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Quantum-noise quenching in the correlated spontaneous-emission laser
as a multiplicative noise process. I. A geometrical argument
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%e show, via simple geometrical arguments, the quantum-noise quenching in a correlated (spon-
taneous) emission laser (CEL). This noise quenching is a consequence of the correlation between
noise sources which results in a multiplicative noise process. The steady-state distribution for the
phase difference between the two electric fields in a CEL is compared and contrasted to that of a
standard phase-locked laser. Noise quenching is shown to occur in the case of the CEL via an ex-

plicit solution of the Fokker-Planck equation.

I. INTRODM;TION AND OVERVIE%'

The drive for ultra-high sensitivity in, for example,
quantum communication, ' the ring-laser gyroscope, and
gravitational wave detectors has stimulated the study of
laser systems which challenge the experimental "limits. "
Examples of such studies include "squeezing" the vacu-

um, quantum-nondemolition systems, and more recent-
ly the correlated (spontaneous) emission laser (CEL). It
has been shown ' that such a CEL device can have a
vanishing diffusion coef6cient for the relative phase angle

g between the (complex} electric fields 8, and 8z associ-

ated with the transitions from two coherently excited
states. This quenching of spontaneous emission noise
has been supported by further theoretical investiga-
tions " and a recent experiment. ' Moreover, the CEL
has been shown to lead to a possible improvement in the
sensitivity of an (idealized) laser gravitational wave

detector or a laser gyro.
Nevertheless there appears to be some confusion be-

tween CEL operation and the operation of an ordinary
two-mode phase-locked laser' (PLL). In both the CEL
and PLL the two modes are locked to a specific relative

phase angle ftr In the PLL case spontaneous emission

noise will be reduced relative to that associated with two
unlocked lasers. s Examples of such PLL noise reduction
have been given previously and include (l) phase noise
quenching in a laser with an injected signal (symmetry
broken laser)' and (2) the noise quenching in a locked
ring-laser gyroscope. ' %e emphasize, however, that
noise is always present in the PLL even though the spec-
trum may be substantially altered. ' "'

In the CEL case, however, noise fluctuations in the
relative phase angle are, under the appropriate condi-
tions, completely eliminated. ' This occurs for two
reasons. First, quantum noise in the two modes is corre-
lated via the CEL effect; second, the system is phase
locked as in the PLL. %e emphasize that while phase
locking is present in the CEL it is not sufhcient to lead
to the complete suppression of spontaneous emission
noise.

In an attempt to better understand and demonstrate
the CEL physics we here and in a forthcoming article'
(referred to as paper II) develop a classical Langevin and
Fokker-Planck treatment~ of the problem. The present
analysis emphasizes a geometrical-pictorial derivation of
the phase-noise quenching in favor of the previous quan-
tum Langevin and Fokker-Planck approaches. More-
over, the Fokker-Planck equations' for the PLL and
CEL are compared and contrasted and solved analytical-
ly for the steady-state distributions in terms of scalar
continued fractions as well as quadratures confirming
the noise reduction shown via an approximate
(Langevin) treatment. We supplement this geometrical
point of view in paper II by a mathematically rigorous
treatment of the complete set of CEL equations. Both
papers show that the noise reduction in the CEL is inti-
mately related to the concept of multiplicative noise.
Moreover, the importance of both mode correlations and
mode locking is made especially clear in these treat-
ments.

The present paper is organized as follows. In Sec. II
we include spontaneous emission fluctuations in the
equation of motion for the relative phase angle i' of a
(two-mode) PLL. We then demonstrate that, depending
on the amount of correlation between the two modes,
the spontaneous emission Auctuations enter either as ad-
ditive noise (for the case of no correlation} or as multi-
plicative noise (for maximum correlation). Similarities
and difterences between CEL and PLL operation are
compared and contrasted in Sec. III A via the Langevin
approach by using the first two moments of the phase
diff'erence P. Quantum noise quenching as a conse-
quence of multiplicative noise is so shown to occur in
the CEL but not in the PLL. In the same spirit we, in
Sec. IIIB, present a simple Fokker-Planck analysis of
the problem and obtain the corresponding probability
densities in terms of scalar continued fractions and quad-
ratures. %'e so emphasize the difference between ordi-
nary laser operation on one hand, PLL and CEL opera-
tion on the other. In Sec. IV we show via geometrical
arguments that whereas noise quenching occurs in the
phase difference f between the fields, the average (or
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sum) phase angle '+ undergoes a diffusion process associ-
ated with the usual (Schawlow-Townes) rate. Section V
is a suxnmary and conclusion.

