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Theoretical results are given for the ionization state, electrical conductivity, thermal conductivi-

ty, and thermoelectric coeScient for the entire Periodic Table over extreme ranges of temperature
and density. A spherical average ion embedded in a uniforxn plasma background is used as a mod-
el to evaluate the electron densities of states, elastic scattering cross sections, and ionization states.
These are then combined with one-component plasma structure factors to compute mean re1axa-

tion times and electrical resistivities according to an extended Ziman formula. The method of
Lampe is used to compute thermal conductivities and thermoelectric coeScients from these values.
Some experimental comparisons are made. The transport coeScients appear to be accurate for
weakly and moderately correlated plasmas, but not for strongly correlated liquids or crystalline
materials. The coeScients are tabulated as numerical functions of temperature and density. The
tables extend in temperature from 10 to 10 eV. Density ranges depend upon atomic mass;
lower limits range from 10 to 10 ~ g/cm', and upper limits range from 10' to 10 g/cm'. Indi-
cations are given of the regions of validity of the results.

I. INTRODUCTION

The extended Ziman formula for mean relaxation time
or electrical resistivity may be derived from several
di8'erent points of view. It is perhaps most simply
shown to be valid in the weak scattering limit as a
di8ractive correction to the classical kinetic formula' or
to the elementary solution of the Boltzmann equation. ~

The resistivity formula may be shown to be an upper
bound derived from a variational solution of the
Boltzmann equation. Other direct approaches allow for
strong scattering but require sn interstitial region of
free-electron propagation, or show numerical
equivalence to corresponding solutions of the Lenard-
Bslescu equation. These analyses indicate that the ex-
tended formula is valid in general in the low-density lim-
it for scattering of any strength, but quantitative bounds
on its validity have not been established.

The purpose of the present work is to describe sys-
tematic results of a consistent theoretical application of
the Ziman formula over the Periodic Table. We have no
adjustable parameters in the calculation of relaxation

time, although there is some latitude in the initial choice
of potential for each element. The resistivity contains
additional physical assumptions about the density of
charge carriers. %e have adopted the Boltzmann ex-
pression for this density by factoring the variational
resistivity formula. However, the general accuracy of
this expression is not clear, and some alternatives are
discussed. Our principal intent in separating the discus-
sion of mean relaxation time from resistivity and charge
carrier density is to aid in physical interpretation and in
some manipulations of the results. %e are interested in
extreme ranges of temperature and density, as shown
schematically in Fig. l, and a wide variety of elements
and mixtures. Earlier forms of this model have been ex-

plored previously ' A plane-wave approximation to it
hss been applied systematically over the entire Periodic
Table. The new aspects of the present work are some
improvements in the physical model, the extensive re-
sults, and new comparisons with dense plasma experi-
ments.

Besides use of the Zimsn formula itself, our principal
approximation arises from the assumed geometry.
Spherical, average ionic potentials, which in some sense
represent "typical" ions in the material, are used to gen-
erate the electron-ion cross sections snd densities of
states. This approximation is diScult to justify whenev-
er there exists long-range ionic order, such as for crys-
tals or strongly correlated liquids. For crystals, the ap-
propriate basis states are periodic Bloch states rather
than spherical-wave scattering states. For strongly
correlated liquids, more success is obtained with cluster
methods, which allow an electron to interact with more
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FIG. 1. Physical regions for iron in the temperature-density
plane.

1988 The American Physical Society



SYSTEMATIC CALCULATIONS OF PLASMA TRANSPORT. . .

than one ion at a time. Various adjustments to the
present approach have been explored (see Sec. III D) in
attempts to correct for these shortcomings, but sys-
tematic success has been Hmited to moderately or weak-

ly correlated systems.
The temperature-density space displayed in Fig. 1 may

be divided into several distinct physical regions. At high
temperature and low density, kinetic energies and ionic
spacings are large, and we expect classical approxima-
tions to be valid. Quantum-mechanical effects become
important at lower temperature and higher density,
~here the average ionic spacing is no longer large com-
pared with electron wavelengths. At still lower tempera-
tures, the electron mean free path becomes comparable
with ionic spacing, ionization vanishes, and the material
becomes insulating. As the density is increased, pressure
ionization eventually dominates any thermal ionization,
and the electrons become degenerate. CrystalHzation
occurs; one-component-plasma simulations indicate that
lattices are formed in general when the ion-ion coupling
constant I reaches =170.

The small region marked "normal conditions" poses
particularly delicate calculational problems. The liquid-
solid and metal-insulator phase transitions converge
here. The free energy reaches a global minimum, indi-

cating a balance among internal atomic forces within the
material and zero pressure at finite density. This balance
among competing efFects means that any calculated
physical parameters are sensitive to the precise electron-
ic wave functions, requiring detailed representation of
the conduction bands. For some special cases, errors in
the present model are not important snd reasonable re-
sults are obtained, but for normal conditions this is the
exception rather than the rule.

