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%'e analyze a model of a laser pumped by an incoherent source in a squeezed vacuum state.
The squeezed pump introduces an anisotropy of phase in the laser output. Above threshold two
stable solutions are found, with phases corresponding to the directions along which the noise of
the bath is quenched. These solutions are illustrated by the potential function of the laser Seld.
An analysis of fluctuations shows that the laser field has reduced phase fluctuations but not below
the quantum limit.

I. INTRODUCTION

Investigation of the field of nonclassical light sources
has received considerable impetus lately. There have
now been several experiments which have generated
squeezed states of light. Squeezed light has fewer fluc-
tuations than the vacuum in one quadrature phase of the
electromagnetic field. Other experiments have produced
light with reduced number fluctuations compared to
coherent laser light. The demonstrations of squeezed-
light generation are all in passive systems where there is
no pumping of the optical medium.

In contrast to this there has recently been the ap-
proach taken by Yamamoto et a/. ' who have analyzed
the consequences of pump-noise suppression in a laser.
They show that if there is reduced amplitude fluctuation
in the pump the output from the laser has reduced num-
ber flu'tuations compared to the usual incoherently
pumped laser. Yamamoto et a/. have recently demon-
strated the operation of a semiconductor laser pumped
with an electron beam with reduced fluctuations and
shown that the output beam has a 7.3% reduction below
the standard quantum limit in number fluctuations.

A related system is found in the studies of the micro-
maser. ' In the micromaser single excited atoms are fed
into the laser cavity. If a constant velocity of the atoms
and hence constant, interaction time is assumed the out-
put of the micromaser is found to have sub-Poissonian
statistics. When a velocity distribution and hence a
spread of interaction times equivalent to a stochasticiiy
of the pump 18 included the usual Poisson statistics of a
coherent laser are recovered. In this paper we shall in-
vestigate a new class of laser which is pumped with
squeezed light. This divers from the system considered
by Yamamoto where the pump is in a near-photon-
number eigenstate.

%'e shall consider a model for a laser based on X two-
level atoms interacting with a single cavity mode. The
atoms are pumped with light in a squeezed vacuum,
that is, there is no coherent component to the pump
light. Note that in this paper we are dealing with a

Fo11owing Haken's ' quanturo-mechanica1 treatment
of the laser, we consider a Hamiltoman of the form

Hlaser +~bath +~laser-bath (2.1)

where the actual laser system consists of N two-level
atoms with transition frequency ~0 coupled to a resonant
single mode running wave field in the laser cavity.

"classical" system inasmuch as the number of atoms N is
very large just as in the usual laser —in contrast to the
micromaser situation. %e will demonstrate how the
phase anisotropy in the squeezed-pump fluctuations
leads to a phase-dependent gain and, consequently, to a
phase-locked steady-state laser field. This contrasts with
the laser pumped with a near-photon-number eigenstate,
where the phase of the steady-state field still undergoes
phase diFusion.

In Sec. II we present the Hamiltonian model and the
underlying assumptions and derive a corresponding mas-
ter and Fokker-Planck equation. Section III treats the
semiclassical theory and derives the steady states of the
Bloch equations and their stability. We show that well
above threshold there is a pair of stable steady states
with well-defined phases corresponding to the directions
along which the noise in the bath is quenched. These
stable phase solutions are clearly seen in a plot of the po-
tential function for the laser field.

In Sec. IV we derive a rotating-wave van der Pol
equation (around threshold) with phase-dependent self-
excitation for the laser mode for a case in which the
atoms can be adiabatically eliminated. The spectroscop-
ic linewidth for the laser near threshold is derived. In
Sec. V the noise properties of the laser output are stud-
ied. We find that the laser field has reduced phase fluc-
tuations. However, for the type of pumping considered
at present the phase fluctuations are not less than the

quan~urn limit.

II. I.ASKR MGDEI. WITH SQUEEZED PUMPING
MECHANISM

A. Tile AllNkel HSSlllf DIllRll
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H~„„——fuooa a+ S, +igA(a S —aS+ )
fmo

2
(2.2)

Assuming dipole coupling, the Hamiltonian of the
laser system alone reads

&b(t) & = &b "(t)& =O,

(b'(t)b (t') & =(n + l)5(t t'—),
(b(t)b (t')&=n5(t —t'),
(b(t}b{t')&=m*e ' 5(t t'—),

(2.5)

haik x„S+= g cr~e
(M, =1

(2.3)

with cr„', o„=a—"„gaia„being the Pauli matrices (without
the factor A'/2).

The bath Hamiltonian consists of two parts,

H», h
——A I duroc (to)c(co) —A' I dtob (to)b(to) .

(2.2'}

The first term stands for the reservoir of vacuum radia-
tion modes which is interacting with the laser mode in
the cavity, whereas the second term models some in-
coherent pumping mechanism of the atoms. Following
Glauber we use a bath of inverted harmonic oscillators
in order to achieve formal pumping of the upper level of
the "two-level atoms" (which consist of the two levels of
the physical atoms in the active laser medium between
which the lasing transition occurs).

