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It is demonstrated that perturbation theory combined with the variational principle in the form
of the perturbational-variational Rayleigh-Ritz (PV-RR) matrix formalism is a powerful method

for applying large-order perturbation theory (LOPT} to the Stark eftect for hydrogenic ions. Un-

like other more specialized LOPT methods, which do not invoke the variational principle, applica-
tion of the PV-RR formalism is not restricted to one-electron systems. A paradigm is derived and

implemented which permits the precise construction of a Rayleigh-Ritz variational ansatz from

which the real Stark ground-state Rayleigh-Schrodinger perturbation series for the eigenfunction,

eigenvalue, and arbitrary expectation values can be generated via the PV-RR procedure to any

prespecified order in the most economical way possible. A novel method of analysis, based on a
combination of the Stark virial, Hellmann-Feynman, and remainder theorems, is developed for
studying the physical origins of high-order atomic and molecular polarizabilities; the procedure is

illustrated by application to the hydrogenic Stark efkct. It is concluded on the basis of this work

and of similar high-order PV-RR polarizabihty calculations for Hz that the prospects for extend-

ing the PV-RR formalism to accurate polarizability studies of more complex systems are promis-

ing.

The Stark effect for hydrogenic ions was the first po-
larizability phenomenon to be studied in both the old'
and new quantum theory and, indeed, furnished the
first example for the application of Rayleigh-
Schrodinger (RS) perturbation theory. Thus in 1926, the
real Stark-effect RS perturbation series for the eigenval-
ues of arbitrary hydrogenic states was initially deter-
mined through first order, ' and immediately thereafter,
through second order, "

by several authors independently
and almost simultaneously; the extension of these calcu-
lations through third orders was not long in following.
With an eye to future developments, one should note
that these early second- and third-order calculations did
not employ conuentional (i.e., spectral sum-over-states)
RS perturbation theory but, rather, were based on
analytical methods for obtaining solutions to the hierar-
chy of coupled inhomogeneous differential equations
which arise in a perturbational approach to the
Schrodinger equation. Subsequently, however, a
method closely related to conventional RS theory, as
mell as another procedure based on the %KB approxi-
mation, were used to treat fourth-order effects for arbi-
trary states, but the correct results were not derived un-
til 1974 because of the rapid increase in the complexity
of the higher-order terms in these approaches. For the
ground state, second-order ' and moderately higher-

order' ' (through tenth-order' ' ') Stark RS eigenvalue
series have been available for some time; here again,
these results were obtained unconventionally by solution
of the RS coupled inhomogeneous differential equations.

The advent of the new discipline of large-order pertur-
bation theory (LOPT), stimulated by the work of Bender
and %u' and of Simon' on the anharmonic oscillator
in the context of quantum field theory, has led to an
enormous growth of interest during the last 15 years in
calculating very high-order RS eigenvalue series, in sum-
ming these series, and in studying the asymptotic behav-
ior of the large-order coefficients. In particular, atten-
tion has been focused on LOPT series for a number of
important one-particle systems, e.g., the anharmonic os-
cillator, the Stark and Zeeman effects for hydrogenic
ions, and screened Coulomb potentials. Many of these
developments are well documented in several recent re-
views' ' of various aspects of LOFT and its applica-
tions. The principal LOPT procedures may be categor-
ized as being based on the Dalgarno-Lewis-Stewart
(DLS) F-function technique, ' '@"' logarithmic pertur-
bation theory ' "" (LPT), the hypervirial perturba-
tion method ' (HPM), and/or variants of these. The
hallmark of all of these LOPT methods is that they com-
pletely dispense with the sum-over-states formulation of
conventional RS perturbation theory, and, hence, do not
require a knowledge of the entire unperturbed spectrum.
For example, both the 0LS and LPT formalisms
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represent a return to the spirit of the earlier unconven-
tional calculations ' ' of the Stark effect in that they
provide systematic techniques for the direct order-by-
order solution (in the one-dimensional case, by quadra-
ture) of the hierarchy of coupled inhomogeneous equa-
tions of RS perturbation theory; alternatively, in. many
cases the inhomogeneous di8'erential equations can be
transformed into difference (indicial) equations which
can, in turn, be recursively solved by a purely algebraic
process.