II. MODEL DETAILS

The electron states are found by solving the Dirac
equation numerically in a local, continuous, spherical
electron-ion potential V(r), with exterior boundary con-
dition V (r) = V(r, ) for r & r, The Wi.gner-Seitz radius
r, is defined in terms of the atomic volume 0=4rrr, /3.
The chemical potential p is determined by charge neu-
trality:

Z f ~
d y ( )

dN(s)
—m GE,

where p +m =(s+m) deffnes the exterior momentum
p (wave number} and kinetic energy e, f@&(s) is the
Fermi-Dirac distribution function for inverse tempera-
ture P=1/kT, and we use natural units fi=c =1. We
have chosen the zero of energy e at the external poten-
tial value V(r„), so that setting the lower limit of the in-
tegral to —m includes the bound-electron states. %c
use the Dirac equation only to obtain accurate radial
wave functions; subtleties due to relativistic exchange
and vacuum polarization are ignored. The density of
electron states dN(e)/de is computed by partial-wave
analysis of the explicit solutions of the Dirac equation
for angular momenta ~~

~
&~,„(s}(96,where a,„{s}

depends upon Hltcrnal con vcrgcncc parameters. The

remainder of the series is summed in the Fermi gas ap-
proximation for each energy.

The extended Ziman formula for the mean relaxation
time v is

f d (Ps)f&„(s)[1—f&„(s)]X(s), (2)
3&ltfZo 0

Zo = F pp F 1 —
pp E

p f f, +Pl P
0

(3)

where o is the electrical conductivity, a= 1/137.03604
is the Sne-structure constant, and Z,. /D is the density of
charge carriers. It may be argued on variational
grounds that if thc identification Z, =Zo is made, then
Eq. (5) gives an upper bound for the resistivity when the
Boltzmann equation is valid. In the classical kinetic pic-
ture, however, these two factors have separate physical

may be interpreted as the number of free electrons per
atom (ionization state), and

X(s)= f dq q 'S (q)o, (q) . (4)

The relaxation time is often discussed in terms of the
mobility er/m The. principal difFerence between these
equations and the original Ziman formulation lies in the
partial-wave analysis and the extension to finite tempera-
ture. Equation (3) is a ffnite-temperature generalization
of a factor (Fermi-surface radius))((Fermi-surface area}.
It reduces in the degenerate limit to the usual result
Zo/0 pF/3n. and is required to have this form by the
variational derivation of the Ziman formula. The
electron-ion elastic scattering cross section cr,(q) for
momentum transfer q and incident energy s is deter-
mined along with the density of states by partial-wave
analysis in V(r), with Born approximation used to sum
the series beyond the angular momentum cutoK The
ionic structure factor S(q) is interpolated from the tabu-
lated values of Rogers et al. for the one-component
plasma. For values of I' or q outside the published
table, the appropriate table boundary values are used.
This structure factor approaches the Debye-Hiickel limit
in the classical regime and the Percus-Yevick limit at
melting point for liquid metals.

It is not difficult to show in both the degenerate and
nondegenerate limits that the mean relaxation time Eq.
(2) remains ffnite as ZO~O at finite density. This occurs
because the integrals in Eqs. (2}and (3}cancel each other
as Zo-+0(Pp, ~—ao ) apart from relatively slowly vary-
ing functions of p and T. This dependence is consistent
with the classical kinetic formula. It is an important
physical constraint required for consistency in the relat-
ed transport coeScienis. '

The electrical resistivity g is given in terms of the
mean relaxation time as
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or1glns. Zo Rrlscs from gcncrR11zat1on of a facto1 p and
is required to have the form Eq. (3) (or its nonrelativistic
version) if a meaningful relaxation time is to be defined.
The factor Z, /0 arises from the relation between relaxa-
tion time Rnd resistivity. Its value is not specified by ki-
netic theory. %e find that in some regions of
temperature-dense. ty space, our calculated relaxation
times are more reasonable than the ionization states
Z; =Zo. For this reason, we consider Z; to be a physi-
cal parameter which is sometimes better obtained
through other means. In order to maintain this distinc-
tion, we use the symbol Zo to represent the solution of
Eq. (3), and Z; to represent the factor in Eq. (5) even
when it is set equal to Zo.

Although the interior potential V(r) for r & r, may be
obtained from any source, we specialize in the present
work to particular Dirac-Fock-Slater (DFS} and
Thomas-Fermi-Dirac (TFD) models. At low density
and temperature, we use a self-consistent DFS potential
VDFs(r) for the isolated ion with the local Kohn-Sham
exchange interaction. Except for the fact that exchange
is treated approximately, this is correct in the zero-
temperature, zero-density limit. At high temperature
and density, the potential is a self-consistent TFD poten-
tial Vrrn(r) with finite-density boundary conditions and
elevated-temperature phase-space populations. This is
correct in high-temperature, high-density limit. The
same Kohn-Sham exchange interaction is used, but here
it is added after self-consistency is reached in order to
avoid some of the peculiarities of the isolated TFD ion.
This makes no quantitative difference in the present
work where the TFD model is justified.

