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A complete analytic solution is presented for the selection of symmetric Saffman-Taylor fingers,
in the small-surface-tension limit. In a previous paper [Combescot et al., Phys. Rev. Lett. 56,
2036 (1986)] we showed that the selection can be understood in terms of a nonlinear eigenvalue
problem that describes the region where ordinary perturbation theory fails to converge. This
“inner” problem is completely solved by systematically studying the asymptotic series of the (for-
mal) solution of the problem. Two methods are proposed to extract the selection mechanism from
this asymptotic series. Numerical results agree very well with other existing numerical results,
and, somewhat surprisingly, with the results that we obtained by a WKB solution of the inner
problem. Last, we complete our WKB treatment by determining explicitly the additive constant

appearing in the WKB formula.

I. INTRODUCTION

Recently much progress has been done in the analytic
understanding of the solvability mechanism for the
Saffman-Taylor problem in the limit of small surface ten-
sion. It was shown simultaneously by Shraiman,' Hong
and Langer,? and ourselves® that it is necessary to per-
form an asymptotic analysis beyond all orders in the
small parameter in order to find the selection among the
continuous family of zero surface tension solutions,
discovered previously by Saffman and Taylor.* The first
two papers proposed basically a linear approach to the
problem; for example, in Ref. 2, a linear inhomogeneous
integrodifferential equation for capillary corrections to
the finger shape is derived and then solved by a WKB
method which is here rather intricate because of the
nonlocal features of the physics. On the contrary, in
Ref. 3 (hereafter referred as I), we gave a fully nonlinear
treatment of the problem, inspired by the work of
Kruskal and Segur on the existence of needle crystals in
geometrical models of solidification.” The two coupled
equations for the interface shape, established by McLean
and Saffman,® are directly extended into the complex
domain without any linearization. They are then studied
in the neighborhood of the singularities of the zero sur-
face tension solutions where the regular perturbation ex-
pansion breaks down. In the Saffman-Taylor case, the
positions of the singularities turn out to be very simply
related to the relative width of the finger A, the quantity
of physical interest, through the combination
a=(2A—1)/(A—1)%.. We wrote in I a single ordinary
differential equation which describes correctly the behav-
ior of the solution in the singular region. After proper
rescaling, the small parameter k (proportional to the sur-
face tension, see below) disappears but it was found in I
that the resulting equation still contains a parameter
a=|a|3?/k. The question of selection of A is there-
fore converted into the one for a and the inner region is
responsible for the whole selection mechanism. The ei-
genvalue nature of @ becomes clear when one adds the
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right boundary condition at large distance to be satisfied
by the inner solution. This is imposed by physical con-
siderations. In order to get a smooth interface shape,
only slightly differing from the zero surface tension
shape, one simply requires that the inner solution
matches at large distance the original Saffman-Taylor
solution. This can be achieved only for discrete values
of a, forming an infinite countable set a,,.

In I we were able to predict the behavior of the a,’s in
the large-n limit but an explicit calculation of the lowest
eigenvalues was missing. Since that time, various au-
thors”® have given numerical estimates of the lowest ei-
genvalues. To get the answer, they all integrated numer-
ically the inner problem along particular paths in the
complex plane, using a technique first discussed by
Kruskal and Segur.’ It is the main purpose of this paper
to provide an essentially analytical solution of our eigen-
value problem. Beyond the mere quantitative interest of
the calculation, we feel that our method clarifies and
completes the Kruskal-Segur procedure. In particular,
the appearance of exponentially small terms becomes
conceptually more transparent and is now totally con-
trolled, despite the nonlinearity of the inner problem.
The paper is organized as follows: in Sec. II we give a
detailed account of the content of paper I. At the end of
the section, we show why the value A= plays a special
role in the solvability mechanism. Section III presents
an analytic treatment of the inner problem. It is first
recognized that all the information we need is contained
in the asymptotic expansion around infinity of solutions
of the inner problem. At large order in the expansion,
the dominant growth rate of the coefficients of the series
is in fact given by a linear recursion relation, as pointed
out by Dashen et al.’ in another context. On the basis
of this simplifying observation, we propose two ways to
extract from the asymptotic series the searched solvabili-
ty condition. The former consists in solving a kind of
renormalized linear problem, the latter in performing a
Borel resummation of the divergent asymptotic series.
At the end of this central section, we give our results for
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the three lowest values of a. In the last section we dis-
cuss the large-a limit where the inner region was shown
in I to split into two subregions, defining a new inner
problem. This led us to give a prediction for the large-n
behavior of the a,’s, which depends on a constant issu-
ing from the new inner problem. Here we calculate ex-
actly this constant, following the lines developed in the
previous section.

II. DERIVATION OF THE INNER PROBLEM

Our starting point will be the McLean and Saffman
equations for a half finger profile, established in Ref. 6.
Before presenting them, we first recall the basic formula-
tion of the Saffman-Taylor problem and some steps of
the method used by McLean and Saffman to obtain their
equations. This should help the reader to understand
better the subsequent analysis.

We consider a Hele-Shaw channel, whose thickness b
is much smaller than its width 2a, along which a fluid of
viscosity p is being pushed by a nonmiscible second fluid
of relatively negligible viscosity. Both fluids are in-
compressible. A single finger of the inviscid fluid is
eventually formed and propagates at constant velocity U
keeping a steady shape of width 2Aa (see Fig. 1). The
velocity u of the viscous fluid (averaged across the verti-
cal thickness b) obeys Darcy’s law

b 2
u= 12'qu—Vq$ ) (1)
where p is the pressure and ¢ the velocity potential. In-
compressibility implies that ¢ satisfies Laplace’s equation

Vi$=0. 2)
On the interface, the boundary conditions are
(0-Vd),,=Unx, (3)

where 1l is the outward normal to the finger and X the
unit vector along its direction of propagation; and
Th?

b=bo+ 1% @
where ¢, is the constant value of the potential inside the
inviscid fluid, T is the surface tension between the two
fluids, and « the curvature of the interface. At the walls
of the channel, free slip boundary conditions are as-
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FIG. 1. The flow region in the physical z plane (half-finger
profile).

sumed. Far behind the tip of the finger, the viscous fluid
remains at rest (¢—0), whereas, far ahead of the tip, it
moves at velocity V =AU.

As usual in two-dimensional problems involving har-
monic functions, it is convenient to introduce a stream
function ¥ defined as the harmonic conjugate of ¢.
McLean and Saffman noted that this stream function be-
comes constant on the interface when one works in a
frame of reference moving with the finger. If one defines
Z =X +1iY, W=$ +i $ as, respectively, the complex
coordinate and the complex potential in this frame (for
proper normalizations see Ref. 6), the transformation
Z>W maps conformally the flow region between the
point ABCDE in Fig. 1 into an infinite strip of unit
width in the potential plane. A second conformal map

A . —(W=4,)
W —o=s +it =e o'

(5)

maps finally the flow region in the upper half o plane.
In this representation, the interface AB goes into the
real segment O <s < 1, s =0 being the trailing part of the
finger (W—+w)and s =1 corresponding to the finger
tip (W=$O). In Fig. 2 we have drawn the o plane, indi-
cating the positions of the various points of interest
ABCDE.

