned to
have a peak. At small P this peak near its maximum is
described by the exponentially narrow' ' "distribu-
tion Q, (01), given by

Q(0j) =Q, (0j), (0 «(I, exp( —1/40) (&1,

Q, (0j)=—q01" /(CO +I"' ),
I '=A.0I p 'exp( —1/4p), A,0-1 .

The term Q(, '(co) in (19) is due to vibrations with large
amplitude, and is thus exponentially small for small P;
we note that the contribution to Q(0j) made by large-
amplitude vibrations at 0I &010 and 4p&1 is well de-
scribed by Q' j(co), since the frequency stragghng for the
actual vibrations 5'�&010»1. It is evident from (19)
that in the range p(I'/co0, where Q(Q) approximates
Q(01) with an accuracy of I /010, the inaccuracy of Eq.
(18) is also —I /010«1. The latter is the case as well
for p» I /010.

At p» I"/010 it is convenient to show the validity and
to estimate accuracy of Eq. (18) by analyzing the
Fourier-transformed Einstein-Fokker-Planck equation
for the probability density of a transition from one point
in the phase space to another. In the frequency range

~

0
~

&&I a'~' this equation may be solved by perturba-
tion theory in (z, with the zeroth-order approximation
corresponding to the dissipationless solution. At —0
-Q0, i.e., near the maximum of the spectral peak under
consldcfatlon, this glvcs Eq. (18) fof Q(01) wltlllfl R11 ac-
curacy 5Q(co)/Q(0j)-I /010«p, if p«1. [Note that
the dissipation-induced correction is itself Q(Q)
—Q (0 ), RIld its I'Rtlo to Q (0j ) ls RppfoxlII1Rtcly
I /n0»1 /~0. ]

Equation (18) also well describes the spectrum in the
range

~

0
~

& I a'~ where the peak goes over into the
high-frequency wing and Q(01) is nonanalytic in I . The
inaccuracy of {18), 5Q(0j)/Q(01), is -p/I/a «p here,
while 5Q(01)/Q(01",'„)-1 /010. This estimate can be ob-
tained rigorously by making use of a method for solution
of the Einstein-Fokker-Planck equation which some of
us have suggested previously, ' ' ' but it follows also from
qualitative considerations. Indeed, to obtain the above
estimate it suffices to show that Q(01) at

~

0
~

( I a is
determined mainly by vibrations with dimensionless en-
ergies e-J(3/+tz [with the exception of the contribution
QI, '(0I) made by large-amplitude vibrations, which is,
however, taken into account in Q' '(01) in (18)]. Then
the inaccuracy of the equation Q(0j) —Q(, '(0j) =Q(&) is
—p/+a, since just those corrections -e and-I /010 «({j(/I/a were neglected in obtaining the expres-
sion (13a) for Q(Q). This is also true of the inaccuracy
of Eq. (18) as a whole, since

~

Q' j(co)—Ql, '(0j)
—Q

' '(0)
~
-(p /v'a)Q(0j) for respective frequencies

delineated in (19) and (16).
To determine the characteristic value of e, we note

that in the model of Rcf. 26 the drift (Ijz, u~) and
diffusion (DF,D&) coefficients for the vibration energy E
and the "slow" part of phase p 010''2t-
are Uz

———2I 6 U(c'+2p), U~ ———(3v'2/16)010',
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The halfwidth of Q, (co), I", is determined by the proba-
bility of interwell transitions, which is the fundamental

problem originally discussed by Kramers. The value of
A,o for the double-well DuSng oscillator has been calcu-
lated by Ris en and Voigtlaender. ""'

In the frequency range co-I » I", the function Q, (co)

is exponentially small. The spectral density Q(co) in this

range is formed by vibrations about the stable states. In
order to calculate Q(co) it is convenient to express the
oscillator coordinate for the vibrations within the jth
well (j =1,2) in terms of the energy E and phase p,

Q(co)= g Q, (co),
J =1~2

Q, (co)=—Re I dte' '(q, (t)q (0)),
(24)

q, (t)=q,' '(E(t)) .