In previous work, these potentials were calculated for
neutral atoms, modified with the Latter approximation
to have r' exter—ior boundary conditions, and cut ofi'

at r, . This procedure is somewhat ambiguous, and it is

not clear physically what such a potential represents.
However, the rbeh—avior is quantitatively impor-
tant. At low density it corresponds to the Hartree-Fock
exterior boundary condition for ihe isolated atom. At
high density we lack a physical interpretation but find
that reasonable conduction bands are not obtained oth-
erwise. In the present work, wc-achieve a similar result
while avoiding the particular ambiguities of the Latter
approximation by calculating self-consistent potentials
for positive ions of charge + 1. Electronic con-
figurations are usually chosen in normal order, but these
may be altered if necessary to provide more realistic den-
sities of states near normal conditions.

In intermediate regions of temperature and density,
the two potential models are superixnposed according to
an ad ho@ algorithm

V(r)=a f VDFs(r) —VDFs(rt }]

corresponds to a total electron density of approximately
3X10 cm for any material. Because the DFS and
TFD calculations are carried out for the same ionization
state, the external boundary conditions are compatible,
and the superposition passes smoothly from one limit to
the other.

It is possible to make a conceptual improvement by
using fully self-consistent potentials based upon solutions
of the Dirac equation at each 6nite temperature and den-
sity. This level of self-consistency is feasible and has
been applied successfully in other contexts in the past. "
%e have made extensive comparisons with such poten-
tials and find noticeable differences in the transport
coeIcients only in the conductor-insulator transition re-
gions. These differences do not represent systematic im-
provement in comparisons with experimental data, how-
ever. Evidently, the other defects in the present ap-
proach are more important. Use of these potentials in-
troduces an additional dimension of complexity which
makes it awkward to carry out calculations of the
present scope. They are thus not used here except in
isolated cases where fitting to individual elements is in-
volved.

The partial-wave expansion converges too slowly to be
useful in the classical region of high temperature and
low density. %here internal numerical checks indicate
nonconvergence, a modified plane-wave version of the
Ziman theory is substituted. These more approximate
calculations are corrected and joined smoothly to the
partial-wave results in the following way. Define the
variables x =Z, /(Z —Z, ), y =ARIZ,. /Q=rn/ar. This
transforms the ionization state into the variable range
0(x & 00 and removes the leading Z; dependence from
the resistivity. Multiplicative correction factors
Cjk ——x (p, T) /x, (p, T) or y (p, T) ly, (p, T) are then calcu-
lated wherever converged results are available, where j
and k are grid indices in the (p, T) plane, x and y are the
partial-wave results, and x, and y, are the approximate
plane-wave values. The correction factors are extrapo-
lated into the unknown density-temperature region with
the algorithm

~k
—~(CJ+i, k+Cj, k

The grid is covered sequentially for decreasing p and in-
creasing T, which ensures that the factors on the right
side of Eq. (8) are available when needed. The correc-
tion factors are then used to construct new values of Z;,
~, and q, which may be considered equivalently either as
extrapolated partial-wave values, or as renormalized
plane-wave values.

III. SKI ECTED RKSUI.TS

A. Relaxation time and ion coupling

+(1—a)[VrFD(r}—VrFD(1, )],

a =(1+TITO) '(1+plpo)

with TO=100 eV and p0=100 g/cm . The density po

Figures 2 and 3 show the relaxation time ~ and ion-ion
coupling constant I =Z; aP/r, over the full temperature
and density range for ~oSn. The rich structure in the re-
laxation time surface for small p and T rejects the elec-
tron behavior at threshold, as bound states pass to and
from the continuum. This structure is interesting but
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FIG. 2. Calculated mean relaxation time ~ for»Sn as a function of temperature and density.

not important except near the metal-insulator transition
at p = 10 g/em, as the ionization states are so small that
the material is generally insulating. At high temperature
and low density, the expected logarithmic dependence
upon T is observed.

The plot of I in Fig. 3 indicates regions of validity of
the present results. The area between I =1 and I =10
is of primary interest, as here the plasma is moderately
coupled, so that classical approximations are inadequate
and the present results should represent substantial im-
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FIG. 3. Calculated ion-ion coupling constant I for 5oSn as a function of temperature and density.
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provement. For values of I above =10 on the right
side of the Sgure, the approximations used here are in-
valid and the results have only quahtative interest. Very
small values of I delineate the insulating region.