(F, &=0,

(F,'(t)F„(s)) =2D,„5(t—s) .

(2.3)

(2.4)

In this section we derive, via geometrical arguments,
the equations of motion for the relative phase difference

f between two modes in a PLL and CEL.
In a CEL con6guration ' ' ' two electric fields—i 81 —i 826 i
——pie and 62——pze with slowly varying ampli-

tudes pj and phases HJ (j =1,2) are locked to a constant
relative phase angle fc. This phase locking is described
in its simplest form by the familiar Adler equation' ' '

for the phase difference

tj'I =a bsinf—, (2.1)

56, =F, (r)

with Gaussian noise sources Fj such that

(2.2)

where a =0,—Q2 denotes the di8erence between the
eigenfrequencies QJ of the two cavities and b is the gain
coef5cient o;. In the application of a CEL as a gravity
wave detector we 6nd a =hv. Here h is the dimension-
less amplitude of the gravitational wave (h -10 ) and v
is the nominal laser frequency. In the laser gyro prob-
lem' the detuning a reads a =SO where S =2r/K is the
scale factor2 (r and K denote the ring radius and the re-
duced wavelength, respectively).

We choose a rotating coordinate system in which the
fields 8, and Cz are slowly varying having a relative
phase angle g„= r asic(an/5) given by Eq. (2.1) such—(i')$0 +(i !2)$0
that 8, =pce ' and 8z ——pce '. Here we have
assumed a symmetric configuration such that p, =pz ——po
and po denotes the electric field amplitude at steady
state.

Due to spontaneous emission, the electric fields CJ.

(j =1,2) fluctuate,

Po
sin 5$(++

=—[ ~
M,

~
sin(5$, ) cos(g/2)

Po

+
~
5C,

~
cos(5$, ) sin(lf/2)]

=—[Im(56, ) cos(1t /2)+«(5@ )»n(tt /2)]1

Po

Similarly we arrive at
(2.5)

Po
sin(5(('i2 —+ )

2

=—[ ~
5@2

~
sin(5(()z)c os(P /2)

1

Po

—
~
5hz

~
cos(5/2) sin(f/2)]

1
[Im(5@&)cos(f/2) —Re(5@&)sin(p/2)] .

Po

(2.6)

Note that spontaneous emission events from two
coherently excited states are strongly correlated as
demonstrated in quantum-beat and Hanle-e8'ect experi-
ments. As a result the cross-correlation diffusion
coei5cient D &2 can be made nonvanishing.

%e now consider the effect of the fluctuating forces F&

and F2 on the relative phase difference P shown in Fig.
1. The phase shift 58, is caused by a spontaneous-
emission event 5@„and is given for

~
M,

~
&&pc by

, &(6fzi sin (5@2- —
)2 2

J Qfi i sin (64t+ —)2

FIG. 1. Phase diagram of spontaneous emission in a phase-locked laser. The electric fields 6, and 62 are locked to a phase an-
gle if. A fluctuation 58, (j =1,2) causes a phase change 58, given by Eqs. (2.5) and (2.6).
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Hence the total fluctuation 5/=58] —5Hz in the phase
difFerence g reads

5$= — [cos(f/2) Im(58] —5@z)
1

Po

+sin(1t /2) Re(5] ]+M z)]

&F(r)F(s) &=Zn5(r .),
(2.12)

where 2)=D/po. Here and in the remainder of the
present article we have set D» ——D22 =—D. The equation
of motion for g [Eq. (2.7)] thus reduces to the familiar
equation for the phase-locked laser' ' ' (PLL)

and in view of Eq. (2.2), / =a bsi—ng+F(r ) . (2.14)

[cos(f/2) Im(F]51 Fz5—r )
1

A

+sin(tP/2} Re(F]5t+Fz5t }].