According to Ref. 26

qj '(E)={—1Y qoco( E) /coo+ 2~ qo=cooy ~ (25)

It is evident from (24) that the distribution Q(co) is
~orked out in terms of the oscillator energy E, and thus
of qj '(E), varying in time due to dissipation and ffuctua-
tions. At small p, when small E E;„are esse—ntial, the
dependence of qj

' on E E;„is seen f—rom (25) and (12)
to be linear, and

9 22 2I
Q(co)= qoP, I"«co &&coo .

16m
(26)

We have taken into account here that for small p the
nonlinearity of vibrations about stable states is small,
and for such vibrations the energy averaged over the
random force realizations, (E E;„)f, varies —in time
as"

(E (t) E;„)f= [E(0—) E;„—8/2]exp( ——2I t)+8/2 .

The distribution Q(co) is seen from (26) to have the
form of a Lorentzian peak with a halfwidth 2I . The in-
tensity of the peak is proportional to the small quantity
p . It should be noted that the emergence of a peak of
similar type for a single-mell quantum oscillator with a
weakly asymmetric (and weakly anharmonic) potential
was demonstrated, in essence, when analyzing the low-
frequency absorption of electromagnetic waves by local-
ized vibrations in solids.

For sufficiently small p when the ranges of applicabili-
ty of Eqs. (13) and (26) overlap„ t.e., when the wmgs of

qj = g q,'"'(E)cos(ng) . (23}
n=0

(The explicit expressions for q~'"' are given in Ref. 26.)
The terms with n&0 in this expansion oscillate in time
as exp[kinco(E)t], and therefore on substitution of (23)
into the expression (2) for Q(co), they make only small,
nonresonant contributions to Q(co) at frequencies
co«co(E). The main contribution is due to the term
with n=0, i.e., to fiuctuations of the value of coordinate
averaged over the vibration period 2mco '(E),

Q(co)=Q(co) I «co-I «coo exp( 1/4p) «1

Equation (27) is satisfied provided only the small-

amplitude vibrations about the stable states contribute to
Q(co) at co=co' „, while the contribution made by vibra-
tions with energies E —E;„-AU is negligible. Taking
into account the explicit expression for the latter ob-
tained in Ref. 26 one obtains a criterion of validity of
(27) in the form

I »Mp exp (-',p).

1
p exp

2
(28)

where these inequalities correspond to BQ(Q)/Bco
~»

~

c}Q' '(co)/Bco
~

at co=co' „and Q(co';„)&&Qfl with
M-10. It should be noted that, as a consequence of
the sharp increase in the intensity of fiuctuations when
the oscillator energy approaches the local potential max-
imum, the approximation (26) is valid only at rather
small P.

Thus, we have analyzed the features of the spectral
density of ffuctuations Q (co) for an underdamped
double-well Duing oscillator and pointed out the physi-
cal mechanisms causing these features. The analytic ex-
pressions for Q (co } in a wide parameter range have been
given as well. For particular parameter values the func-
tion Q(co) may also be calculated in another way, by
solving numerically the Einstein-Fokker-Planck equa-
tion. Such a solution for p=0.05 and 0.25 and several
I /coo was obtained in a recent paper.

V. ANALOGUE SIMULATION EXPERIMENTS

In order to establish whether or not the interesting
phenomena discussed in the preceding sections occur in
actuality in a real physical system, we have studied the
efkct of pseudowhite external noise on an electronic cir-
cuit model of (1) with coo ——1. The circuit in question
was essentially the same as one described previously in
connection with colored noise experiments. For the
present work, however, the damping constant I was
made as small as possible consistent with the avoidance
of instabilities or self oscillation. The correlation time
~& of the noise applied to the circuit was made very
much shorter than the time constants ~z of the two in-

tegrators: for the measurements to be reported ~~ =10
ps, ~1=0.33 ms. The noise was therefore perceived by
the circuit as white and of intensity

(29)

where ( Vz) was the mean-square noise voltage applied
to the circuit. The magnitude of I was too small to be
measured directly, being to a significant extent deter-
mined by nonidealities of the analogue components
comprising the circuit, but it was inferred from measure-

the zero-frequency peak and the peak at co=coov'2 over-

lap, the position m~„of the lowest frequency minimum
of Q (co},as follows from {17)and (26), is given by

' ]/4

(27)



SPECTRAL DENSITY OF FLUCTUATIONS GF A DOUBLE-. . . 1309

$0 80

1030(u)

0'
0

4

2
4l/4)0

0 )

0

80 80

10 Q(~) 103Q4)

40 40.