A possible point of contact and comparison is the
electron density of states near normal conditions. Al-
though we do not expect quantitative results, it is never-
theless interesting to see what qualitative features are
reproduced. Figures 4-9 show some densities of states
dN(e)/de and integrated densities of states N(e) for
atomic numbers Z =25—30, at solid density and
kT=2. 5X10 eV (sohd line), and liquid density at
melting point (dashed line). The chemical potential p
for each case is indicated by an inverted triangle on the
abscissa. Configurations used for calculating the DFS
potentials are 3d, 3d, 31, 3ds, 3d', and 4s' for
Z =25-30. These plots may be compared with band-
structure calculations, such as in Ref. 12 for solid densi-
ties.

The prominent resonance in each case is due to the 3d
electrons. In manganese, the chemical potential falls on
the upper slope of the resonance, corresponding to a
partially filled shell. This is qualitatively similar to the
band-structure result„except in that case, the d states
are split into three overlapping peaks of total width ap-
proximately 4 eV. Our results can be improved some-
what by broadening the resonance by this amount (see
Sec. IIID). However, the structure cannot be repro-
duced.

A small asymmetry is visible in the peak of our densi-

ty of states for liquid iron, but again, this compares only
crudely with the band structure result. The chemical
potential is closer to threshold, resulting in a smaller free
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ionization state with Z;=Zo, but it is higher relative to
the resonance centre. More structure is evident in co-
baIt, where the chemical potential has moved almost out
of the resonance. The chemical potential is in the free-
electron region above the resonances at both densities
for nickel, where the fine structure is cleanly separated.
This is to be contrasted to the solid density band-
structure result, where the chemical potential remains at
the upper edge of the resonance region. For copper, we
find the d resonances to be truly bound at liquid density
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FIG. 5. Integrated density of states X(c) and density of
states dN(c)/da for 2&Pe at normal solid density 7.86 g/cm'
and kT=2. 5X10 eV (solid lines), and melting-point liquid
density 7.05 g/cm3 and temperature 0, 156 eV (dashed lines).
Inverted triangles on the abscissa indicate the chemical poten-
tial p for each case.

MANGANESE COBALT

Q O

IZI

O

I&

I

I

t

I

O

~ CJ

~O
Z

~O

I

s
fl

lt

1

I

I
I I

I I

I I

t I
I

R

t,l',

—LO

0 0 1.0 2.0 3.0
c(eV)

5.0 6,0 7.0 8.0

FIG. 4. Integrated density of states %(IE:) and density of
states dX(a)/da for z5Mn at normal solid density 7.43 g/cm'
and kT=2. 5X10 eV (solid lines), and melting-point liquid
density 6.43 g/cm and temperature 0.131 eV (dashed lines).
Inverted triangles on the abscissa indicate the chemical poten-
tial p for each case.

I———~- ———————i- ———————
0.0 1.0 2.0 3.0 4.0 5.0 6,0

~(eV)

FIG. 6. Integrated density of states X(e) and density of
states dN(c)/de for»Co at normal solid density 8.90 g/cm
and kT=2. 5&10 eV (solid lines), and melting-point liquid
density 7.72 g/cm and temperature 0.152 eV (dashed lines).
Inverted triangles on the abscissa indicate the chemical poten-
tial p for each case.
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FIG. 7. Integrated density of states N(e) and density of
states dN(a)/da for»Ni at normal solid density 8.90 g/cm'
and k T=2. S X 10 eV (solid lines), and melting-point liquid
density 7.85 g/cm' and temperature 0.149 eV (dashed lines).
Inverted triangles on the abscissa indicate the chemical poten-
tial p, for each case.

FIG. 9. Integrated density of states X(F) and density of
states dN(e)/de for»Zn at normal solid density 7.14 g/cm'
and kT=2. 5)&10 ' eV (solid lines), and melting-point liquid
density 6.61 g/cm' and temperature 0.060 eV (dashed lines).
Inverted triangles on the abscissa indicate the chemical poten-
tial p for each case.

and nearly bound at solid density, although the distinc-
tion is not important because the chemical potentials are
high enough that the conduction electrons are nearly
free at both densities. The resonances are bound at both
densities for zinc, ~here the free-electron conduction be-
havior persists.

C. j:onixation and resistivity

Table I shows calculated values of Zo and g for the
same elements compared with available measurements. '
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states dN(e)/de for z9Cu at normal solid density 8.96 g/cm'
and kT=2. 5)&10 eV (solid hnes), and melting-point liquid
density 7.96 g/cm' and temperature 0.117 eV (dashed lines).
Inverted triangles on the abscissa indicate the chemical poten-
tial p for each case.

Resistivities for two choices of Z; are shown. The quali-
tative trends from strong scatterer to nearly free-electron
metal are reproduced in the calculations with Z;=Zo
(column 5), but the calculated resistivities are generally
too large by factors of 2-5 or more. There are a variety
of possible reasons for this. One may be that the ioniza-
tion states are too small. A uniform increase by a factor
of 3 in Z; would improve agreement considerably. The
results are perhaps more consistent for the liquids, where
the detailed geometrical effects of band structure are less
important. The best resistivities are obtained for copper
and zinc. Here in the conduction band the electron-ion
interaction is weak, so that the multiple scattering efFects
neglected in the Zirnan formula are less important.