This bath can be considered to be the usual bath of
harmonic oscillators with the formal replacement

~~—Ado

b(co)~b (to),

(2 4)

hence the negative sign of the second term in (2.2').
Finally, the couplings of the laser mode a to the radia-

tive reservoir and of the atoms to the pumping bath, re-
spectively, are taken to be linear, that is,

H(q~„bqth = ltd f dcoK(co)[c (co)a —c (cg)a ]

+i A I de g (to)[b (co)$ b(to)$+ ]—.

(2 2")

Note that due to (2.4) the terms kept within the RWA
are bS and b S+ (rather than b S and bS+ }. We as-
sume ~(co} and g(to) to be slowly varying functions
around ca =coo.

The assumptions stated above have all been within
models of standard laser theories; now, however, we de-
viate from the usual procedure which treats the bath
coupled to the atoms as being in a thermal state, by as-
suming that all the bath modes b(~o) are prepared in a
squeezed state ("squeezed white noise" ) instead, so that
the bath correlations read

in the rotating-wave approximation (RWA). As usual g
denotes the dipole coupling constant and

(2S p&$+ p~S+S —S+S pq )-—fn
2

+
2

(2$+P~S —P~S S+y(n +1)

SS+P„)—
ym (S p—„S ) —ym*(S+p„S+ ), (2.6}

t

(b (t)b (t')&=me ' 5(t t—'),
for some numbers n &8+,

~

m
~

& n (n +1) (the in-

equality follows from the fact that the expression
([b(t)+Ab (t)][b (t)+A,*b(t)]& has to be positive for
all complex numbers A, . The equality sign represents
the case of a perfect squeezed state in the bath, that is, a
minimum-uncertainty state of the Heisenberg uncertain-

ty relation for the bath quadrature operators. In such a
state the noise is reduced below the standard quantum
limit, since M & N for M =N (E + I ). ) Note that com-
pared to the correlations given in Ref. 5 the roles of b

and b are exchanged because of (2.4), since the bath
consists of inverted harmonic oscillators.

Our treatment of the pumping mechanism as being a
bath of inverted harmonic oscillators has to be regarded
as a unifying formal substitute for various possible ex-
perimental realizations of pump light with correlations
of the form (2.5). The actual mechanism may diff'er

largely, depending on the type of laser system one is
dealing with. For the moment, we wish to ignore these
experimental considerations, assuming we have some
means to squeeze the light pumping our laser atom in a
given laser system in such a way that (2.5) holds.

B. The masts, r equation

In this section we will establish a master equation for
the laser density operator p~+F containing the laser-
field mode (F) and the atomic variables ( A) in the situa-
tion described above.

Gardiner has derived a master equation for the simi-
lar situation of a single decaying atom coupled to a
squeezed bath. Since —for the sake of simplicity —we
wish to treat the N two-level atoms in the cavity as in-
dependent, i.e., not interacting directly with each other
via collisions, etc., the generalization of Gardiner s mas-
ter equation is achieved by simply summing over all
atoms.

Furthermore, since in an inverted bath b and b
change roles, the factors (n + 1) and n and m and m ',
respectively, have to be exchanged to adapt his equation
to our case. Thus we find that the density operator pz
of a system of X independent atoms pumped by a bath
in squeezed vacuum of inverted harmonic oscillators
obeys the following master equation (in a frame rotating
at coo):
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with 5+ being the total dipole moment operators of the
atoms given by {2.3).

From this and from the fact that the squeezed bath
couples to the atoms only, we conclude that in order to
incorporate the efFects of squeezing the bath, we simply
have to add the last two terms of {2.6) (which would be
absent for an unsqueezed bath) to the atomic part of the
otherwise unchanged laser master equation for p„+F (as
given by Refs. 6 and &).

Throughout the rest of this paper we will assume
m GR+. This corresponds to assuming that it is the

—lOPO

imaginary part of the operator b(t)e ' which carries
the decreased fluctuations, whereas the real part shows
increased fluctuations.

C. The Fokker-Planck equation

with

ap
a

=«~+LF+L~r+L
Bt

(2.10a)

a a+ ' + (yiD —y2V)e aD

a2 a2 a'+W»- U+ U
au au' '

au aD au'aD

A truncation of the Fokker-Planck equation (2.9)
(which contains derivatives up to fourth order with
respect to U and u' snd up to in6nite order with respect
to D} to second-order derivatives, justified on the
grounds that higher-order derivatives are smaller by a
factor I/N ~~ I (X being the number of atoms), yields

%e wish to convert the two terms proportional to
m ER+ in (2.6) which have been added to the master
equation for the laser in the presence of squeezing in the
pumping bath to corresponding terms in the Fokker-
Planck equation of the laser. Following a standard pro-
cedure we make use of the characteristic function

a2
+ 2 (y(E yD), —

aD

a a g aI.F ——It. a+ a +2zn thaa aa aa

(2.10b)

(2.10c)

g(g, P,g,P,P') =Tr(e +e 'e e'~ ' e'~') (2.7)
a a ~ a aI.&+ ——g — U — U

' — Da — Da'
aa aa au au

in order to establish a correspondence between operators
and e numbers, +2 (u a+ua )+ 2 ua+ „u aa g g a a

au au

Q~CX, 0 ~A
(u'a+ua') (2.10d)

The Fokker-Planck equation for

P(a,a', u, u', D)

f d2(dgd2Pe ifug+U f +(D/2)g+aP+a tt ]

+x(g, g', g, p, p') (2.8)

and

I. = ym U+ U
au

m a a+ + (&+D)
au au

(2.10e}

in a frame rotating st mo is of the form
(the coupling constant g has been assumed to be real).