Defining 5$/51 =—(BQIBt) ( ]]„„wethus find

[cos(Q/2) Im(F, Fz )—1

suet

+sin(g/2) Re(F, +Fz)] .

Adding this to the deterministic equation (2.1) we arrive
at the geometrically motivated equation of motion

1( =a bsin|(+—cos(1(/2)F +sin(g/2)F+ . (2.7)

In the last step we have introduced the Gaussian
Langevin forces F =(1/po) Im(F] Fz) a—nd

F+ ——(1/po) Re(F, +Fz) which according to Eqs. (2.3)
and (2.4}have the properties

/=a bain'(—+sin(]}}/2)F+(t),
where according to Eq. (2.10)

(F (r)F (s))=2(m)5(r —s) .

(2.15)

(2.16)

Comparing Eq. (2.16) to Eq. (2.13) we note that due to
the noise correlation, the noise strength is twice that as-
sociated with F. Moreover, we emphasize that the two
equations of motion for 1(], Eqs. (2.14) and (2.15), are dis-
tinctly different. Whereas in Eq. (2.14) the noise enters
in an additive way, in Eq. (2.15) the noise F+ is multi-

plied by a nonlinear function of the stochastic variable

We now turn to the case of maximum correlation, that
D]]+D]z=2 ReD]z

For the sake of simplicity we assume ImD]z ——0 and
therefore (F F+ ) =0. Since (F ) =0 and
Gaussian all higher correlation functions are zero as
well; therefore F =0. As a result Eq. (2.7) simplifies to
the equation of motion for the phase difFerence in the
correlated spontaneous emission laser (CEL) (Ref. 29)

and

&F &=&F, &=0 (2.g)

III. COMPARISON BETW'KEN PI.I.
AND CEI. OPERATION

(F (t)F (s) ) = — [D»+Dzz —2 Re(D]z )]5(t —s),1

A

(F+(r)F+(s))= —,-[D„+Dzz+2Re(D»)]5(1 —s),1

A

(F+ (t)F (s) ) = ——— Im(D]z )5(t —s) .2

po
(2.11)

Here we have used the fact that D,z ——Dz, [which fol-
lows from Eq. (2.4)]. According to Eqs. (2.9) and (2.10}
a correlation of the noise sources F, and Fz, that ]s,
D&2&0, leads to a reduction of noise strength of F and

to a corresponding increase in I'+. Thus the Langevin
forces F and F+ are correlated as expressed by Eq.
(2.11). Depending on the amount of correlation between
I', and I'2 either the cosine or the sine contribution in

tlie eqllatloil of 111otio]1 for tp [Eq. (2.7)] gal]is 1iiofe
weight.

In the absence of correlation, that is, D]2 ——0, the two
noise forces F and F+ have equal weight and Eq. (2.7}
can be simpli6ed by introducing the Gaussian noise
F=cos(1(/2)F +sin(]{(/2)F+ which according to Eqs.
(2.8)—(2.11}and Appendix A has the properties

The similarities and differences between PLL and CEL
operations come to light in the steady-state distributions
Po" and Po ' of the corresponding Fokker-Planck equa-
tions. Here the superscripts a and m denote the case of
additive and multiplicative noise, Eqs. (2.14) and (2.15),
respectively. We therefore in this section present (for-
mally) exact expressions for P]]]l' in terms of scalar con-
tinued fractions and quadratures (Appendix 8).
%hereas the continued fraction method is well suited for
numerical analysis it makes it diff]cult to get some in-
sight into the functional dependence of I'z~' on the vari-
ous parameters such as the detuning a. It is therefore
worthwhile to consider approximate analytical expres-
sions (Appendix C) which can be checked against the ex-
act scalar continued-fraction treatment. Moreover, in-
sight into the noise quenching in CEL operation springs
from an approximate solution of the two I.angevin equa-
tions.