In column 6 of Table I we consider an alternative
de6nition Z, =Z„where Z, is the number of continuum
electrons (e&0), evaluated from Eq. (1) with the lower
limit of the integral set to 0. This choice results in ion-
ization states that are generally too large and resistivities
that are too small. The physical reason for this is that
states that are formally in the continuum may neverthe-
less behave more like bound states if they resonate
strongly in the ionic potential. This binding effect is
largest for the transition metals, where the errors are as
large as for the choice Z, =Zo, but in the opposite direc-
tion. To some extent this phenomenon is incorporated
in our calculation of relaxation time. However, our
complete reliance upon scattering states is an approxi-
mation which makes the physical picture ambiguous.
Evidently the best answer usually lies somewhere be-
tween the two extremes Zo and Z, .

A better point of comparison may be made at higher
temperature. One reason for this is that electron kinetic
energies are larger compared with their interactions with
the ions, so that the scattering is effectively weaker and
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TABLE I. Ionization state Zo and resistivity q for t~o choices of Z; for atomic numbers
Z =25-30, at solid and liquid densities and temperatures. Experimental values are from Ref. 13.

Solid (normal conditions'}
q(Z; =Zo)

Zo (pQ cm}
g(Z; =Z, )

(PQ-
vy(expt)

(p,Q cm)

2&Mn

26Fe

gsNi

29Cu
30ZI1

7.43
7.86
8.90
8.90
8.96
7.14

0.025
0.025
0.025
0.025
0.025
0.025

0.71
0.53
0.39
0.35
0.69
0.69

240
81
18
4.9
6.1

28

24
8.2
0.8
0.2
0.7

18

185
9.7
6.2
6.8
1.7
5.9

P
(g/cm')

kT
(eV)

Liquid (melting point)
q(Z; =Zo }

Zo (pQ cm}
g(Z; =Z, )

(pQ cm)
q(expt)
(pQ cm)

25Mn

26Fe

2&Co

g8Ni

29Cu

30zn

6.43
7.05
7.72
7.85
7.96
6.61

0.131
0.1S6
0.152
0.149
0.117
0.060

0.59
0.45
0.29
0.20
0.57
0,60

640
423
281
440

45
90

54
24
9.1

8.6
20
57

174
139
102
8S
21
37

'Values of Zo and q are calculated for the solid at kT=2. 5&10 eV. The experimental measure-
ments are taken at various other temperatures. This distinction is unimportant because the theoreti-
cal results are nearly independent of temperature below melting point.

more elastic. Another is that one structure in the elec-
tron states is less important because their populations
are spread over more states. A third is that electron
wavelengths are shorter, so that classical conditions are
more closely approached, and a di8'ractive approxima-
tion may be more realistic. Finally, Zo approaches Z, at
high temperature, and the ambiguity with respect to ion-
ization state becomes less important.

There are very few direct measurements outside of the
purely classical regime at temperatures of order several
eV. or more. One recent measurement has been made by
Shepherd' for a predominantly hydrocarbon plastic at
approximately 10 eV and solid density (2.7 g/cm ). This
measurement is made by discharge of a 500 kA electrical
current through a 20 pm hole in the sohd. His resistivi-
ty measurements for this device as a function of time are
shown in Fig. 10. Also shown are results of several cal-
culations for the temperature and density maintained
throughout most of the experiment. The dashed line
divas taken from a previous report of the present
methods applied to the mixture CzH3, using the earlier
potential model described above. The other labeled
curves are Shepherd's evaluations of thc Spitzer model'
and of the theory of Ichimaru et al. '

The discrepancy between experiment and thc Spitzer
model is interesting in that it illustrates the extent to
which the classical approach is invalid at these condi-
tions. The discrepancy with Ichimaru et al. is more
subtle. In a series of papers, these authors have
developed a comprehensive treatment based upon the
two-component plasma. They derive an expression
which reduces to the Ziman formula at T =0 but other-
vrise represents a diferent generalization to Snite tem-
perature than used here. They represent the electron-ion

interaction in Born approximation, using a Coulomb po-
tential Z, a/r wi—th dielectric screening. They assume
the value Z; =1 rather than attempt to calculate it. Fi-
nally, they renormalize their calculated conductivity by
a factor 1.97 in order to compensate for observed errors
in the classical limit. The model simplifjjcations may be
the source of the discrepancy, particularly the assump-
tion of the value Z; =1, and secondarily, the question-
able electron-ion interaction. In the present calculation,
the average value of Z, =Zo obtained from Eq. (3) is
0.28 pcr atom. Because the conductivity is approximate-
ly linear in Z;, this smaller value makes a substantial
difference. Altering the present calculation to corre-
spond to Z; = 1 without changing the relaxation time
yields a resistivity of 5.3)&10 Qcm, in closer agree-
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FIG. 10. Measured resistivity of plastic at kT =10 eV and
p=2. 7 gjcm, compared ~ith various theoretical calculations
for C2H3 at the same temperature and density.