Here we have introduced constants

BP =(L+L )P (2.9a) Xll=1Z+21 ~

(2.11)

with

(2.9b)

In (2.9a) we have split the total Liouville operator into a
part L obtained by usual laser theory, consisting of an
atomic part L,„,a 6eld part Lz, and sn interaction part
L„~ [given by Eqs. (IV 10.32) to (IV 10.34) in Ref. 6]
and an additional contribution

T~ll '

which will be interpreted in Sec. III. By w&2 we denote
the transition rate

l
1)~

~
2) due to the incoherent

pumping; iu2, stands for the rate
~

2 }~
l
1}due to non-

lasing transitions (spontaneous einission). The photon
number n and the constant y in (2.6} can be expressed in
terms of these rates

Pg =
W» —LU21

(2.12)

a a
X -+ — (&+D)

Qp2 QU
42

due to the squeezing.

(2.9c)

W12 —W21

In a laser we have w» ~ w», hence y is always positive
and constitutes the rate at which a population inversion
is built up due to the pumping.

For reference in later sections we also introduce a con-
stant
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The upper bound of m (cf. Sec. II A}, rewritten by using
(2.12),

N )2%2)
~max =

N )2
—f82)

(2.14)

imposes M E (0, 1) for m C R + . Viewing the truncated
Fokker-Planck equation (2.10), one notices that there are
first-order as well as second-order derivative terms enter-
ing the equation if we squeeze the bath, that is, the drift
vector as well as the diffusion matrix are changed. Note
that we have kept all second-order derivatives in (2.10),
in contrast to what is usually done, as we wish to study
the laser well above threshold and for large squeezing,
where the usual scaling argument for a further trunca-
tion does not apply any more. As a consequence, (2.10)
is not a proper Fokker-Planck equation, strictly speak-
ing, since ihe diffusion matrix is not positive de6nite.

We see that the polarization decay involves turbo time
scales now, since the real and the imaginary part of the
dipole moment decay according to the diferent rates

y„=yi(1+M),

y =yi(1 —M) .
(3.3)

B. The semiclassical steady states

Setting the left-hand side of (3.1) to zero and eliminat-
ing the steady-state values of U, U ', and D yields

This behavior is closely related to the results found by
Gardiner for a single atom coupled to a squeezed reser-
voir.

Note that in the limit M~1, which corresponds to
m =m,„[cf.Eq. (2.14)] and n~oo (or, equivalently,
m =m~, „and iu»~iu, 2), the rate y» approaches zero.
Since this limit requires an infinite number of photons in
the bath, it is somewhat unphysical, corresponding to
quadrature operator eigenstates in the bath. Finally, we
stress that in the case where M approaches 1, the usual
adiabatic elimination procedure of the atoms will not be
valid any longer, as y„may become small enough to be
of the order ofir.

HI. OPTICAL BLOCH EQUATIONS
AND SEMICLASSICAL STEADY STATES

R (a,a')
CM

R (a,a') (3.4)

A. The optical Bloch equations

In order to get a first idea of the qualitative behavior,
we investigate the semiclassical equations in this section.
Omitting the difFusion terms and studying only the
deterministic behavior governed by the drift terms of the
Fokker-Planck equation (2.10), we find the following
Bloch equations:

and the complex-conjugate (c.c.) equation, where
2'2

2 2

R (a,a')= 1+ —M+/af' a
2no 2no

is a real function of a and a'. The constants

C= g Do

ygK

(3.5)

0!= —KCK+gU

U = —y jU —yPlU +gDO',

D = yiD +yN —2—g (ua'+u'a),
(3.1)

plus the complex conjugate equations for a' and u'.
Compared to the usual equations, only the equations of
motion of u and u' are changed, inasmuch as u and u'
are now coupled.

The constant ~ in (3.1} is the cavity damping of the
laser mode e; yj and y(t, which have been introduced in
(2.11), usually constitute the ("transverse") decay rate of
the dipole moment u and the ("longitudinal" ) decay rate
of the population inversion D Reexpressing . (3.1) in
terms of real and imaginary parts, however, yields

Wy (3.6)

C =0.
no

(3.7)

y i~y j.no=
4g 2

so far introduced as mere abbreviations, are familiar pa-
rameters within the standard laser theory. There C is a
pump parameter, Do the population inversion below
threshold, and no the saturation photon number.