A. Ay@I oximaje Langev]tn &eg~egt

Oriented towards possible application in gravitational
wave detection or in the ring-laser gyroscope' we
confine our discussion to small detunings,

~

a
~

&&b.
For our case of weak noise, Xl«b, insight can be won
by linearizing the sine function around the stable point
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$0=al cslli( a /b ) ~a /b,

l((t) =—+t(),(t)
b

yielding for Eq. (2.14)

i"= —bc")+F(t),
whereas Eq. (2.15) simplifies to

(3.1)

(3.2) 8 . (+) BP
[(a b—sing )P"']+2) (3.9)

ments are needed. However, it is well known that
linearizing a multiplicative noise process results in diver-
gent higher moments. %e therefore turn to the Fokker-
Planck equations' corresponding to Eq. (2.14), for the
PLL,

tI),
( '= [b ———,(F+(t))2I),( '+ F+(t) . (3.3)

From Eq. (3.3) we note a reduction of the effective noise
by the factor a/2b «1 originating from the multiplica-
tive term sin(l(t/2) in Eq. (2.15). In particular, for a =0,
no noise is present in the CEL, whereas in Eq. (3.2) for
the PLL the noise strength is independent of the detun-
ing a. This is the central lesson: We recognize noise
quenching for the CEL, but not for the PLL.

This noise-quenching effect can be seen in more detail
by calculating the moments &5( )} and &(b, ( ') ) for
k =a, rn Equ.ations (3.2) and (3.3) can be integrated
trivially to yield, for the PLL,

2( (tt)(t) tI)(a)e bt+ J d—tre b(t —t') —
F( t&) (3.4)

0

and, for the CEL,

(~) (~) bt+(1/2—) f dt'F+(t')t=60 e p +

a t, b(t —t') (—i/2) f d-t F (t )

0

and Eq. (2.15), for the CEL,

gP(m)

Bt Bf
[(a (b ———'2)) sing}P' ']

a'
2+22) [sin (((('t/2)P' '], (3.10)

Pg'(y)= ' y„.„.&

2' n = —oc

(3.11)

into Eqs. (3.9) and (3.10) results in the three-term re-
currence relations

directly determining the steady-state distributions Po()

subjected to periodic boundary conditions.
Since Eqs. (3.9) and (3.10) are one-dimensional

Fokker-Planck equations, analytical expressions for I'0(J'

in terms of quadratures can be given (Appendix 8).
However, we here use the continued-fraction method'

to directly obtain the exact steady-state solutions of Eqs.
(3.9) and (3.10}equivalent to the integral representations
of Appendix B. Substituting the ansatz

(3.5)

Making use of Eq. (2.12) we Snd in steady state, i.e., for
t ~ 0(), from Eq. (3.4) for the PLL

&
g(tt) } 0

(ia+nn}c(" c" +———c" =0
n 2 n —1 2 n+1

for the PLL, and
r

(ia+n2})c( ) ————+ nc' '—() b 2) n

2 4 2

(3.12)

However, expanding the exponential in Eq. (3.5) for
small noise 2)/b « 1 we obtain for the CEL c' ' =0, (3.13)

b 2} n
n+ l

(3.6)

The origin of this tiny noise-induced shift can be traced
back to the multiplicative term F+5( ' in Eq. (3.3) and
thus to the multiplicative noise in Eq. (2.15).

Analogously, the second moments &(6'"') } follow
from Eqs. (3.4) and (3.5) as

(j) S(j) (j)
~n =

n &n-l ~ (3.14)

where S„'J' are given by the scalar continued fractions

for the CEL. Equations (3.12) and (3.13) can be solved

by the iteration

&(~"))')=-
6

for the PLL and

(3.7)
S(g) 6

2ia+2nn+bS„" (

for the PLL and

&(~™)')=— (3.8)
2

for the CEL. Since (a/b) «1 this illustrates CEL
noise quenching of the fluctuations in the relative phase
angle 1('t.

S'-'=
n

2ia +2n2}+ ( b ——n2})S„'+')—

8. Exact Fokker-Plane;k treatment

In order to Snd the (steady-state) distribution function
POJ' ——Po~" (g) not only the first two moments but al/ mo-

for the CEL. The initial condition for the iteration, Eq.
(3.14), follows from Eq. (3.11) and the normalization of
P(i' to be cJ) =1. The coefficients c„'J' for n &0 can be
obtained from the reality condition of I'o(J), e(J' =g(~".
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In Fig. 2 we
corn~are

the so calculated steady-state
distributions Pg'=P~~'(f) for multiphcative noise (solid
line) to the corresponding one for additive noise' (dash-
ed line). In both cases the detuning is a/b =0.1. In or-
der to emphasize the crucial role of multiplicative noise
on the width of the distributions we have chosen the
same effective noise strengths. For the additive case we
have 2)/b=0. 1 while for the multiplicative noise we
have, because of Eqs. (2.13) and (2.16), 28/b =0.1. Fig-
ure 2 clearly demonstrates the noise quenching in the
CEI. when compared to the PI.L. Moreover, we recall
that the standard laser operation not depicted in Fig. 2
shows a constant phase distribution, Po(g)= —' for