Rather than solving directly for Z in terms of W, it is
simpler to study the quantity d W/dZ which by
definition is the complex velocity §, —ii, relative to the
finger. At the interface this velocity has to be tangential
to the profile and may be written as ge —i% where 8 is the
angle between the tangent and the x direction. Note
that @, the modulus of the flow velocity at the interface,
is equal to dé/dS if S measures (dimensionless) arc-
length from the tip. Making use of the analytic proper-
ties of the function In(dW /dZ) in the upper half o
plane, one gets the first relation between ¢ =(1—A)g and
0=06—7

s 1 6(s') )
Ing =—P fo o (6)

On the other hand, Laplace’s law for the pressure at the
interface (4), is expressed in the moving frame. By
differentiation with respect to arclength S, this gives the
second equation.

kgs d qs%?— +cos@—q =0, (7

ds

where the dimensionless parameter k is defined as

O _Plane

Wall 0| Half finger ! Symmetry axis s
D E A B c
FIG. 2. The flow region in the o plane.
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These equations must be solved with the following
boundary conditions:

(8)

at the finger-tail, 6(0)=0 and ¢(0)=1

9

at the tip, 9(1):—% and ¢q(1)=0 .

Once a solution of these equations is known, the corre-
sponding value of A is deduced via the relation

In(1—n)=— [' &) 40 (10)
T 0 Y

Equations (6) and (7) together with (9) and (10) consti-
tute the problem to which McLean and Saffman reduced
the determination of finger shapes. In the k =0 case,
the continuum of solutions discovered by Saffman and
Taylor is recovered: go(s)=[(1—s5)/(1+sa)]'’?, 64(s)
=cos " !gy(s) with a=(2A—1)/(1—1)%.. Now we want
to study the small k£ limit and show that this continuum
is broken into a discrete countable family of solutions
with A decreasing toward 1 as k goes to zero.

As explained in I, our strategy consists in identifying
the regions in the o-plane where the capillary term in (7)
(or at least its analytic continuation) becomes dominant
and regular perturbation expansion in k breaks down.
After continuing the McLean and Saffman equations in
the complex plane, one defines in this small region a re-
scaled problem (or inner problem) where the small pa-
rameter k has disappeared and which captures the singu-
lar effects of the capillary term. As a boundary condi-
tion on the solutions of this inner problem, one requires
that they are asymptotic in the large distance limit to
the zeroth-order solutions g, 6,. It turns out that this
can be achieved only for a discrete set of values of the
parameter a = |a|*?/k and a>0. The inner region
contains therefore the whole selection mechanism.

In order to be more specific and to justify our state-
ment, we will consider the whole finger and not a half
finger as done by McLean and Saffman. The solution for
the velocity in the lower part of the cell is obtained by
symmetry with respect to the cell axis from the one in
the upper part (more precisely we consider only such
symmetric fingers). This means that the corresponding
complex velocities are complex conjugates. In the com-
plex o plane, the lower part of the cell corresponds to
the lower half plane and the solution in this half plane is
complex conjugate of the one in the upper half plane.
Since ge ~‘? is real in the interval (1, o) of the real o
axis, the solution in the lower half plane is merely the
analytic continuation through this interval of the one in
the upper half plane. However, the o representation is
now rather inconvenient since the finger is represented
by a cut [0,1] on the real axis. Although our analysis
could be carried out in this representation, we introduce
for convenience a new variable v by o =cosh™%(v/2).
This is illustrated in Fig. 3 where the v plane has been
drawn with the various lines of interest. The upper half
finger corresponds to the interval (— «,0] of the real v
axis while [0, ) corresponds to the lower half, the
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FIG. 3. The flow region in the v plane. Symmetry proper-
ties become obvious.

physical region being mapped into the strip 0 <Imv <.
The symmetry with respect to the cell axis is now
reflected in a symmetry with respect to the imaginary
v axis, the complex velocities ge ~1% on the left side and
the right side being complex conjugate.

Since we want to continue the McLean and Saffman
equations on the positive real v axis, we must still use
6=8— in order that 6(v) is continuous when one goes
from the upper to the lower half finger. Since 6(v)+7/2
is nothing else but the angle between the channel axis
and the outward normal i to the finger, it is clearly an
odd function of v on the real axis. However, on the
lower half finger the angle of the velocity with the x axis
is no longer 8 but §—=. Since ge—i% is the complex
velocity, this implies that g (v) is odd and not even as is
the modulus of the velocity.

Therefore both quantities 6(v)+ /2 and g (v) are odd
functions of v. We can check that the continuation of
the McLean and Saffman equations is compatible with
this parity. In terms of the v variable Egs. (6) and (7)
read

1

Ing(v)=— —————
nate mrcosh?(v /2)
0 tanh(v'/2)0(v")
XP dv',
f —» tanh*(v’/2)—tanh?(v /2)
(11)
d v |dé
k L4 — | == |- =0 .
gcoth > | 2w g coth > | q +cosf=0 (12)

Equation (11) is simply extended in the upper half com-
plex v plane:

1
" cosh¥(v/2)
fo tanh(v'/2)60(v’)
~« tanh?(v’/2)—tanh*(v /2)

Ing (v)—i6(v)=

=I(v) . (13)

Since I (v) is even with respect to v, we obtain by letting
v go through the upper half plane to the real positive
axis

Ing(—v)+i6(—v)=Ing(v)—ib(v) . (14)

This leads to Ing(—v)=Ing(v)+im if we use the fact
that 6(v)+/2 is odd. This shows that Eq. (13) respects
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the odd parity of g (v) and 6(v)+m/2. The same is obvi-
ously true for Eq. (12). The existence of a symmetric
finger satisfying the McLean and Saffman equation is
therefore equivalent to the existence of an odd solution
g (v) and 6(v)+m/2 to Egs. (12) and (13). Another way
to say it is that ¢ and (8+/2) have to be purely imagi-
nary on the imaginary v axis.

It is easily seen from the expressions of the Saffman-
Taylor solutions that the perturbation expansion in k be-
comes increasingly divergent near s,=—1/a. In the v
plane, this singularity splits into a pair of singularities
given by vy=imt2arg sinh(Via). There are other an-
tecedents of s, which are obtained from v, by 27
translations along the imaginary axis but which are
equivalent to v, due to the periodicity of ¢(v) and
O(v)+m/2. For a <0 (or A < 1), the pair of singularities
is purely imaginary, whereas for a >0 (A > 1) it rotates
by m/2 around its center i7 (see Fig. 4). Note that, in
the case a >0, the singularities in g are located in the
physical plane on the walls, whereas, when a <0, they
are located on the axis of the channel. It should be kept
in mind, however, that the flow is not singular in the
physical domain: a singularity in ¢ does not imply the
existence of a singularity for the flow field, ge ~*°. It will
turn out that the small-k limit corresponds to small
values of | a| and we will be interested in studying Egs.
(12) and (13) in the neighborhood of i7r. In this region
I(v) admits a regular expansion in powers of k, because
it is entirely determined by the behavior of 8 on the in-
terface which will depart only slightly from 6, in the
small-k limit. Hence we may write

T(w)=Iy(v)+kI,(v)+O0(k?) . (15)
Re (x) o Im(w)
D
DU VE——
Im(x) C Re (w)
a>
P
Re(x) A Im(w)
»
<. D -
Im(x) C Re(w)
be
lB a <0

FIG. 4. An enlargement of the singular region. The singu-
lar points are denoted by an asterisk.