One can easily convince oneself that for m =0 one re-
covers the usual laser threshold condition

O'x = —~~x+gUx ~

Q,' = —KA'y +gUy

u„=—yi(1+M)u, +gDa„,

0» = —yi(1 —M)u»+gDa»,

D = yD +y N —4g ( „—„+ ) .

(3.2)

Noticing that (3.4) and (3.5) imply that a/a' has to be a
real number of the steady state, we realize a qualitative
difFerence between the threshold conditions (3.4) and
(3.7): whereas the usual condition (3.7) is independent of
the phase of a, thus allowing 6elds with any phase in the
steady state, this is no longer true with a squeezed
pump. The phase dependence in the noise of the
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squeezed. pump light breaks this symmetry. As a conse-
quence only fields which are either purely real or purely
imaginary (thus a/a' E-8) may exist (besides the trivial
solution a —=0) in the steady state.

Calculation shows that (3.4) has the following non-
trivial solutions:

a =+i +no[C —(1—M)] (3.8a)

a=+Qno[C —(1+M)] . (3.8b)

C. Semiclassical stability analysis

For an equation of motion for a =u +iU of the form

a=F(a, a'), (3.9)

the stability of a steady state requires all the eigenvalues
of the matrix

'aReF
Bu

i3 ImF
Bu

8 ReF
BU

aI~
BU

(3.10)

evaluated at the
negative. In our

steady state under consideration, to be
case we have

existing for C&1+M or C ~1—M, respectively. Only a
stability analysis can reveal which solution among these
wi11 be realized in fact.

In both of the last two matrices, one eigenvalue depends
on M only. Due to a phase choice made earlier, M is a
real number between 0 and 1, thus ruling out the two
real solutions (3.8b), since

for M E(0,1).
On the other hand, both eigenvalues of (3.13b) are

negative, provided that C g1 —M, and the trivial solu-
tion proves to be stable for C ~ 1 —M. Thus we have a
stability exchange between the trivial solution

~

a
~

=0
and the two imaginary solutions (3.8a) with

~

a
t =no[C —(1—M)] occurring at C =1—M.

If we had chosen m ER (thus decreasing the noise
in the rea/ quadrature operators of the bath) M would be
replaced by —

~

M
~

everywhere, and therefore the two
real solutions would turn out to be the stable ones for
C) 1 —

~

M ~. In other words, the steady states in
phase with the low-noise quadrature in the squeezed
bath are always the stable ones. In Sec. IV we will in-
vestigate the dynamics of this settling down of the field
along the directions with decreased fluctuations in the
squeezed bath in some detail.

Inspection of the Bloch equations (3.1) shows that the
parameter Do introduced in (3.6) still has the meaning of
the steady-state population inversion below threshold
(C ~1—M implies a=0). Summarizing the stable
steady-state values above threshold, we have

u =a —(1 —M) —1 u =—ReF,C

(3.1 1)

a =+i +no[C —(1—M)],
KU= —a,

(3.14)

U =v —(1—M) —1 U =—ImF,C

with the saturation denominator R [given by (3.5)] ex-
pressed in terms of u ( =a„)and U ( =—a~):

Q
2

U
2

R (u, u)=(1 —M )+ (1—M)+ (1+M) .
Pl o no

Evaluating the matrix I' for the trivial solution u:—U =—0,
we get

(3.13a)

Do(1 —M)D=
C

Note that the steady-state inversion D is affected by the
squeezing: this is why the threshold seems to be shifted
away from the usual C =1. In order to gain more in-
sight into this, we nate that the continuity of the two
solutions for D below and above threshold requires

D =1 (3.15)
Do

at threshold. Thus, using (3.14) and (3.15), one may al-
ternatively introduce a new "efkctive" pump parameter

C(M)= )C
C

(3.16)

F(a, 2)= ——[C —(1—M)]
C

(3.13b)

and at u =+Qno[C —(1+M)], U =0,

——[C —(1+M)] 0
C

F(a34)= (3.13c)

Evaluation at u =0, U =+Qno[C —(1—M)] yields
and characterize the threshold by C(M)=1. There are
two ways to look at the effect of the squeezing: one can
either think of the threshold as being shifted compared
to the ordinary laser or of the pump parameter as being
changed due to the squeezing. In the limit M~1, the
threshold is pushed down towards 0, since, as we have
already mentioned, this limit corresponds to n ~ Do and
y~0. Finally, we want to illustrate the "phase-locking"
efkct of the steady states which we encountered above,
by calculating the potential 4(u, u) for the equation of
motion (3.11). It is easily verified that the potential con-
dition
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holds globally. Thus a potential exists and is by
straightforward integration found to be

4(u, u)= —Iu'+u' —cnoln[R (u, u)]I (3.17)

with R (u, u) given by (3.12).
Figure 1 shows plots of 4 for several parameters. For

m =0 we obtain the so-called "Mexican hat" for the
laser potential above threshold. For a squeezed bath
with m&0, containing "reference phases" at which the

noise is minimal, the phase symmetry of the problem is
broken. How the squeezed bath acts to imprint a partic-
ular phase (in our case +n/2) onto the steady state is
clearly visible in the deformation of the potential surface
with increasing M; we get increasingly deep valleys
along g=kn/2 and increasingly high ridges at /=0, ~.
%e note the difference from the symmetry breaking
which occurs in the laser with injected signal and also
in the micromaser, where only one phase is stable.