0
0 2

4!/td0

Qi

0

1030(v)

200-
i

103QIu))

400. '

200-

0
3

FIG. 2. Power spectral densities Q (r0) measured for the electronic circuit model of a Duffing oscillator driven by a random force
(solid curves) compared with theoretical predictions (dashed curves) for (a) P=0.0055; (b) 0.0142; (c) 0.0291; (d) 0.060; (e) 0.149; (f)
0.369. Those sections of the theoretical curves that have been calculated in the nondissipative approximation are shown dashed;
where explicit account has been taken of dissipative effects, the curves are dotted.
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ments of (j ) =8 for known values of ( VN ). It was
found by this method that I =0.015%5%, a value which
turned out to be consistent with that obtained from the
halfwidth of the intrawell oscillation peak for small P
(see below).

The q(t) output of the circuit was analyzed by means
of a Nicolet 1080 data processor. The signal was discre-
tized into blocks of 1024 samples, each of which was di-
gitized with 12-bit {binary digit) precision. A standard
fast-Fourier-transform (FPI} technique was applied in
turn to each block to compute Q(co). This operation
was repeated typically 500-1000 times, the resultant
Q(ru) spectra being summation averaged in order to
enhance their statistical quality. It should be em-
phasized that these procedures in no way affected the
operation of the circuit and that the role of the digital
data processor was purely instrumental and/or analyti-
cal.

A set of experimental Q(ro} spectra measured in this
way for a range of values of P is shown in Fig. 2. It may
be noted immediately that the results are in excellent
qualitative agreement with the discussion given above
and that, for the range 0.06$P&0.2, Q(co) has the three
distinct peaks predicted by the theory.

To facilitate a more detailed comparison of theory and
experiment there are also plotted in Fig. 2(a)-2(f} the
theoretical curves obtained for the appropriate values of
P and I'/&00 by using the explicit expressions (18), (13),
and (26) (the parts of curves calculated within the dissi-
pationless approximation are shown dashed). The
theoretical and experimental caves are evidently close
to each other over a wide frequency range. The general
form of the peaks of Q{ro), including their width, asym-
metry, and height ratio (for the peaks at frequencies
ru",'„and ram,'„), as well as the evolution of their overall
shape and the shift of maxima with varying P in the ex-
periment are the same as in theory. The positions of the
high-frequency and middle maxima mimi", „' as weB as the
positions of the minimum between them ro';„ in the ex-
perimental and theoretical curves are also close (cf. Fig.
3). It can be seen, however, that the theoretical values
of ei{m;„',c0"„are systematically smaller than the experi-
mental ones.

At P=0.0055 the peak in the experimental spectrum is
seen from Fig. 2(a) to be practically Lorentzian. This
makes it convenient to use that data for an alternative
determination of the friction coellcient I . In the theory
the peak shape at small P is described by the function
Q(Q) in (13a). The simple algebraic expression for
Q(Q) when the peak shape is close to being Lorentzian,
i.e., when the parameter a =(3/4v 2)pruo/I is small, has
been obtained previously. ' " It follows from this ex-
pression that the halfwidth of the peak is =I'{1+—'„'a ).
8y comparing the latter expression with the halfwidth of
the experimenta1 curve, assumed symmetrical, we obtain
I /F00=0.022 and o, =0.13 for P=0.0055. It follows
from (14) that for such a the maximum of Q (co) is shift-
ed from couv 2 to lower frequencies by = (3/
v 2)peso=0. 012coo. At the same time the maximum of
the experimental curve is displaced from roc&2 to higher
frequencies by =0.025coc. Because the frequency coo~2
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is the largest eigenfrequency of intrawell vibrations of
the DuSng oscillator, the displacement of that peak to
frequencies exceeding roc&2 at small P must necessarily
be connected with small systematic di8'erences between
the real system investigated experimentally, and the
idealized DuSng oscillator model considered by the
theory.

As P increases, intrawell vibrations with higher ener-
gies and correspondingly smaller eigenfrequencies con-
tribute to Q (co) more and more, and the peak under con-
sideration is shifted to smaller frequencies. At the same
time the nonlinearity of the vibrations in6uences more
and more the shape of the peak. Since this inhuence de-
pends on the ratio of the two small parameters, P and
I /coo, even for P as small as 0.0142 [Fig. 2(b)] the peak
turns out to be somewhat asymmetric in both the
theoretical and experimental curves; the curves are
parallel, and their halfwidths exceed the P=O value by a
factor of —1.4; the theoretical curve is obtained from
(13a) where a =0.35.