In the following we shall limit the expansion to zeroth
order in k and use for g

g)=e e 110 (K)] . (16)

The factor ei10<v) may be simply calculated by going back
to Eq. (12) at k =0:

A —2i6,
qo=cos6(,=eleoﬂ—+—€2—-)- , (17
which, by comparison with Eq. (16), gives at once
—2i6,
g=e®UEE 0w, (18)

Eq. (18) relates univocally the varying part of g (v) and
6(v) near their singularities. Note, however, that Eq.

(18) implies that the physical quantity ge ~'® remains
everywhere regular even at the singularities of g or e’%.
From the expression of g, and Eq. (17) we get for

v=im+w with |w | «<1

: 2
—2190 w
o~ —_— —a
4

gol=4de = [14+0w?)]. (19)

Equations (18) and (19) allow us to simplify the quantity
(g —cos@) present in the differential equation as

g—coso=1 | L L {1 10kw) 20)
90 9

By O(k,w?) we mean corrections which are at least ei-
ther of order k or of order w? compared to the dominant

terms. In the same spirit we may transform the
differential operator near i as
d v | d8
kq coth | & |- h|= | Z2
Tt 1w |72 | aw
w d dq 2
=—ig——— |w=L |[1
el U [1+0(w*)] (21
Finally we end up with
kw-9- |99 -2 w? 2
zkwdw wo =14 +a— 2 [1+0(k,w)],

(22)

where the two small parameters are still present. By re-
scaling the function g and the variable w as
g=—iQ/|a|'? and w=2i |a|'?>x we get the equa-
tion given in I:

a-x9

+Q0 ?=e+x?, (23)
dx

xiQ

where e=sign(a) and a =(|a|’/?)/k. Note the rota-
tion by —m/2 of the x axes of coordinates. This con-
vention differs from the one chosen in I. The range of
validity of the inner equation is determined by the condi-
tion that the neglected corrections are indeed small.
This is the case as long as |w?| <1 or
|x | <<1/|a| ', which corresponds to a large domain
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for the internal variable x. On the contrary, the pertur-
bation expansion is valid as long as x >>a ~'/3 [that is as
long as a ~!xd/dx)(xd /dx)Q, is small compared to
Q571

In the next section we will find that solutions of the
Saffman-Taylor problem exist for values of the parame-
ter a of order 1 or larger. This means that the inner re-
gion and the outer one have a large overlap and the
matching procedure is then consistent. The usual behav-
ior of Saffman-Taylor solutions when w is small may
therefore serve as a boundary condition on Q in the
large x limit:

for |x | >+ ~~721gargxglzr-

1
x

QEQOE

(24)

Equations (23) and (24) define our inner problem which
depends on (2A—1) and k only via the sign of 2A—1)
(as reflected by €) and the parameter a. Solutions of this
problem will be found only for discrete values of @ and
A > 1. Note that since we are seeking odd solutions ana-
lytic in the upper v plane their real parts have to vanish
on the imaginary v axis, and another way of stating the
boundary condition (24) is

0=~

X

for Imx - — w0 ,

(25)
ImQ =0 for x real .

This is this last form, completely equivalent to the
preceding one as we will see later on, which we used in
I

The next section is devoted to an exact calculation of
the smallest values of a, corresponding to the lowest
branches of solutions. As we have already mentioned in
I, the results agree very well with known numerical cal-
culations.*1® We recall that in the large-a limit we have
shown in I that the inner region separates in turn into
two smaller regions of width @ ~2/7 around each singu-
larity x =+€!/%. Then by using a WKB approximation
we predicted for the asymptotic behavior of the selected
nth eigenvalue

a,=2n+1-8?% n€N (26)
where & is a constant which depends only on a reduced
inner problem, written around one isolated singularity.
Surprisingly, in Sec. III, we will see that this relation
seems to hold with a good precision, even for the lowest
values of a. In Sec. IV, to be complete, 8 is exactly cal-
culated from direct analysis of the reduced inner prob-
lem.

Before turning to these sections, we will take a slightly
different look at the problem and also try an approxi-
mate linear solution to our nonlinear eigenvalue prob-
lem, which serves as an introduction to our complete
treatment of Sec. III. Up to now, we have considered
that a and k go together to zero and we were led natu-
rally to work at fixed @ = | @ | 2/3/k. We will now work
at fixed a and ask whether there is a solution which
reduces, in the limit kK —0, to the Saffman-Taylor solu-
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tion. Since it does not cause any complications, we work
with the original McLean Saffman equations with the
variable s.

As we have seen, a perturbation expansion in k breaks
down near the singularity of the Saffman-Taylor solution
qo(s) located at so=—1/a. In the vicinity of s;, the
real solution is very different from g,(s) and the problem
is finding out if there is a solution which behaves as
qo(s) far away from s,. We will show that, for a0,
this is not possible for all the directions in the complex
plane.

As before, we extend the McLean and Saffman equa-
tions into the upper half s-plane. We have

. s 1 O(s')
— = =—— ——ds’, 27
Ing (5)—i6(s)=1 (s)=—— fo % 27)
where I (s) is analytic everywhere except on the interval
[0,1]. Setting

f(s):eie(x):q(s)e~1(s) , (28)

and introducing the variable z with dz =e s /s, Eq. (7)
is transformed into

2
—2ik%+f‘2+1—2e’=0. (29)
z

Now we assume a50. The Saffman-Taylor type solution
is obtained by neglecting the first term, which gives
f=(2e!—1)"172. There is a singularity at the point z,
for which e’:%. To zeroth order in k, zy=z(s,). We
then perform an expansion around z, as 2e/—1
= ¥a,(z —z,)" and next a change of scale:

2/7_X_
’

z—zo=(—2ia%k) f=(=2iatk)="""g . (30)

a,
[The a, introduced in the expansion of (2¢/—1) have
nothing to do with the eigenvalues we are looking for; to
zeroth order a;=—a/8(a+1)]. All the terms in the
expansion of 2e/—1 except the first one turn out to be
negligible for the matching between the inner problem
and the outer Saffman-Taylor solution. Therefore we are
left with the inner equation

d’ 1
L S=x. 31
dXx g
We look for a solution which behaves as f=(2e’
—1)7'2 thatisg =X~ for | X | — 0.