IV. ADIABATIC ELIMINATION FOR "MILD"
SQUEEZING

A. The rotating-wave van der Pol equation
with phase-dependent gain

In this section we wish to investigate the case in
which the atomic variables u, u ', and D can be eliminat-
ed adiabatically. To this end we assume that both y„
and y [see Eq. (3.3)] are very much larger than n, i.e.,

yz(1+&) »n .

Note that the above requirement does not preclude ideal
squeezing in the bath, i.e., m =m, „[and thus
M =+4w&2wz&/(w&2+w2, )] if yJ p)~ &&~ and
m&z ggurz, , hold, conditions typically found in a laser.

Consistent with the truncated Fokker-Planck equation
(2.10), derived in Sec. II, we use the following quantum
Langevin equations:

Q = —K'0!+gU + I ~ and C. C.

0 = —y&U —ymU'+gDa+ I „and c.c. ,

D = y)D +yX ——2g (u'a+ua')+ I u,
with

(I" (t)1,(t') &=(I .(t)I (t')) =2ntT„5(t t'), —

(I'„(t)1„(t'))=(I, (t)1 „(t'))'
= [ym (E +D)+2gv a]5(t t '), —

(I'„(t)I",(t')) =(I (t)I „(t'))=w»&&(t —t'),

(4.1)

(4.2)
(I „(t)1u(t') ) = ( I u(t)I"„(t') ) = —2w „u5(t —t'),
(I „.(t)I D(t')) =(I u(t)1,.(t')) = —2w„u'&(t —t'),

( I (t)1 (t') ) =[2(y)N —yD)

—4g (a'v +u "a)]5(t t') . —

FIG. 1. Potential of the laser above threshold as a function
of u /V no=Rea/+no and u/V'no =—lma/+no (no being the
saturation photon number) in the region
(u /~n~, u /1/no) E [—1.5, l. 5]X [—1.5, 1.5]. (a) Ordinary
laser with phase di8'usion, M=O, C=2. (b) %'ith squeezing in
the pumping bath, M=0.5, C=2 [thus F(M)=4]. It is clearly
visible how the potential surface is distorted to form tw'o local
minima along the imaginary axis leading to a phase-locking
phenomenon.

Since the number of thermally excited photons n, z ««1
usually, we have neglected the comparatively small 6eld
correlations in the following.

In this section we assume that a and a' are the com-
plex conjugate of each other, because in our case of
small M, implying that the spontaneous emission is the
dominant noise source, the diffusion matrix is nearly
positive de5nite somewhat above threshold; hence we
need not use a generalized I' representation but may
treat a and o.' as complex-conjugate variables of a
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Glauber I' representation to lowest order in M. In Sec.
V we will present a more rigorous treatment for arbi-
trarily strong squeezing using a generalized I' representa-
tion.

Elimination of U, U, and D yields the equation

B. The spectroscopic line~idth

%e may derive the spectroscopic linewidth of the
squeezed-pump laser along the lines of Ref. 7. Since in
our case the stable steady states possess well-de6ned
phases gp=+n /2, we may linearize (4.4) in the following

way:

2no

2no , C o;—xa' —M+
2no

2

M+
2no

[Ii'jo+&tt( )]a = [r() +5r (t) ]e (4.7)

Inserting this into (4.4) and keeping only linear terms in

the fluctuations, we get

5r'+jrp5$= 6(gp)(rp+5r)+2iMrp«e 5$

'2
a(1+M)

2E (4.3)

(r() +3r()5r)+ I „e '(1 —i5(}'j) .
no

Setting the fluctuations and the stochastic term to zero,
we 6nd

a =6 ((t()a «c — (x+ I"„
no

(4 4}

to lowest order. Here 6(g) denotes

and its c.c. counterpart. The standard laser theory ' in-

vestigates the corresponding equation around threshold.
Following this approach, we derive an approximate ver-

sion of (4.3) for that regime.
Treating

~
a

~
/np, M„and the stochastic forces I as

small quantities of roughly the same order of magnitude
and expanding (4.3) with respect to them yields

6 (Pp) np
[C —(1—M)]

C np
(4.8)

Note that, by comparison, this steady-state amplitude ro
difFers by a factor C from the exact result derived earlier
[see Eq. (3.8a)]; this is so because we are using an ap-
proximate equation of motion derived by expanding (4.3)
around threshold, i.e., we have already assumed C=1
besides M gg 1.

$plitting (4.11) in real and imaginary parts and mak-
ing use of (4.12), we find

6(f)=a c —1 —M
Q'

—=«(c —1 —Me ' ).