21r—m & g & m, as can be seen from Eqs. (3.11) and (3.12) by
setting the coupling b =0. Therefore, the PLL exhibits
a ((OlSe qg(ere-d (narrowed} distribution relative to ord(-
nary (Po(g)= —,

' ) laser operation; however, the CEL is

noise quenched relative to both the PLL and the usual
laser case. The inset enlarges the neighborhood of
/=a/b =0.1 emphasizing once again the narrowness of
Pu compared to Po . Moreover, the noise-induced(m) (a)

shift„Eq. (3.6) is apparent. The approximate distribu-
tion

25-
p((((y

)5-

0 \

0 002 008 01 0 1e

-LO LO

FIG. 2. Comparison between the steady-state distributions
PJ' of the relative phase angle g for a standard phase-locked
laser described by Eqs. (2.14) and (3.9) (dashed line) and a
correlated spontaneous-emission laser given by Eqs. (2.15} and
{3.10) {solid line). For both cases we have chosen a/b=0. 1

and identical noise strengths, that is, for the additive case
S/b =0.1, whereas for the multiplicative case we have
2{2)/b)=0. 1. For comparison the symmetric Gaussian ap-
proximation Eq. (3.15) is shown in the inset by the dashed-
dotted line.

P(m)(y)
277 1 g cQ

2 b b

1

0
b b

a l
1 ———

b 2 b

2'

(3.15)

derived in Appendix C and shown in the inset by a bro-
ken dotted curve is symmetric with respect to
gj, (2( 1 2)~(= , ( , b ) —and——thus demonstrates a noise-induced
asymmetry of the exact distribution function Po

In Fig. 3 we show the narrowing of the exact steady
distribution Po '=Pa '(1t ) for decreasing detuning a/b
as expressed by the approximate distribution Eq. (3.15)
and the second moment Eq. (3.8). We note that as a ap-
proaches zero the distribution function approaches a 5
function

ll
60.0-

pfm|tg)

30.0—

as can be seen from Eq. (3.11) and the fact that c„=1 is
a solution of Eq. (3.13}for a =0. Moreover, the narrow-
ing of Pu ' is accompanied by a shift of the maximum
tovrards the origin at the upper right corner.

IV. EQUATION OF MOTION
FOR AVERAGE PHASE %

We now discuss the infiuence of the fiuctuations in 8.J
on the average phase 4= —,'(8, +8&) of the electric fields

6( and 62. We here pursue the geometrical approach
which had been so successful in the case of the phase
difference g. We add Eqs. (2.5) and (2.6), and make use
of Eq. (2.2) which yields

= —,'[cos(g/2)F++sin(P/2)F j . (4.1)

0.

0.15 0.1

Comparing this to Eq. (2.7) we note that the roles of F
0

+
and I' are interchanged. As a consequence maximal
correlation between the spontaneous emission events in
6( and 6'&, that is, D»+D22 ——2ReD, 2 and the small-
angle approximation for g [Eq. (3.1)] reduce Eq. (4.1) to

FIG. 3. Narrowing of the steady-state distribution
p(m) {m)Po Po (P) for the multi—p—hcative noise process [Eqs. (2.15)
aud (3.10)j as a function of the detuniug a/b for 2(23/b ) =0.1.

TE+ e

duct

Hence there is no noise quenching in the average angle
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In particular, + undergoes a di8'usion process which
according to Eq. (2.16) is associated with tuxce the usual
Schawlow-Townes rate. In this sense we have shifted
the noise from the relative phase angle g into the aver-
aged phase angle %'.