We set g=X""24+h. For |X| large, we want
h |X |'?«<1 and we can expand 1/g? to lowest order
which gives

d*h

dx?
This equation rules the behavior of / for large |X |.
We show now that it has no solution satisfying
h|X |V «<1.

The solutions H (X) of the homogeneous linear equa-

tion are easily found in terms of Bessel functions. We
choose

H(X)=X'?K,,,(3V2X7/%) (33)

—2hX3 = _3x 5% (32)
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It diverges exponentially for large |X | when
| argX | >2m/7. The general solution of Eq. (32) is then
found in terms of H(X). It diverges, in general, ex-
ponentially for large | X |, but by a proper choice of the
integration constants we obtain the solution which
satisfies hX!”2—0 for |X | > in the two wedges
| argX | <2m/7 and 27 /7 <argX < 6w /7. It is given by

h(x):—-%H(x)meexp(‘”#/”—}—I-%(yL) fmdtH(t)t~5/2 ]
y

(34)

However, this solution diverges in the wedge
—6m/7 <argX < —2mw/7 as —3BH (X)/4 where the con-
stant S8 is

_ o exp(4im/7) 2 © —5/2
p= [’ ey W HH) fy drH(t =32 (35)
(this constant can be estimated by a saddle-point
method, but is has clearly no special reason to be zero).
In conclusion, there is no solution of Eq. (31) which can
match X /2 for large | X | and for all directions in the
complex plane. We note that one can easily obtain from
Eq. (31) an asymptotic expansion of g which satisfies ap-
parently hX!/? << 1 for | X | — . But this neglects ex-
ponentially small terms which produce exponentially
large terms when they are continued analytically for all
values of argX.

We turn now to the case a=0. The singularity of the
Saffman-Taylor solution is for s;= 0 and g, behaves as
(—s)'/2 for large s. We want again to match this behav-
ior to a solution of Eq. (29) for |s | — . For large s,
we have the expansion 2e/—1=1—2A—b/s. The
higher-order terms turn out to be irrelevant. To zeroth
order b =. Rather than z it is more convenient to use
a variable proportional to exp[ —(1—A)z /2] (this is basi-

cally 1/s'/2). After the rescaling
y2=b[(1—-A)Yk /2]~ 3exp[ —(1—1)z] , 56
f=—i[0=0M*k /217G ,
we obtain the inner equation
4 | 4G —2_ 2
Yo Pay G =y'+C, 37

where C =4(2A—1)/k?/3. This is nothing else but Eq.
(23) which is recovered by the further change of vari-
ablesy = |C |’x and G (y)= | C | ~?Q (x).

As before we make a stability analysis. We look for a
solution which behaves as 1/y for large |y | [this corre-
sponds to the (—s)!”? behavior of g,]. We set
G(y)=1/y +H,(y) and investigate if there is a solution
H | which satisfies H,;y << 1 for large y. The lineariza-
tion of Eq. (37) then yields

dy

d
s

~2y3H1=C—i . (38)

We choose the following solution of the linearized equa-
tion:

K(y)=K,((2y)*'%/3) , (39)

where K, is the modified zeroth-order Bessel function.
It diverges exponentially for large |y | when
|argy | >m/3. The solution of Eq. (38) which satisfies
YH | << 1 for large |y | and —7/3 <argy < is

o exp(2im/3) d

X f°° dt K (1) [%~tiz ] .
(40)

Again this solution diverges in general for |y | — oo
and —7 <arg < —m /3. But this time we have the addi-
tional parameter C which can be chosen to avoid the
divergence. If we choose C in such a way that

fw(2i1r/3)

o exp( —2iw/3)

dz[zK¥2)]~" [ Tdr K (1)

41)

then H, will satisfy yH,<<1 for |y |-—>ow and
—m <argy <m. This means that we have a solution G of
Eq. (37) which behaves as 1/y for large |y | and for all
directions in the complex plane. Therefore, for this fixed
value of C, matching is possible. Unfortunately Eq. (41)
is not quantitatively correct (it gives a single value of C,
not an infinite set) because nonlinear terms which have
been omitted in our linearization cannot be neglected.
This matter is taken up in the next sections where the
correct values of C are found. We note that our pro-
cedure is not the only one which allows us to obtain an
approximate linear problem for Eq. (37). We could
rewrite Eq. (37) in the form convenient for the large C
analysis as we do in Sec. IV. Then this equation can be
linearized and leads to an infinite number of solutions.
This is the spirit of several approaches.?

In conclusion we have shown that in the limit kK —0,
for A£1 (as£0), it is not possible to have a complete
matching between a solution of the McLean-Saffman
equations and a Saffman-Taylor solution g, near the
singularity of g,. On the other hand, complete matching
is possible if we choose for g, the A=1 (a=0) Saffman-
Taylor solution. This result provides a simple way to
understand why the A= Saffman-Taylor solution is
selected for k—0. We note also that, for A=1, the
singularity of the Saffman-Taylor solution g,(s) is for
s =o. But the McLean-Saffman differential equation
has also a singularity at s =c«. Therefore a possible
simple way to understand the selection mechanism is to
say that, among all the possible zeroth-order solutions
qo(s), the solution whose singularity coincides with the
singularity of the differential equation is chosen.

We end up this section by showing that the two
boundary conditions that we have used, namely reality
of G (y) on the real axis and G(y)~1/y for |y | > « in
all directions, are actually equivalent. Indeed if
G(y)~1/y for |y | —> o in all the directions of the y
complex plane, this means that there is no transcenden-
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tal terms in G (y) (these terms being exponentially small
for some directions and exponentially larger for others,
owing to the Stokes phenomenon). Therefore G(y) is
correctly represented by the asymptotic expansion easily
generated from Eq. (37). This expansion has obviously
real coefficients and G (y) is real on the real y axis. Con-
versely if G (y) is real on the real y axis, by analytic con-
tinuation the values of G(y) in the upper and lower
complex half planes are complex conjugate. Therefore if
we choose G(y)~1/y in the upper half plane (we have
seen that this is possible; this will be seen again in the
next section), we will have the same behavior in the
lower half plane. The equivalence between the two
boundary conditions will be quite explicit in the next
section.

III. SOLUTION OF THE NONLINEAR
EIGENVALUE PROBLEM

In this section we obtain an essentially analytical solu-
tion of our eigenvalue problem. We show that all the re-
quired information is contained in the asymptotic expan-
sion of G(y). More precisely we only need to know the
limiting form of the coefficients in this expansion for
large order and we reduce the problem to an algebraic
solvability condition on this limiting form. Our solution
is not completely analytic only because the convergence
toward the limiting form happens to be rather slow, and
in order to obtain a good precision on the “‘eigenvalues,”
it is practically necessary to use numerical methods. But
this is not a general limitation of the method, this is only
a property of the specific differential equation we have to
deal with. We note that one of the advantages of our
analytical procedure is to make explicit the appearance
of exponentially small terms, as we will see.