The asymmetry and the halfwidth of the peak under
consideration increase rapidly with increasing P [cf.
Figs. 2(b) —2(e)]. The theoretical curves in the region of

FIG. 3. Frequencies of the extrems in Q {co) plotted as func-
tions of the noise intensity P. The positions of maxima co",'„
snd co'2,)„measured for the analogue electronic circuit are
shown as crosses; those of the minimum between them, co" „,
and of the minimum between the zero-frequency peak and
ro','„, are shown by open circles. The curves are theoretical
predictions, with calculations in the nondissipative approxima-
tion shown dashed, and those that include dissipative effects
shown as solid curves. The short section of solid curve in the
lower left of the figure refers to the range of small P where
only a single minimum is to be expected; the gsp separating it
from the other curves and data represents s parameter range
where three adjacent extrems are so broad that useful measure-
ments of their positions become impossible„as indicated by the
single wide bsr.
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the peak in Figs. 2(c)-2(e) are calculated from (18),
which, as it was shown above, is valid in a wide range of
P and ~ [for the values of P in Fig. 2(a) and 2(b}, Eqs.
(18) and (13) coincide to within -2% inside the peak].
It is clear that (18}describes very well the experimental
curves {provided that account is taken of the small sys-
tematic shift in frequency mentioned above). The exper-
iment can therefore be taken to confirm the
conclusion' "that the peak shape arises as the result of
a competition between dissipative snd nondissipative
broadening mechanisms. %'e note that for s single-well
nonlinear underdamped oscillator the cbange of shape of
the spectral density peak, and the shift in its position, as
a is varied was observed in an earlier analogue experi-
ment by Fronzoni er a1. ;23 however, a detailed compar-
ison with theory was not carried out in that paper.

For the values of P in Figs. 2(a)-2(d) the halfwidth I"
(22) of the zero-frequency peak of Q(~) is so small that
most of the peak could not in practice be plotted. For
P=0.0055 the peak as a whole is 5 shaped within the
scale chosen in Fig. 2{a). The wing of the peak at
P=0.0142 [Fig. 2(b)] is formed mainly by small-
amplitude nonlinear vibrations about the stable states
and is described by (26). For the higher values of P in-
vestigated experimentally the additions to (26} caused by
the oscillator motion with relatively high energies can be
shown to be essential. Within the range of its applicabil-
ity (26) clearly ffts the experimental data very well as
shown, for example, in Fig. 2(b).

The most distinctive feature of the spectra shown in

Figs. 2(d) and 2(e) is the presence of three separate peaks
of Q(co). It is seen from these figures, that although the
shapes and heights of the middle peaks in the theoretical
and experimental curves are similar, the disagreement
between theory and experiment in the region of the mid-
dle peak is much more prominent than in the case of the
high-frequency peak; furthermore, it does not simply
correspond to the shift in frequency. This arises in large
measure from the neglect of dissipation in calculating
Q(co) in the vicinity of the middle peak [cf. the discus-
sion which follows (20) and (21) in Sec. III]. In particu-
lar, for the experimental values of I /coo and P, the fre-
quency co, turns out to be close to the position (6) of the
maximum of Q' '(co); it follows, therefore, from the ar-
guments of Sec. III, that the maximum of Q(m) shifts to
higher frequencies and that the height of the peak is
smaller than in the dissipationless approximation. An
appreciable inffuence of dissipation on the middle peak
at 4P~~1 is seen also from the results of Voigtlaender
and Risken "for P=0.05.

An important additional source of disagreement be-
tween theory and experiment in the range of the middle
peak of Q(co) probably lies in the small systematic
difFerences between the real system investigated experi-
mentally and the idealized model (1). The coordinate q
and momentum p of the oscillator performing the over-
barrier vibrations, which form the peak, vary over par-
ticularly wide intervals exceeding 2qo&2 and co~0&2,
respectively. Therefore, to describe the peak shape
quantitatively, the model should be close to the real sys-
tem throughout this very large parameter range. This

applies to the potential shape, the friction force, snd the
distribution of the random force f (t) (in particular, in a
real system the friction coef6cient snd the random force
may depend on dynaniical variables}. The sensitivity of
the middle peak of Q(co) to parameters of a system is
especially high when 4P && 1, since the peak arises here
as the result of s competition between large addends in
the exponent [one of them reffecting the distribution of
large fluctuations of f (t)]. We note also a strong depen-
dence of the peak height on the noise-intensity parame-
ter P when 4P g& 1, namely that BlnQ (co',„)/BlnP
=(4P) '»l.