V. SUMMARY AND CONCLUSIONS

%e conclude by emphasizing that the noise quenching
in the CEL relies on two effects. First, the correlation
of the noise sources F1 and Fz allows one to shift all the
noise from the cosine contribution to the sine term in
the equation of motion for It), Eq. (2.7}. This noise, how-
ever, can be quenched by the use of small phase angles

~
1/!0

~

-=~ (I /6
~
((1. Wc emphasize agaill that the Iloise

reduction is an immediate consequence of the fact that
in contrast to the standard phase-locked laser [Eq.
(2.14)], the noise in the CEL is multiplicative noise as ex-
pressed by Eq. (2.15). The noise quenching in the rela-
tive phase angle I{( is at the expense of the averaged
phase + which undergoes a conventional diffusion pro-
cess with twice the usual di8'usion constant. These ap-
proximate results have been confirmed by exact steady-
state solutions of the Fokker-Planck equations of the
CEL and PLL in terms of scalar continued fractions as
well as quadratures. The distribution in the case of a
CEL has been shown to be extremely narrow compared
to the one of a PLL.
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+ ImD]z(sin (P/2) } .
2po

Here we have followed the convention

J dt'5(t') =

Analogously we find

(sin(f/2)F+ ) =——(D»+D ]z+2R CD ]z)(si nt())
1 1

+ 8

which yields

ImD, (cos (P/2)),
2po

(F ) =——
( ReD, z ( sing &

—IlnD, z ( cosg & ) .1 1

2 po
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(D]z&0) results in a nonvanishing mean value of F.
Making use of Eqs. (2.9)-(2.11) the second-order correla-
tion function follows to be

(F(t)F(s) ) =—[(D„+Dzz ) —2 Re(D ]z ) ( cosg }
Po

and performing the averages with the help of Eqs.
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(cos(P/2)F ) = —— (D» +Dzz —2 ReD, z )(sing }1 1

8 Po
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—2 Im(D, z)(sing) ]5(t —s) .

Note that this is identical to the diffusion constant calcu-
lated in Ref. 6.

APPENMX 8: STEADY-STATE DISTRIBUTIONS
Po'J' IN TERMS OF QUADRATURKS

APPKNMX A: MOMENTS OF THK LANGKVIN
FORCE E

In this appendix we calculate the first two moments
(F) and (F(t}F(s)} of the Langevin force F(t)
=cos(I|)/2)F +sin(g/2)F+ where ]{( satisfies Eq. (2.7)
and the Gaussian noise sources F and F+ are de6ned
by Eqs. (2.8)-(2.11).

Following Ref. 8 we define t, —:t —v where 0~~~0
and find

(cos[g(t)/2]F (t) )

In this appendix we derive an analytical expression for
the steady-state solution Po ' of Eq. (3.10) and compare
snd contrast it to the familiar steady-state distribu-
tion' ' ' ' Po" of Eq. (3.9), for the PLL,

p(a) (q } +a)e s])"'{t)) ~+

where

~(a)( ~ ) f 0
d ~, (I —l7 Slnl/l

= F (sl c [ )) )/ops]+sfsds , [cos[s))s ')l2]])'
F t dt' sin

In the last step we have used the fact that the noise F
at time t is uncorrelated to the phase I]( at an earlier time

alld tllat (F }=0 [Eq. (2.8)]. Sllbs'tltutlIlg tllc cqlla-
tion of motion for P, Eq. (2.7), into the above expression

In the case of multiplicative noise, a mathematical corn-
plication arises from the fact that the coeicient in front
of the highest derivative in Eq. (3.10) can vanish. This is
a common feature of multiplicstive noise. This
diSculty can be removed by adding a new dift'usion con-
stant D, which at the end of the calculation we let go to
zero.
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Equation (3.l0) in steady state reads then
T

0= —
I a [—b +(2)/2) ] sin/I PO

dp{m)
[D—,+ZSsin (g/2)]

Integrating this equation twice yields

p{m) (y.D
y(m)[yi)

=e~ {~) X—c
D, +2&sin (g'/2)

(82)

p{m)(q+2~) p{m)(y)

From Eq. (82) we find

P{-)(q+2~;D,)

y(tn )( y~ ]
e {)™{P+ zm )

D+ sin ' 2

(g'+2m )—c dg'
D+ sin ' 2

(84)