5r' = —26 (gp)5r +ReF,

5$= 2mM5$+ —— ImF,
PQ

(4 5) with

(4.9a)

(4.9b)

Setting M =0 we get
F =+ I „e '(1 i5$) .— (4.9c)

a =«(c —1)a—«ca + I"„,
no 'Yz

(4.6)
The relaxation rate of the amplitude (or intensity) Iluc-
tuations is essentially the gain

which is the well-known rotating-wave van der Pol equa-
tion for the laser as derived by Risken. '

For M =0, 6 =«(c —1) represents the gain of the
laser; for 6 &0 we get self-excitation of the laser mode
(see also Ref. 7). Therefore we interpret 6(g) as a
phase-dependent gain in the case M+0. Equation (4.5}
shows that the gain —and thus the ampli6cation —is
highest for fluctuations around zero which have phase
P=+m. /2. That is why Iluctuations of this kind prevail
and eventually a steady-state field with P =n /2 or
f= —m/2 is built up [of course, the saturation term
—

~
a

~
n/np in (4.4) prevents unhmited growth] In.

Sec. III we have already shown that these two possibili-
ties constitute both stable steady states above threshold,
that is, for 6 (+m /2) & 0. Thus (4.4), describing a
rotating-wave van der Pol oscillator with phase-sensitive
self-excitation, somehow elucidates how one of the two
stable steady states is dynamically built up above thresh-
Old.

A,, =26 (gp) . (4.10a)

From this, it is obvious that if we "switch o8"' the
squeezing by letting M~O„ this rate k& and the phase-
restoring forces approach zero, and we recover the ran-
dom walk of the phase encountered usually. In order to
be sure that a linearization procedure of this type
around a particular steady-state phase is appropriate, we
demand A,&-k, .

Assuming 5r(t}&~rp somewhat above threshold, we

may appl oximate

r 2 ( is/( tl ) r 2—e
—( (/2)( 5@ (() )=P'o e —P' Qe (4.1 1)

The phase-locking equation (4.13b) has no counterpart in
the usual laser. For M~O we have restoring forces in-

ducing a phase-relaxation rate

(4.10b)
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Thus we identify

(4.12)

as the spectroscopic linewidth of the internal laser mode.
(It can be shown, using the input-output formalism by
Gardiner and Collett" that the external linewidth will be
given by 2aye, provided the cavity has only one port. )

It is worth mentioning that the existence of a well-
defined steady-state phase makes the usual Markov as-
sumption on the phase correlations unnecessary for the
derivation of {4.16}. Integration of (4.13b) for the initial
condition 5$(0)=0 yields

(5$(t) }=f dt' f ds'{ImI (t')ImI (s'))

to lowest order, where I stands for

5a= —A5a+I (t),
with a constant drift matrix given by

0 —g 0
0 ~ 0 —g

pm —go,'

—gQ

2gU 2gU 2g Q' 2g Q

(5. la)

(5.1b)

ables by treating o, and a and U and U as independent
variables.

Linearizing the Langevin equations corresponding to
the truncated Fokker-Planck equation (2.10) around a
stable steady state (again neglecting terms proportional
to n, i, «1) yields the following equation of motion for
5a=[5a(t), 5a (t),5u(t), 5v (t),5D]

{4 14) and

g ]cC 1

4yino G(gu)

w]gE
+M(X~D)

Using the correlations (4.2), we finally get
r

{4.15)

(5.1c)I (t)= [0,0, I"„(t),I"„(t),I D(t)]
Here a, a (:—a"), etc. , are the steady-state values as
given by Eq. (3.14). We rewrite the 5-correlated stochas-
tic "force" I'(t) as

Setting M=O, we obtain

(n, +n, i, )
V

hatt

n

from (4.19) with the identifications iv, zg N/21ryi
= ( n» +n, h ), the sum of spontaneously emitted photons
and thermal photons, and ru =n (cf. Ref. 6). This can be
brought into the familiar form

I'(t)=8e(t) (5.2)

with e satisfying (e(t)e (t') }=5(t —t') l(5) [1(5) being
the five-dimensional identity operator]. Then the con-
stant matrix 8 in (5.2) satisfies 88 =D, with nonzero
matrix elements given by

D„,=ym (N +D )+2gv a,
D t t=yrn(E+D)+2gu a =D„„,

f16'
y& —— s (n»+n, i, ) (4.16)

D t=D & =m&2S,

D~D =Dg)~ = —2']2U
(5.3)

with P =2anirttu representing the emission power of the
laser. Thus (4.19) gives the correct lowest-order result in
the limit M ~0, in spite of the fact that because of phase
difFusion for M=O a diFerent linearization procedure is
actually required. In (4.19) the squeezing affects y& in
two ways: 6rst via the gain which is enhanced
(C —1+M &C —1) and thus brings about a narrowing
compared to (4.20), and second by addition of a broaden-
ing term proportional to M.

In deriving (4.19}, however, we had assumed
iu, 2» iuz, (and thus M «1) and C &1—M, and thus
the first efkct, division by a rather small number, is
clearly dominant in the situation considered. Mell above
threshold C~&1—M, the gain depends only slightly on
M and then a broadening may occur —but even the
qualitative validity of (4.19) in that case is doubtful.