37 SYSTEMATIC CALCULATIONS OF PLASMA TRANSPORT. . .

ment with that of Ichimaru et al. but in worse agree-
ment with experiment. It should be emphasized that the
physical ionization state Z, is dif6cult to calculate reli-
ably under these conditions, which are near the
conductor-insulator transitions. It is a rapidly varying
function of temperature and density, and relatively small
variations in the model can lead to larger changes in Z,-

than in ~.
Further comparisons may be made with experiments

at somewhat lower temperatures and densities. In
these experiments, an explosively driven shock wave
propagates through an inert gas which is at an initial
pressure of 0.25 to 30 bar. Apparently the only directly
measured parameters are the shock velocity and electri-
cal conductivity. The other parameters (ion density,
electron density, temperature, and pressure) are inferred
from the conservation equations and model ionization
rates and equations of state. These derived tempera-
tures and densities (uniformly assuming Z, =1) and mea-
sured conductivities are listed for three gases in Table II.
Also shown in the last column are the results of
Ichimaru et al. , who show excellent agreement in all
cases. The Mth column in Table II shows results of the
present calculation under the same uniform assumption
Z;=1. Agreement is also excellent for Ne and Ar but
not for Xe. The reason for the latter discrepancy is not
clear. The numbers are all too small by an approximate
factor of 2, suggesting that the true ionization state is
closer to 2 than 1. This makes physical sense because
Xe has many more electrons than Ne and Ar, and the
Xe experiments are carried out at higher temperatures
and densities. Some caution should be applied, however,
as different ionization states would alter the entire inter-
pretation of the pressures, temperatures, and densities in
the experiment. It is also not clear why the present cal-
culations should agree with Ichimaru ei a/. for Ne and
Ar but no Xe. It should be pointed out further that the
ionization states Z; =Zo calculated by the present

method are evidently incorrect. They are much smaller,
ranging from 0.01 to 0.2, and would lead to conductivi-
ties which are inconsistent with the measurements.

D. Semiempirical corrections

One of the most fundamental problems with the
present approach is the inaccurate electron structure
that can result from the average spherical ion approxi-
mation. In a real plasma, local temperature and density
Auctuations and ion motion contribute to the broadening
of continuum resonances and some bound states. Static
geometrical eff'ects in the solid or strongly correlated
liquid alter their structure. This problem is not so acute
at high temperature, where the electron populations are
spread over many different states, nor at high density,
where the states involved in transport are nearly free.
At low temperature near the metal-insulator and liquid-
solid phase transitions, however, the calculated density
of states and cross section can be very unrealistic. This
can lead to ionization states and resistivities which are in
serious disagreement with experiment.

There appears to be no demonstrably correct method
to remedy these deficiencies in general without resorting
directly to calculations with ensembles of ions or period-
ic electron states. We have attempted simpler correc-
tions in four diferent ways. The first and most straight-
forward is by adjusting the electron-ion potential.
Within limits it is possible to locate the important elec-
tron states at approximately the correct energies by
changing configurations in the DFS calculations. This
procedure is useful where the band structure is already
known, but it creates significant and unpredictable
eAects elsewhere, and it does not address the problem of
resonance broadening and fragmenting.

The second uses the physically motivated convolution
procedure described previously. This consists of the re-
placement

TABLE II. Experimental and theoretical values for electrical conductivities of inert gases at elevat-
ed temperature. Measurements are from Ref. 17; densities, temperatures, and conductivities are inter-
preted and calculated assuming average ionization state Z; =1.

Gas

lowe

Xe

P
(mg/crn )

0.37
0.64
1.9
3.7
5.4
9.3

11
55

130
170
310
350
440
440

kT
(eV)

1.71
1.69
1.91
1.75
1.66
1.64
1.53
2.59
2.37
2.33
2.25
2.16
2.12
1.96

o.(expt)
(0 ' cm ')

130
165
190
155
170
255
245
450
680
740
690
780

1040
930

o.(calc)
(0 ' cm ')

150
168
192
204
209
246
241
223
241
262
368
371
481
476

o' (Ref. 16)

148
160
200
203
209
234
232
442
506
546
657
660
728
694

'Includes a normalization factor 1.97 to guarantee convergence to the classical limit.
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g(s» f ds'gV'+, 9' s—» (9)

where g(p) is proportional to either of the functions
dN(e)/de or X(s), and h~(q) is a convolution function

of characteristic width f. It 18 not important whether
the above integral is carried out in energy space or in

momentum space. So long as y is small and the func-
tion h„(q) falls o8' rapidly enough, there is no quantita-
tive di8erence. A more signi6eant question concerns the
choice of functions g(p). In principle, one may extract
leading powers of p (or e) and reinsert them after convo-
lution. This determines the threshold behavior of the re-

sulting functions, and can yield densities of states that
are constant or diverge at threshold.