(BS)

{ ) f e d~, a [b+(—2)/2)]sinit/

D, +ZSsini(f'/2)
(83)

and since according to Eq. (83)

and e and N are constants. %e now determine c such
that Po ' satisfies periodic boundary conditions

y{m)(y+2~) y{m)(~)+y{m)(y)

Eq. (BS) reduces to

(86)

(tn )[

P' '($+2rr)=p' )(i{()+e~ '~) N e~ ' ' —l —ce~ ' ' f d|({'
D, +28 si n(i)({'/2)

Periodic boundary conditions, Eq. (84), are maintained for the choice

N(l —e-~""')
y(m )( yi )

df'
D, +2S sin ({{('/2)

Hence the steady-state solution, Eq. (82), simplifies to

p{m)(yD ) +m) Q
m {{i) dpi e + —{{)m {e)(m)

D+ sin2 ' 2 ~ —~ D+ sin ' 2

where we have combined all constants to one normaliza-
tion constant iV . We shift the integration in the
second integral by 2m and with the help of Eq. (86) we
finally arrive at

y( ill )[yr )

P{m)(y.D ) +m)e{{){ {{{)f +

D, +2& si (gn'/2)

mate analytical expression for Pg' can be obtained in the
limit of weak noise 2) « b and small detunings

i
a/b

i
« l.

For the case of additive noise, that is, for the PI-I-
[Eq. (Bl)], this expression reads, '

" 1/2 '2
1 1 a
ZX/b ~ b

where {)){ ' is given by Eq. (83) and

+m) f dy p{m)(y.D

Note that the integrals in Eqs. (Bl} and (87) cannot be
performed in a closed form and thus have to be evalu-
ated numerically. In the case of Eq. (87) in addition
the limit D, ~O has to be taken.

Due to the singularity in the integral expression for Po ',

Eq. (87) when D, =0, the corresponding asymptotic ex-
pansion for the case of multiplicative noise is more
diN][cult to obtain. Since we expect Po[ ' to be an ex-
tremely narrow distribution we expand {I)™into a Tay-
lor series around the phase angle P give by the condition

APPENDIX C: APPROXIMATE EXPRESSIONS
FOR Z(j&

Despite the mathematical complexity of the integral
expressions for POJ', Eqs. (Bl) and (87) simple approxi-

From Eq. (83}we find



%. SCHLEICH AND M. O. SCULLY 37

0= a —[b + (S/2)] sin|t

D, +28 sin2(tt /2)

which in the limit of
~

a/b
~
((1 and Z ((b yields

From the normalization condition we find

Thus P™=P''(i') expanded around 1( reads

%e can now perform the limit D, ~O which yields, for
the CEL,

p(m)(y) 1 1

2 tr

2 b b
y(mi(y) 1

a+
b b b

(g —tT)' .

Po '(P;D, ) =JV™e~ '~'exp

We substitute Eq. (C2) into Eq. (87) to find

1
&exp 21

2

1

a
b b

2

y(rn)~ yi ~P+2m

D, +2$ sin (1(t'/2)
(C3)

Po '(f;D, ) ~JVexp (1( —Q)'
tt n+

b b b

Since (a/b) 2)/b &&1 and since we let D, /b —+0 at the
end of the calculation the Gaussian function is very nar-
row. We thus can replace P at the boundaries of the in
tegral in Eq. (C3) by P. Combining all constants we ar-
rive at

(C4)

Comparing Eqs. (Cl) and (C4) we note that in both cases
the distribution function is approximately a Gaussian
which is centered at a/b for the PLL and at
P =(a /b )( 1 ,'S /b—) —for the CEL, indicating a tiny
noise-induced shift in the latter. More important, how-
ever, is the fact that the width of the distributions differ
considerably. %'hereas in the case of the PLL the width
is governed by (2)/b)'r and is thus independent of a, in
the CEL there is a crucial dependence on a, namely,
(ttlb)(2)/b)'~ . Thus for

~

a/b
~

~~1 the CEL phase
distribution is considerably narrowed compared to that
of the PLL. We emphasize that these widths and mo-
ments are identical to those calculated in Sec. IIIA
within the Langevin approach, Eqs. (3.6)—(3.8).
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