We want to find the values of C for which

d

= = 2
ydy y + =y +C (42)

has a solution G (y) which behaves as 1/y for |y | — o,
or equivalently is real on the real axis. As we have seen,
exponentially growing terms possibly appear when, for
large |y |, we linearize the equation around 1/y. If we
set

G(y)=yl+H,(y) ,

where H(y) is expected to be small, we obtain for H,(y)
the following equation:

H,

d d
ydy

Yay

—2y3H‘=C—yl, (43)

and unless we make a special choice of C, this linear
equation has exponentially growing solution, as we have
seen in Eq. (41) and will follow from the calculations
below. However, the trouble with this “linear” ap-
proach is that it is inconsistent to retain only the first
term 1/y in the asymptotic expansion of G (y) as all the
higher terms are giving comparable contributions to the
exponentially growing mode. We have found two stra-

tegies to solve this difficulty. The first one is a natural
refinement of the above-mentioned linear approach. In-
stead of keeping only the first term 1/y in the asymptot-
ic expansion of G(y), we keep the first Nth terms

y_l,y_z,y”. . .y‘”, and write
N-—1
Gy)=y '[1+ 3 a,y " |+Hyp) . (44)
n=1

We can hope, and we will show, that when we go to or-
der y =V in the asymptotic expansion, the corresponding
corrections Hy(y) will satisfy an equation like Eq. (43)
with a precision which increases indefinitely when
N — . If this is so, what we have to do is just to write
for Hy, instead of H,, the condition under which there
is no exponentially growing terms for large |y | and let
N go to infinity. In this way we will have an exact solu-
tion of our problem.

Since this first approach forced us to contemplate the
asymptotic expansion of G to arbitrary high order, we
considered if it would be possible to sum the series and
get the result. So our second method consists in Borel-
summing the asymptotic expansion of G to obtain direct-
ly the solvability condition.

A preliminary step is, therefore, to study the asymp-
totic expansion of G and this is the subject of the next
subsection. Following Dashen et al.,’ we shall show
that, in contrast to what one might think at first, the be-
havior of this expansion for large order is simple to ob-
tain. We then present the two methods successively and
end this section with our numerical results for the eigen-
values.

A. The asymptotic expansion of G

We plug the full asymptotic expansion into Eq. (42)
and we find the coefficients by identification. Let us set
y =1/u. Equation (42) becomes

d
2, @
Gudu

L 4G
du

We write

o o
— n 2 2
G=u 3 a,u", G’=u’3 A,u",
n=0 n=0

where we have obviously the nonlinear relation
n
4,= 3 ana,_, . (46)
m =0

Again, the a, we have introduced in the expansion of G
are different from the desired eigenvalues of our prob-
lem. This should not confuse the reader.

Carrying the expansions for G and G? in Eq. (45) and
making use of Eq. (46) to obtain ay, ay, and a, from 4,
A, and 4,, we find the following nonlinear recursion
relation:

Ag=ay=1, A;=a,=0, A,=2a,=—C, (47

and for n >3
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n—3
A,=—CA, 1+ 3 (m+1a, 4, _p_3. (48
m =0
For each n, A, is obtained from Eq. (48) and then a, is
extracted from Eq. (46).

Now we can see that for large n Egs. (46) and (48) are
consistent with a factorial-type growth for 4, and a,.
Namely, if we assume that the dominant terms are the
m =0 and m =n terms in Eq. (46) and the m =n —3
term in Eq. (48), we have

A,=2a,, A,=(n—-2Ya,_;. 49)
Therefore,
a,=a, ;(n—2)?2/2, (50)

which leads to
a, =%"~~<n Ng=ns3,

With this behavior it is easy to check that the terms that
we have retained are indeed the dominant ones, since,
for example, a, _,/a, ~n ~2/3 (when p <<n) and more-
over that the sum of all the subdominant terms stays
negligible compared to the dominant ones.

The major simplification for large n is that the recur-
sion relations [Eqgs. (49) and (50)] are now linear so that
we can give precise estimates of a,. Namely,

2

N'(n+(r+1)/3) b

r'((=+1)/3)

Ay 4~ ()" . T=0,1,2. (51

The exact value of the b,’s, which are functions of C
only, are of course determined by the complete nonlinear
recursion relations. We will return to this point at the
end of this section. We now proceed to the solution of
our nonlinear eigenvalue problem.

B. Reduction to a renormalized linear problem

Since the recursion relation Eq. (50) is linear for large
n, we can solve exactly this relation and find @, in terms
of the “initial conditions” ay, ay ., ay, obtained from
the exact equations Egs. (46)-(48) where N is a large
fixed number. Clearly if we let N go to infinity, our re-
sult will go to the exact solution. In order to find Hy(y)
represented by

0

Hyp)=y~ ' 3 a,p", (52)
n=N

we remark that Hy(y) with initial conditions ay, ay .,

ay ., is a solution of

dHy
dy

N

y —y’Hy=—ayy* N—ay y'~

yd
2 dy
—ay Y, (53)

as can be seen by inserting directly Eq. (52) into Eq. (53).
Precisely Hy(y) is the solution of Eq. (53) which goes to
zero for |y | — .

Actually since ay has a factorial behavior it is more
convenient to work with

Gyy=y~' 3 p,Vy ", (54)
n=0
where for n > N the b,’s coincide with the a,,’s:
b,"'=a,, n>N (55)

and for O0<n <N, the b,’s are calculated from
ay, ay .1, ay,, by making a backward use of Eq. (50).
Explicitly,

2P
b}(\’N-—)3p+r=
[(N—=2+47)N —=5+7) - (N=3p+7+17]?

Xy ,+ (56)

where 7=0,1,2 and 0 <3p —1 <N. Now Gy (y) satisfies

dG
yd | 29N | 3Gu= — (b2 4 p My L pN)y
2 dy d y N 0 y 1 y 2
(57)
and lim,,_, Gy(y)=0 if lim|, |, Hy(y)=0 and re-

ciprocally. But b§", b{", and 5" are no longer factori-

ally large. They have as finite limits by,b,,b,, previously
defined in Eq. (51).

We see that Gy satisfies an equation quite analogous
to Eq. (43). More precisely, from Eq. (43), G(y)=y !
+H (y) verifies

d dG ~ C

1,2 2T LG = 2=

2ydy ydy y°G yo+ )
=—(agyi+a,y+a,) . (58)

Therefore, comparing Egs. (57) and (58), we see that
solving exactly up to ay ., and using beyond that Eq.
(50) is just equivalent to renormalize the original
coefficients ay,a,a, in the inhomogeneous terms of Eq.
(58) into bV, 6N, bV

Now our program is clear: we have to find under
which  condition on b{Vb6MbM  we have
lim,,_,  Gy(y)=0. Then if we let N — oo, that is if we
replace b, b\™, b{" by their limits by, b,,b, we will
have the exact solution of our problem.