Dimensional arguments suggest that the convolution
width y in momentum space should be of order r, '. A
better argument notes that between scatterings, an elec-
tron is localized to within -A, (the mean free path), so
that its momentum is uncertain by y —A, '. Other quali-
tative arguments may be made, but it must be em-

phasized that this is an empirical procedure with limited
predictive power. For example, it is straightforward to
distribute the resonance strength in Figs. 4-9 by any

desired amount, but the result is always a smooth peak
instead of the fragmented band-structure result.

It should be noted that the Lorentzian functions used
in some previous calculations are inappropriate for most
choices of g (p} because their long-range tails render the
integrals Eq. (9) divergent. In current work, we choose
an exponential form in momentum

(10)

where y is the full width at half maximum.
A third approach is a simplified approximation to the

above, in which the convolution Eq. (9) is not carried
out explicitly but the temperature is modified to
represent the broadening. This is computationally more
eScient, but it ofkrs less control of the model and can
lead to further unphysical results. For these reasons,
this approach has been abandoned in current work.

A fourth approach involves the direct calculation of
some effects of density and temperature fluctuations.
The probability W' of a Suctuation in a small domain is
given by'

ln( W/E) = bG /T, —

where It. is a normalization constant and

AG =DE —T AS+8 AV —p hX

is the associated change in Gibbs free energy. Calcula-
tion of this probability is complicated by the fact that at
equilibrium, the free energy is stationary in the thermo-
dynamic variables, so that the terms linear in the devia-
tions must cancel. In order to insure this canceHation,
we use a simple analytic model of an electron-ion ideal
gas of N =Z;+1 particles per atom. The probability is
then

r

3N kT X 6V 5N
4 T 2 V

%e view the material as a mixture of ions of varying
temperature, size, and number of particles. Each ion has
associated with it the values of Z; and ~ calculated with
our homogeneous model. The calculated functions are
integrated with the probability function 8' over the re-
gion surrounding the temperature and density of in-

terest. The ionization state is averaged linearly,

(Z;(p, T )}=fdp fdT W(bp, hT)Z(p, T) . (14)

The relaxation time is averaged inversely~,

(r '(po, TO)) = fdp f dT W(hp, b, T)r '(p, T) .

Averaging the resistivity linearly or inversely corre-
sponds to the ions acting as conductors in series or
parallel, respectively. Neither picture is actually ap-
propriate because the directionality of any current fiow
introduces a detailed dependence upon the internal
geometry of the material (violation of Mattheissen's
rule}. More complicated methods for combining mix-
tures have been studied by Landauer. %e have adopt-
ed the above procedure because we believe that it is
more important to maintain the relaxation time and
leading dependence a =g ' ~ Z;.

Figures 11-16 show some sample comparisons of
these modi6eations at intermediate temperatures. Fig-
ures 11 and 12 show the ionization state Z; =Zo and
mean relaxation time r calculated for carbon over a re-
stricted range of temperature and density, in the regions
of the thermal and pressure conductor-insulator transi-
tions. The DFS configuration is lsi3d', chosen6 to pro-
duce appropriate band gaps at diamond and graphite
densities. Figures 13 and 14 display results of the same
calculation carried out using the DFS configuration
ls 2s 2p'. There is little difference in Z, over most of
the region where it is not small. The principal effect is
in moving the conductor-insulator transitions to temper-
atures and densities that are lower by approximate fac-
tors of 2. Fractional changes at this boundary and in
the insulating region are large because the absolute
values of the functions are small. There is some change
in the structure of the relaxation time surface, principal-
ly in the region of small Z;.

The same calculation with convolution of the func-
tions dN(e}/de and X(e) using the width y '=4r, in

momentum space produces no noticeable change in this
region of temperature and density. Except for a depres-
sion of approximately 20%%uo around p =4 g/cm and
kT =4 eV, the calculation agree to within a few percent
or less.

Figures 15 and 16 show e8'ects of Auctuations. There
is again little change in Z; except near the conductor-
insulator transitions, which are moved to lower tempera-
ture and densities. The structure of the relaxation time
surface is smoothed considerably with no major changes
ln absolute magnitude.

Table III compares the last two modifications with the
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TABLE III. Iomzation state Z;=Zo and resistivity q I', @Oem) for atomic numbers Z=25-30, at
solid and liquid densities and temperatures as in Table I. Columns labeled "standard" are reference
calculations from Table I. Columns labeled "convoluted" are modified with Eqs. (9) and (10), using
the width y '=4r, and the functions g(p)=dN(c, )/dc. and X(c}. Columns labeled "fluctuated" are
modified with Eqs. (13)-(15).

Solid

q5Mn

q6Fe

»Co
q8Ni

29Cu

Expt.