The loci of the extrema of Q (co) as functions of P were
investigated experimentally by local parabolic interpola-
tion of spectra such as those of Fig. 2. The results of
this procedure are shown by the data points of Fig. 3,
where the circles represent minima and the crosses
represent maxima. The lines in the 6gure represent
theoretical values based on the discussion of Secs. II-IV.
These data correspond to the positions ~m(",„and ~m~,'„of
the maxima of the right-hand side and middle peaks of
Q(co), as well as to the values of the position ro" „ofthe
minimum between these peaks [at P50.06 the values of
~~(",„' and ~"„resulting from numerical calculations
based on (18) are well described by simple analytic ex-
pressions (14), (14') (6), and (8)]. Also plotted in Fig. 3
are the experimental data for the position co' „ofthe left
minimum, which lies between the zero-frequency peak of
Q(co) and the middle one, and theoretical and experi-
mental data for the position u;„of the minimum of
Q(co) within the range of P for which (at the experimen-
tal value of I'/coo) the middle peak is not manifested.

The theoretical values of co;„are obtained from (27).
It should be noted that in the region P=0.03-0.04,
where the middle peak of Q(co) becomes distinct for a
given I /coo, the values of co;„and co','„given by (27)
and (6), respectively, are very close to one another.
Therefore, it seems when looking at Fig. 3 that, in a nar-
row range of P, the frequency co;„"splits" three ways
into co' „, co~,'» and co~ „. In reality, since co~,'„as given

by (6) is slightly smaller than co;„as given by (27) for
P=0.03—0.04, one would expect co;„ to go over into
co"„as P increases. Only for values of I"/coo smaller by

many times than those in the experimental device will
(2)~m;„go over into ~;„.

It is evident from Fig. 3 that the theory well describes
only the experimental data for ~"„,~;„,and

(especially if one allows for a systematic shift of the
latter) at comparitively small P, but also the data for
co','„at relatively large P, when dissipation-induced
corrections to Q(co) are small near the maximum of
peak [see also Fig. 2(f)].

VI. CDNCI. USIDN

The analogue experiments have fully vindicated the
prediction, based (a) on an analytic theory and (b) on
matrix continued fraction expansion, ('] that under cer-
tain conditions Q (e) for the double-well Duffing oscilla-
tor will possess three separate maxima. The analytic
theory' ' has been extended to provide a description of
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the shape of the peak due to intrawell vibrations valid
for arbitrary noise intensities. The wing of the zero-
frequency peak at wreak noise is described as mell. The
theoretical results concerning not only the general struc-
ture of the spectrum, but also the shapes, intensities, and
positions of the peaks at 5nite frequencies are in good
agreement with analogue experiment [and especially so if
due account is takeIl of a small systematic shift in fre-
quency in the latter caused by imperfect modeling of (1)
by the circuit]. We note in particular the quantitative
confirmation of the predicted' rather complicated shape
of the peak due to underdamped intrawell vibrations
even for small noise intensities. The fact that the pre-
dicted' ' evolution of Q(co) with P has now been
con5rmed in a well-characterized "real physical system, "
albeit one that is somewhat contrived in character, can
be taken to imply that very similar phenomena may
confidently be anticipated in a very wide range of under-
damped bistable systems occurring in nature.

%e conclude by commenting on ho~ remarkable it is

that the peak at zero frequency has so consistently been
ignored in previous theories, and especially so given that
low-frequency hopping between potential wells in an un-
derdamped bistable system was exactly the problem first
considered by Kramers in 1940. Certainly, noise or
thermally induced hopping among bound or localized
states is necessarily a beginning point for modeling the
wide variety of noise encountered in nature. It is our
hope that the experimental results and theoretical dis-
cussion given above mill have served to clarify a murky
point that is nonetheless of wide ranging relevance and
importance.
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