We have already written the boundary condition when
we have studied Eq. (38) [which is the same as Eq. (43)].
With our variable y, we can rewrite the solution of Eq.
(57) as

Gy =K [“* " ar Py, (59)
y
with
2 o
F(y)= dtK(t)J(t)/t , (60)
Y yKy) fy

where J(y) is the right-hand side of Eq. (57) and
K (y)=K,[(2y)*/*/3]. The boundary condition Eq. (21)
[expressing lim |, | _, G y(y)=0] becomes
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(2im/3)

= OPETE 4y F(p)=0 . (61)
w0 expl —2i1m/3)

If we take the path from ce "2™3 to we?™3 sym-

metric with respect to the real axis, it is easy to see that,

because F(y*)=F*(y), Eq. (61) is equivalent to
o expim/3
Im fyo F(y)dy =0, (62)

where y, is anywhere on the real axis [but with y;>0 in
order to avoid the singularity of K (y) for y =0]. This
implies in turn that

Therefore, Gy(y,) is real on the real axis which shows
explicitly the equivalence between the two boundary
conditions.

In order to make this condition explicit, it is more
convenient to rewrite Gy (y) in terms of two independent
solutions of the homogeneous equation [this amounts to
performing a by-part integration in Eq. (59)]. We choose
K(y) and I(y)—iK(y)/m where I(y)=I,((2y)*/?/3).
For y— + w0, K(y)—0 while I(y)—iK (y)/m diverges.
For y — we?™3, K (y) diverges and I (y)—iK (y)/7—0.
Since the Wronskian'! of K (y) and I(y)—iK (y)/m is

ImGy(yy)=0. (63)  3/(2p), Gy(y) is given by
J
Gyp==[1- % [ arki/ -4k [’ dt[(I —iK /m)J /t] (64)
N 3 T o 3 o exp(2i7/3) ’

where the boundaries of the integrals have been chosen to ensure Gy(y)—0 when y — o or we?™. For p, real pos-

itive

4K (y,) Yo

I -
mGN(yo) 37

[fydt(KJ/t)+Im f

Therefore, condition Eq. (63) implies that the large
parenthesis on the right-hand side of Eq. (65) must van-
ish. Now we let y,— oo in this parenthesis which leads
to the simple boundary condition

ImfeoeXP(ZiTr/3)dt[1TI(t)_iK(t)]J(t)/[=0 . (66)

We note that Im(«#/—iK)—0 exponentially for both
boundaries of the integral. This is the motivation for
our choice of this combination.

Replacing J(¢) by its explicit expression, we are left
with various integrals involving Bessel functions. These
can be done analytically. The details are given in the
Appendix. The resulting condition is

be" + Vb + WbV =0, (67)
where
r4
V=61/3_5’ W=(22°T2, T=I(!). (68)
41

Numerically ¥V =2.37069...and W=2.63299....
We will now give another derivation of this solvability
condition before making use of it in the last part of this
section.

C. G from a Borel summation of its asymptotic series

In the previous section, we have obtained a solvability
condition that depends only on the behavior of the
coefficients of the asymptotic series of G(y). Here, we
show that we can obtain this solvability condition direct-
ly from the asymptotic series of G.

dt[(7I —iK)J /t] | . (65)
o exp(2im/3)

We have seen above (III A) that the coefficients of the
asymptotic series of G(y) have a factorial type of
growth, so that the radius of convergence is zero. In or-
der to proceed, we define, as usual, a new series:

& a3n+f
B = —z". 69
Az) n§0 ol z (69)

The coefficients of this new series are no longer growing
too quickly and we can find their asymptotic behavior
for large n given the estimate of a, obtained before [Eq.
(51)]. That is,

a3n+‘r~ ‘/7T
2n! rX((r+1)/3) 7

n (47—5)/6(%))1 . (70)

B .(z) is therefore a convergent series of |z | <% and
defines an analytic function there. If we try to find for
B (z) an analytic continuation in the complex plane, Eq.
(70) readily shows that the closest singularity to zero of
B.(z) is located at z,=% and that the behavior of the
singular part of B (z) near z, is given by

v/p DUTED/6),

)~(41—+1)/6 .
r(r+1)/3) ~

B

rsing(
(71)

Since we will be interested below in values of z on the
real positive axis, we choose a particular continuation
with a cut in the lower z half plane.

In order to go backward, from B_(z) to G(y), we
define
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1
yl+r

G == [Tdte™B, |5 (72)

We then identify G(y) and 32_, G, (y) which satisfy
the same differential equation and which have the same
asymptotic series in some sector of the lower y half plane
(for example, — 7 /2 <argy < —m/6). Now that we have
an explicit representation of G(y), we can find when
G (y) is purely real on the positive y axis.

So we analytically continue G(y) from the axis
argy = —m/3 to the real positive axis (staying along the
way in the lower half plane). On the real positive axis,
we find, for each 7

b, VaI((4r+1)/6)
€X

”T4T+1
y*7 TH(r+1)/3)

6

ImG .(y)~Im

1279
1 (8y3/9)172 2
G.=— f ’ die™'B, _t—s
y 0 y
1 © tz
dte 'B_|— 7
+y1+7‘ .[(SyS/g)l/Z T y3 ( 3)

The noticeable point in this seemingly vacuous equation,
is that only the second integral can contribute to the
imaginary part of G,. Moreover, its asymptotic behav-
ior for large y is dominated by the neighborhood of
[8y°/91'%, so that it is possible to replace b. by its
singular behavior near this point Eq. (71). We obtain,
therefore,

® —t
f(sys/g)mdte (74)

9 2 —(474+1)/6

and after a straightforward evaluation of the remaining integral

172
373

T 2)(7+1)/3
V2372

ImG,(y)~ ——
Y = (1) /3)

(The careful reader might be worried that the integral to
be computed seems divergent for 7=2. This happens be-
cause in Eq. (73) there are actually three integrals not
only two: we have not written the integral along an
infinitesimal half circle around the singularity at
t=[8y3/9]'/2. This integral is actually negligible for
7=0,1, but it diverges for 7=2 and cancels the diverg-
ing part of the integral that we have kept, thus giving
the finite result in Eq. (75).)

The first nice point emerging from this calculation is
that the functional form (in y) of the imaginary part is
the one predicted before by a linearization around a
truncation of the asymptotic series. But now we have
obtained the coefficient in front of this imaginary part.
The requirement that ImG =0 (i.e. 32_,ImG,=0) gives

the previously obtained solvability condition
401
3

(
b +b 61/3
0 ! 47

+b,(2)*°T1)=0.

It is interesting to note that all the information we
need to express our solvability condition is contained in
the asymptotic expansion. This is not so obvious since
one might well have thought that any information on
transcendentally small terms was beyond the asymptotic
expansion.

If we take the N =0 values for bV (namely
1,0,—C/2), we find from Eq. (67) the (single) solution
C,=2/W=0.759. This is quite near the numerical re-
sults and raises the hope that the convergence as N — oo
is very fast. This hope is actually completely unfulfilled.
The b¥"s go very slowly to their limits b,. Indeed for
large N, b'™ can be represented by a series expansion in
powers of C/N'/3. Obviously one must go to fairly
large values for N in order to obtain a 10~ " precision for
the limit since one must reach N ~C?*10*". The problem
gets worse for large C.

exp[ —(3y

3)1/2] .