185
10
6
7
2
6

0.71
0.53
0.39
0.35
0.69
0.69

240
81
18

5
6

28

Convoluted
z '9

0.86
0.72
0.65
0.58
0.09
0.69

0.73
0.58
0.47
0.54
0.71
0,77

Fluctuated

139
146
77
12
24
47

Liquid (melting point)
Standard Convoluted Fluctuated

25Mn

z6Fe
»Co
28Ni

29Cu

30Zn

174
139
102
85
21
37

0.59
0.45
0.29
0.20
0.57
0.60

640
423
281
440

45
90

0.71
0.60
0.48
0.79
0.51
0.60

216
119
78
83
86

171

0.61
0.49
0.36
0.32
0.54
0.69

679
523
506
214

98
177

standard results of Table I for Z =25-30 near normal
conditions. In contrast to the situation at higher tem-
perature, the effects are large and variable. At solid den-
sities, no significant improvement is achieved by convo-
lution except for manganese. Convolution produces re-
markable improvement for the liquid transition metals
but has the opposite effect for the liquid simple metals.

It is apparent that these adjustments have little effect
in the regions of temperature-density space where we ex-
pect our theoretical model to be accurate in the first
place. It is clear that they can improve agreement ir
some cases near normal conditions, but that signi6cant
discrepancies remain. Effects of resonance broadening
or tiuctuations may account for some of the discrepan-
cies in certain cases. However, the lack of systematic
success shows that essential physical considerations are
missing. %'e believe that s more careful treatment of
geometrical and multiple-scattering e6'ects is required in
general in order to obtain quantitative results around
normal conditions or near conductor-insulator transi-
tions.

IV. TABLES QF TRANSPORT CQEa.a.ANCIENTS

Numerical tables of ionization state Z;, electrical con-
ductivity a (s '), thermal conductivity ' lr (cm 's '),
and thermoelectric coeflicient '

g (cm 's ') as func-
tions of temperature kT (eV) and density p (g/cm ) have
been calculated for the entire Periodic Table by the
theoretical methods described herein. The results are
voluminous in general snd msy be obtained from the
Los Alsmos sEsAME Library. The coef5cients are
de6ned with respect to the transport equations

eJ=o eE+ VP +e g
0 2 V(kT)

l

Q= —g eE+ VP lrV(kT)—0
z

'g' V(kT) 5 ( )
kT 3 e'

where —e is the charge of the electron, and the other
quantities are conventional. The thermoelectric
coefficient g is related to the a coefficient of Spitzer and
Hirm' by eg=aT. Further derivations, discussions of
units, and sample tables have been published previous-
ly. ' The tables are calculated on logarithmic grids
in temperature-density space, with 20 temperature points
from 10 to 10 eV, snd 30 density points. These are
then interpolated onto a 6ner mesh of 60 temperatures
and 90 densities. For Z &3, densities range from 10
to 10 g/cm; for 4(Z(35, from 10 to 10 g/cm;
snd for 36&z, from 10 to 10 g/cm . Tables are
available both with and without the effects of Auctua-
tions included. In some cases, additional tables have
been constructed with empirical normalization to mea-
surements in the vicinity of normal conditions. Normal-
ization procedures include but are not limited to the
semiempirical corrections discussed in See. IIID. In
general, we have adopted the ionization state convention
Z, =Zo. However, other choices have been made and
noted for empirically normalized tables. Redundant
combinations of these parameters (conductive opacity,
relaxation time, plasma frequency, etc.) are also available
from the author in the same tabular form, as are some
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related physical parameters (chemical potential, number
of continuum electrons Z, ).

%'ithin these ranges of temperature and density are
substantial regions where the present physical model is
invalid (see Fig. 3). Results have been retained in these
regions for convenience of use. In the absence of experi-
mental comparison, the accuracy of the tables may be
monitored roughly by computing the ion-ion coupling
constant I =Z; aP/r, and the mean free path
A, =rpF/m. Where I" is large ( ~170), the geometrical
model is invalid and the transport coefKicients should not
be used, although the calculated ionization states may be
reasonable. %here k is of order r„ the material is near
the conductor-insulator transitions, and both the relaxa-
tion times and ionization states may be inaccurate. The
only nontrivial parameter to be reconstructed here is the
Fermi momentum p~, which can be obtained through
implicit solution of Eq. (3) for the chemical potential p, if
the appropriate tables are not at hand.

The mean relaxation time v may be reconstructed
from Z; and cr using Eq. (5) if conductivities correspond-
ing to difFerent values Z, ~z,' are desired. In e8'ect, this

renormalizes the electrical conductivity by a linear fac-
tor Z /Z;. In the Lorentz gas approximation, the
thermal conductivity and thermoelectric coeScient are
similarly renormalized. Here they are not strictly pro-
portional to Z; because the electron-electron interaction
is included in the heat transport equations. In principle,
the thermal transport coeScient should be reconstructed
from the values of Z,. and o actually adopted, but in
practice, linear renormalization does not produce
significant errors unless Z; is changed radically.
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