D t =D y= —2L &2U = —D„D,

S(cu)= f dt e ' '(5a(t)5a (0)} .
27K

Considering the Fourier transform of 5a(t),

58(co)= —f dt e' '5a(t),
v 27T

satisfying the Fourier transform of Eq. (5.1)

(5.4)

(5.5)

D =2(y E yD) 4g( —+—
the diffusion matrix of the Fokker-Planck equation (2.10)
evaluated at the steady state.

%e wish to review brieAy the derivation of the noise
spectrum S(to) which, by standard definition, is given by

V. NOISE SPECTRUM

In this section we investigate the fluctuations of the
laser field around a stable steady state in the general case
where adiabatic elimination of the atomic variables
might not be possible any more. To this end we make
use of a generalized (positive) P representation.
P(a, a, u, v, D), that is, we double the number of vari-

with

[ A

ical�(5)]5—

a(co) =I (co) (5.6)

I (co)= —f dte' 'I (t),

we easily derive the relation

(5a(co}5a (cu') }=5(co+co)S(—co) . (5.7)
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Setting

I (co) =Be(co)

with the same matrix B as in (5.2) and with

( 8(c'o)5(ru'}) =5(co+co')l(5), consequently, and making
use of (5.7), (5.8), and (5.6), we find the well-known ex-

press)on

the functions U and V in (5.10b) read

U = — [(6+a)(1—M —a)+a (a —M)],1

Jll'

[a (A+a)+(1 —M —a)(a —M)],1

sV

S(co)=[A ice—l(5)] 'D [A +ical(5)] (5.9) JV=(A+a) —(a —M)' .

with A and D being the constant matrices given in (5.1)
and (5.3). Since we are interested in the field Iluctuations
5a, 5a only, we follow a nonadiabatic elimination pro-
cedure suggested by Reid. ' Eliminating the variables
5i}'(co),50 (ro), 5D(ro) from Eq. (5.6), the remaining two
equations for Sa(co) and 5a (io) can be written in the
form

The stochastic term in (5.10a) is found to be

Pa(co) g
cy+l(ru)'

(6+a)l"„(co)+(a—M)l", (co)+bI D(co)

(&+a)1' „(oi)+(a M)1—„(co) br D—(~)
[A(co) —icosi(2)] t =9'(co) .

A straightforward calculation yields

(5.10a)
(5.10c)

with b (co) =grT/yi(A +M/b, +1)=——b'( —co). Setting
1 —U (a) ) —V(co)
—V(co} 1 —U(co)

L

(5.10b) P(co) =2il(co)F(a) ) (5.11)

introducing abbreviations

b(a)) =1 i:—b—, '( —co),

a (co)=2
Xl +

with (iF(oi)F(co') )=5(co+co')l(2), after the model of
Eqs. (5.2) and (5.3), we define

$(co ) =S(io )8( —co ) (5.12)

Evaluating the matrix elements of
dimensional diffusion matrix, given by ( p (oi)p ( —~) ),
(oi' (co)V ( —co)), etc. , yields

S (co)=$ i i(ai)=QC I [ ~

b, +a
~

'+
[
a —M

~

']D..+2 Re[(~+a)(a —M)']D„„i

and

S t (co)=2) t(co)= ril~l f [ [&+a f'+ /a —M f']D t+2Re[(~+a}« —M}']D,.

—2i im[b (~+M}']D.a+ I
b

I
'D» ) (5.13b)

in terms of the expressions given by Eq. (5.3}. Note that
Xl is real and that 2)( co) =Xl (co—) =2)(co) holds.

Along the same lines as above, we derive

S(ro) =[A( co)+ilail(2—)] '2)(co)[A (co) ical(2)]—
(5.14)

In Fig. 2 we plot the elements S&& and Sz, of the two-
dimensional spectrum matrix (5.14) as functions of co/N
for various values of M. [These results may be checked
by numerically solving the five-dimensional Eq. (5.9).] It
has been assumed that the bath is in an ideal squeezed
state, i.e., m =m, „, and thus M is given by

(5~'(r'}5~(r) ) =B.t.(~=0)5(r —r'),

etc. holds in the steady state, the requirements read

(5.15)

M =bio, zwz, /yi [see Eqs. (2.13) and (2.14)]; further-
more the pump parameter c(M) has been kept constant,
at 20% above threshold, for all curves (this case be
achieved by rescaling the coupling constant g for the
three curves).

Increasing M, one increases the noise in the system„
hence it is necessary to check the validity of the lineari-
zation. This has been done by calculating the signal-to-
noise ratio in the laser field; since it can be shown that
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/2) t (~=0)
/

// a
f

(co=0)
f
/

/

a
/

'« I .

(5.16)

In order to satisfy (5.16) when approaching M=1 one
has to increase the pump parameter c accordingly, i.e.,
one has to move away from the threshold.