D. Numerical evaluation of the solvability condition

Before proceeding to this last step, let us translate in
our notation the numerical results of McLean and
Saffmann and Vanden-Broeck. McLean and Saffman
find only what corresponds to the lowest solution C, for
our constant C. For k=0.069, 0.131, 0.273, and 0.597
they obtain, respectively, A,=0.515, 0.524, 0.537, and
0.557. If we calculate 4(2A—1)/k?/3, which must go to
C, for k—0, we find, respectively, 0.713, 0.744, 0.703,
and 0.643. The extrapolation for kK —0 is not clear be-
cause there is a maximum. If we extrapolate from the
last three figures, the result falls near 0.8. But in this
case the first figure is anomalous, perhaps because of im-
precision linked to the small value of k. For k =0.273,
Vanden-Broeck finds also the next two fingers widths
A,=0.61 and A;=0.67. This gives 2.09 and 3.23 for C,
and C;, respectively. However, since k is rather large,
these can only be taken as indicative values.

We have accelerated the convergence by solving
analytically for the first three terms of the series as func-
tions of the limits b (but there is no problem in princi-
ple to go to any order one wishes). Then the first un-
known corrective term is of order C*/N*/3. We have
next further accelerated the convergence by making use
of the Richardson extrapolation method. Finally, we
have found that, after these transformations, the mean of
the values for N, N +1, and N +2 converges markedly
more rapidly than the value for N itself. Naturally the
calculation of the b'¥"s from Egs. (46)—(48) and (56) and
the acceleration procedures have been implemented on a
computer. We have calculated the left-hand side of Eq.
(67) for various values of C and found numerically for
which C its zero.

In this way we have found the three lowest value of C.
We obtain
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Cy=0.8158, C,=2.950, C,=>5.63
or (remember that a =C?3/?)
4o=0.7368, a,=5.067, a,=13.36.

Our result for a, agrees nicely with the kK —0 extrapola-
tion of McLean and Saffman results (if the k =0.069
point is discarded). While writing this paper, we re-
ceived two preprints where the nonlinear differential
equation Eq. (42) defining our internal problem is solved
numerically. The results of Ref. 7 are

ay=0.73685, a,=5.05
(the notation in Ref. 7 is § =2a) while those of Ref. 8 are
ay=0.73685, a,=5.070, a,=13.37, a,=25.65.

The agreement between these calculations and ours is
therefore very good.

IV. ASYMPTOTIC BEHAVIOR
OF THE NONLINEAR EIGENVALUES

It is possible to find the asymptotic behavior of the
solutions of the inner problem in the large a or C limit
by using a second time the method of Ref. 5. We first
show that as a — « it is given by the solution of a new
reduced inner problem which is parameterless, as
demonstrated previously in I. We then apply our Borel
summation procedure to solve this new inner equation.

A. Reduced inner problem of the large-a limit

The internal problem obtained previously (Eq. 23) is

)

a 'x
dx

+0 7 2=1+x2, (76)
dx

with the boundary condition Q ~1/x for Im(x)— — .

It is clear that an asymptotic expansion in power of
1/a of a solution of this problem can be obtained,

Q=Qo+%Q1+;17Q2+"' , (n
with, e.g.,
1
Q= 7

(we choose a cut on the imaginary axis between —i and
i).

The Q,’s are odd functions of x. In order to decide
whether Q itself is odd, that is, whether the asymptotic
expansion is asymptotic for Rex — + o, we examine it
in the vicinity of one of its singularities x =i say
x = —i. In the neighborhood of x = —i, [x =—i(1—y),
y << 1] the internal problem simplifies to

2
a—l%%+g—2=2y. (79)
y

As before, the small parameter 1/a can be eliminated by
a rescaling of the function Q and variable y

COMBESCOT, HAKIM, DOMBRE, POMEAU, AND PUMIR 37

177 : —2/7
a
=171 Fy=513 (80)
In terms of the new variable and function we get
d*F 1
g —=r. (81)
dr*  F?

The domain where Eq. (81) is valid defines a new inner
region of extension a ~2/7 << 1 for large a. It is worth
noticing also that we obtained exactly the same equa-
tion, directly from the McLean-Saffman equations, when
we considered the limit k going to zero, a fixed [Eq.
(31)]. The following treatment could also be applied in
this limit but in the matching process the WKB solu-
tions [Eq. (86) below] of the internal problem would
have to be replaced by the corresponding expressions for
the McLean-Saffman equations. The fact that Q should
match with Q, translates into the boundary condition

1
F~‘/_; for Im(r)—> — o . (82)

The possible exponential asymptotic correction to the
algebraic  series in the wedge-shaped sector
(—=6m/7)<arg(r)<(—2m/7) is computed by lineariza-
tion of Eq. (81) around the asymptotic value of F and
satisfies
2
ﬂ—zrmFFo . (83)
dr?

So the possible asymptotic behavior of F, in the wedge-
shaped sector (—67/7) <argr <(—2mw/7) is

F~yr38exp(4v2r7/%) . (84)

argy will be obtained below from the solution of Eq. (81)
by the Borel summation method. Now that we have ob-
tained the possible form of exponential corrections in the
inner region (|x +i | <<a?/"), we do the same in the
outer region and match the solutions.

In the outer region, the form of transcendental correc-
tions may be found by a WKB analysis. We linearize
Eq. (76) around the first term of the asymptotic expan-
sion in 1/a, Qy=(x2+1)"'/2 and have to solve

—2(x241)*?h =0. (85)

The only acceptable solution (i.e., exponentially de-
creasing for Rex — + o) is

h =h, —V2a f:;(x'2+1)3/4i:,- ,

exp

1
(x24178
(86)

where x is an arbitrary point on the real positive axis.
The possible exponential correction of the internal prob-
lem [Eq. (39) of Sec. I] and A match. So, the searched ei-
genvalues are obtained when # is real. In order to find
the phase of h, we have to match F, and h. For
x =—i(l—y) near —i (i.e., y << 1) h can be written as
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3/4dx’

’

h~hoexp |—V2a [ ~'(x"41)
0

X y—;lgexp( V'2aq 42374774y |

This is exactly the asymptotic form of F, [Eq. (84)],
considering relation (80) between y and r. So the phase
of h, is deduced from the phase of ¥ by subtracting the
imaginary part of

__\/E f’i(xf2+1)3/4‘_i£'_ ,
*o

which is equal to +7Va/2. [We evaluate the integral
along a contour consisting of the segment [—i,0), an
infinitesimal quarter of circle around O and the real posi-
tive axis from O to x,. Then only the infinitesimal quar-
ter of circle contributed to the integral and the result is
easily obtained.]

This can be written as

12
=—(arghy,—argy) ,

a 1
2 T

and finally the requirement that A, is purely real gives
for the eigenvalues
2

a,=2 , nEN . 87

n+ argy
m

This is, of course, an asymptotic evaluation for large n
but we will see below that surprisingly, even aq,a;,4a,
are accurately described by this formula. We now
proceed to the solution of the reduced inner problem
and the computation of argy.

B. Solution of the reduced inner problem
by the Borel-resummation method

Let us recall the strategy. We search for F, solution
of Eq. (81), and boundary condition (82) from its asymp-
totic series. So, we first study the asymptotic series and
then sum it. The computation of the first few terms of
this series leads one to think that it involves only the
powers r ~ 7" +172_ S0, we look for F as

__1
—‘/;g(r ). (88)

Using this expression into Eq. (81) it is easy to obtain an
equation for g (X =r"/2):

=
4

3g/X +21g'+49g"X =4 , (89)

with the boundary condition
g(X)—>1 as X — — 0o +i0" .
We plug the full asymptotic expansion of g

2 &n
gX)= 3 ,
n=0 X"

go=1 (90)
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into Eq. (89) and find the coefficients by identification.
The first important property is that all the g,’s are real
since g, is real, and that Eq. (89) is a differential equa-
tion with real coefficients, which therefore gives rise to a
real recursion relation between the g,’s.

The second important property is that, as before, for
large n, only the linear part of the recursion relation be-
tween the g,’s matters. That is

8n+1
—~2n+Hn+3). (91)

n

So we have the estimate for g,,:
8, ~Z(L)T(n+1)(n+2). (92)

The value of the constant g is of course determined by
the complete nonlinear recursion relation. Actually, the
convergence of the g,’s toward their asymptotic form
appears to be very quick and the computation of the first
few g,’s should suffice to obtain a precise estimate of g.
As it will be seen below, the knowledge of the actual
value of g is not necessary for our purpose. The main
point besides the asymptotic form Eq. (92) is that g is
real as are the g,,’s.

Now that we have seen that the coefficients of the
asymptotic series of g(x) have a factorial type of
growth, we follow the path of Sec. IIIC to resum the
asymptotic series. We define a new series

Hy)=3 2

Y". (93)
nepo 2n!

The asymptotic behavior of the coefficients of this new
series is [using Eq. (92)]

__~g"‘/;n—l3/14(ﬂ)n . (94)

4o,
//
1 /| VN
\ 0 /ArgX=-2n t +00
L} e
Arg Xz-31 5.

t contour for ArgX-0

@6 —go + oG
0

-b.

FIG. 5. (a) Evolution of the singularities *¢, of the in-
tegrand of Eq. (96) as a function of argX. (b) Final ¢ contour
for argX =0.
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The singularity of H(y) closest to zero is located at

=32 and is given by
H(Y)g,~gVaD(E)1—-8Y)~ /14 95)
In order to go backward from H(Y) to g (X) we use the
representation

2
g(X)= fo+°°dte"H [ﬁ; J . (96)

On the Stokes line argr =—6m/7 (or argX = —3)
g (X) is purely real, as it should, and is exactly given by
its asymptotic expansion. Now when one rotates in the
complex r plane and crosses the anti-Stokes line
argr = —4m /7 (argX = —2), the singularity of the in-
tegrand in Eq. (96) at to=—%V2V'X hits the real posi-
tive t axis from below [see Fig. 5(a)]. Therefore, in order
to analytically continue g (X) up to the next Stokes line
argX = —7 (where exponential corrections become oscil-
lating and thus noticeable) one has to deform the in-
tegration path in the ¢ variable, so that it goes around ¢
on the left side. It is even more simple to do the calcula-
tion of ¥ on the next anti-Stokes line argX =0 or
argr =0 because the exponential correction becomes the
dominant term. Note, however, that this is here only a
matter of technical convenience. The matching to the
WKB outer solution given by Eq. (86) still has to be
done in the wedge-shaped sector —67/7<argr
< —2m/7. When one reaches the line argX =0, the
original ¢ contour has been transformed as shown in Fig.
5(b). For large X, the major contribution to g (X) in Eq.
(96) comes from the vicinity of 7y, and one easily obtains

g (X)~ e2i1r/14xl/28( l—e —21'17/14)

— 1/14
Vv
u] avar |L

X
1

4
X f0+°°e"‘u“/“'du}exp 4—‘/51/:\7]
or

1/14
42
7

g(X)~ ’-eiﬂ/4X1/28 [213/142-,”,3/2 [

X exp 97)

=

Using Eq. (88) and comparing (97) with (84) we get for
the phase of y the result

argy =+ %”- . (98)

This completes our calculation. We have obtained an
explicit formula for argy because, surprisingly, it turns
out that the nonlinear complexity of Eq. (81) appears in
the modulus of ¥ but not in its phase. As mentioned be-
fore, with this value of argy, the asymptotic formula Eq.
(87) works well even for the first eigenvalues. Namely,
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using Eq. (87) we obtain
a;,=0.6531, a;=4.939, a,=13.22

to be compared to the exact values obtained before
a,=0.7368, a,=5.067, a,=13.36.

Note that our result (98) leads to a value of
¢=argy —m/2, as defined in Ref. 8, equal to
m/14=0.2244, which is slightly different from the nu-
merical estimate given in (Ref. 8), ¢ =0.2325.
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APPENDIX

When J () is written explicitly, condition Eq. (66) be-
comes

Im [ gtlml (0)—iK (1))

BMt+b™ 46V /1y=0, (AD
which gives after the change of variable u =(2r)*/2/3
32/3

2
Tb(ON)E]/3+b(1N)E_1/3+;mb(ZN)E~1=0 I’ (A2)

where

E,=Im [~ duu*[wly(u)—iKo(u)] . (A3)

The contour in Eq. (A3) must avoid the origin by going
in the upper complex plane. We decompose this contour
in three pieces: C; goes on the real axis from o to €,
C, is a semicircle of radius € centered at the origin and
located in the upper complex plane, C; goes on the real
axis from —€ to — .

The integrals over C| and C; are easily related. I,(z)
is an entire function and satisfies Io(—u)=1I(u) for u
real positive. The analytic continuation!! of K,(z) into
the upper complex plane satisfies Ky(ue'™)
= —imly(u)+Ky(u) for u real positive. Therefore,

Im fcl du u¥(mly—iKy)= fs duu’K, , g
Im f03 du u¥(mly—iK,)=cos(mv) f:c duu’K, .

For v=4_r% the integral converges for €é—0, and the
contribution from C, vanishes in this limit. Therefore,!!

—_—% f0°° du ui‘/3K0(u)=%x2i1/3I‘2(%i%) , (A5)
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where I'(x) is the Euler gamma function. For v=—1,
the contributions from C, and C; cancel. For the C,
contribution we can take'! Iy(u)=1 and Kyu)
= —[In(u /2)+7vy] where y is the Euler constant. An
elementary calculation then leads to

2

E_1=—2'- .

We finally make use in Eq. (AS) of

LN =27/v3. (A6)
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