The diagonal elements S»(co) and Szz(co), which are
absent in the ordinary laser, are found to be real and
negative, thus implying S22(co)=S„(m)'=S»(co). All
four elements of (5.14) are I.orentzians, i.e., symmetric
functions of ~, thus we also have S,2(co):—S2, ( —ro)

=S2, (co).

Note that we cannot recover the usual result
S»(co)=Sz2(co)=0 by simply taking the limit M —+0,
since in this case the phase relaxation becomes small,
and an altogether difFerent linearization is required. In
other words, one can no longer linearize around a stable
steady state phase but one has to take the phase
difFusion into account.

Finally, we are interested in the amplitude and phase
fluctuations of the laser field. Let us consider

- ~)=4~S»(~ +Sz2(~ +S(2 ~)+ z((~))

—f dt e '"'(
—,'(5a+5a )—,'(5a+5a ))

&2n.

(5.17a)

Oe

-0.50
1

0.25 0.00
I

0.25
l

0.50

7

-0.50 0.25

(~) Plot of S&)(~/&) for ~(2=100&, c(M)=1.2 (=20% above threshold), M =yg, „y jy~=2+gp(2gyq, /(~(q+g)2, ) for
curve a, m21

——2~ or M=0.28 (solid line); curve b, u2l ——4v or M=0.38 (dashed line); curve c Np& =8K' or M=0.52 {dot-dashed line).
(b) Plot of S2&(~/x) for the same parameter values.
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and since we have chosen a correspondence between e
numbers and normally ordered operators, this equals

S„„(co)= —J dt e '"'(:Re(o),Re(a): ),
&Zm

S»»(t0) =—,'[Si2(t0)+S2, (to) —Sii(co) —S22(to)]

j
dt e '

—(5.a 5—a )—.($a —$a )
2"jg —00 2l 2g

where (:A, B:) = (:AB:) —(:A: ) (:8:) for operator
functions A and 8 of a and a ~ and:: denotes normal or-
dering. Visuahzing small fluctuations around the stable
steady state with imaginary amplitude a=i

~

a ~, we

conclude that S,„(ni) relates to the phase 6uctuations of
the Geld.

On the other hand,

f dt e ' '(:Im(a), lm(a):)
&2m.

(5.17b)

constitutes the spectrum of amplitude fluctuations. S„„
and S», which m our case reduce to S„„=—,'(S2, +S„)
and S»» = —,'(Szi —S» ), are depicted in Fig. 3. The phase

««««« ~«~«~«~«««««««~««««««IS «««+ «
«gggggy «~«elllSII ~«««

l

-0.50 0.00
l

0.25 0.50

4

8

$e

2

l

W.50 0.00
I

0.25
l

4.54

S~(~/")= z[S&&(~/~)+S&&(~«)] (b) P&&t ofS»(~/&)= i[&2~(ai/&) —S~~(~/a)]. Parameters as in Fig. 2.
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$0

~4P+ ~e+
~P

«ply~

0a
I

-f.0 0.0
1

0.5

FIG. 4. The squeezing variance Vs(to/s) =1+2tt[S,t(co/n)+S„(co/n)+e " S„(co/s)+e""S22(to/x)] for 8=0; parameters as
in Figs. 2 and 3,

I s(co)= I+F2[ S] (2Co) +S2(tt)o +e
' St]( )

+e ' Sz2(co)] (5.18)

stays above the coherent level V&(to)=1 for 8=0. In
Fig. 4 we plot the minimum of the squeezing variance
with respect to 8, which occurs at 8=0, for the same pa-
rameters as before.

noise, related to 5,„, is clearly reduced compared to the
noise in the amplitude, related to S, in the regime
~here one can linearize around a steady-state phase.
Thus the effect of a pumping bath in a squeezed vacuum
state is to produce a steady-state laser field with a well-

defined phase and the fluctuations around this phase can
be reduced compared to the noise in the other quadra-
ture by letting the state of the bath approach a quadra-
ture operator eigenstate (formally the limit M~ 1 ).

However, for the case of a squeezed vacuum, treated
in the present paper, this reduction of the phase noise is
not belo~ the standard quantum limit. It is rather tedi-
ous but straightforward to prove from Eqs. (5.10)—(5.14)
that the condition m&2 gm2& in the laser and the upper
limit of M imply that the spontaneous-emission noise
proportional to %to, z (cf. Ref. 6) remains dominant for
the phase noise in the regime where the linearized theory
is valid. Hence the squeezing variance as defined by'

VI. CONCLUSION

In the present paper we have investigated the effects
of a lasing medium being pumped incoherently by a bath
in a squeezed vacuum state. It has been shown that the
anisotropy of the noise in the bath leads to a laser field
with a well-defined phase in contrast to the phase
diffusion usually encountered. The noise in the quadra-
ture of the laser mode related to the phase is
quenched —but no reduction below the standard quan-
turn limit was found. Further investigations describing a
laser pumped with squeezed light with reduced ampli-
tude fluctuations are in progress.

Note added in proof As will be .shown in a forthcom-
ing paper, the squeezing variance can drop below the
coherent level for the quadrature 8=m/2, corresponding
to the laser amplitude.
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