All of these LOPT methods have now been applied
(for DLS, LPT, and HPM calculations, see Refs. 24, 25,
and 26, respectively) to the Stark effect for hydrogenic
ions, yielding RS eigenvalue series to well-nigh arbitrari-
ly high order for the ground and excited states. In view
of this success, one might well wonder as to the need for
the application of still another LOPT formalism to the
hydrogenic Stark problem (which is the subject matter of
this paper). In this context, it is significant to note
that with the sole exception of the early second-order
calculations of Hasse' and of Slater and Kirkwood, "
which were based on the variational-perturbational
method, all other hydrogenic Stark calcula-
tions ' ' ' ' and, indeed, all related LOPT for-
malisms' ' are purely perturbational in nature as
they nowhere invoke the variational principle. In or-
der to apply LOPT to larger systems, however, it is man-
datory to supplement the perturbational approach with
variational considerations. Thus, as they stand, these
nonvariational LOPT methods, although elegant and
powerful, su@'er from the grave disadvantage of being re-
stricted to one-electron systems (or sums of one-
electron operators).

In a recent short communication, we have presented
preliminary calculations which demonstrate that LOPT
can be simply and eSciently applied to the Stark effect
for hydrogenic ions via perturbation theory combined
with the variational principle in the form of the
perturbational-variational Rayleigh-Ritz (PV-RR) matrix
formalism ' The present paper is devoted to a de-
tailed account of the ideas and methods introduced in
Ref. 30, and several new results are added; as in Refs.
24, 25(b), and 26, we limit ourselves throughout to
LOPT calculations of the real part of the Stark reso-
nance energies It should be noted that unlike the non-
variational LOPT formalisms, the PV-RR formalism can
be extended to larger systems. Thus, in addition to the
classical calculation of normal modes in oscillating astro-
physical systems, ' the PV-RR approach has been ap-
plied to generate high-order atomic 1/Z expansions for
the helium isoelectronic sequence, and high-order
RS series of molecular-orbital eigenvalues in topolog-
ical studies of several organic molecules. Most re-
cently, high-order electric polarizabilities for the hy-
drogen molecular ion H2+ have been determined
via the PV-RR formalism where both a non-
Born-Oppenheimer ' (20th-order) and Born-
Oppenheimer ' (30th-order) polarizability series were
computed; previous polarizability expansions for H2+
were limited to fourth order. %'e regard these calcula-
tions for H2+, as well as the present results for the hy-

drogenic Stark effect where a wealth of accurate high-
order comparative data is available, as providing a
severe proving ground for the applicability of the PV-
RR formalism to compute high-order atomic and molec-
ular polarizabilities. In this context, we stress that the
PV-RR formalism was originally developed to deal with
bound states and convergent RS series, while the Stark
effect is characterized by metastable states and strongly
divergent but asymptotic RS series [see, e.g. , Ref. 17(a)];
as we shall demonstrate, however, the PV-RR formalism
is immediately applicable without any modification to
this more demanding situation.

This paper is organized as follows. In Sec. II the
theory of the Stark effect for hydrogenic ions is summa-
rized. In addition to the usual RS series of the eigen-
function and eigenvalue, high-order RS series of the ki-
netic, nuclear-potential, and field-potential energetic
components of the eigenvalue are also considered. In
particular, it is shown that the RS eigenvalue perturba-
tional corrections in each order result from the delicate
partial balancing of larger opposing perturbational
corrections in their kinetic, nuclear-potential, and Aeld-

potential components, where the relative magnitudes and
signs of these component shifts are precisely determined
by general a priori constraints; this method of analysis,
which can be extended to arbitrary atoms and diatomic
molecules, gives considerable insight into the physical
origins of electric polarizabilities. Furthermore, the
Bender-Wu-type' asymptotic formulas are derived
which govern the limiting behavior of the large-order
coeScients of the various energetic components of the
eigenvalue; these results are of theoretical interest per se.
In Sec. III the PV-RR formalism and its application to
the hydrogenic Stark effect are briefiy described; the role
of the ordinary variational principle in the Stark PV-RR
calculations is discussed. A paradigm is derived, which
permits the precise construction of a Rayleigh-Ritz (RR)
variational ansatz from which the real Stark RS
ground-state eigenfunction and eigenvalue series can be
generated via the PV-RR formalism to any prespecified
order in the most economical way possible. Two in-
dependent PV-RR methods for computing high-order
RS series of the kinetic, nuclear-potential, and field-
potential energetic components of the eigenvalue are de-
scribed and compared. In Sec. IV the results of our
LOPT Stark PV-RR calculations are reported and dis-
cussed. Fina11y, in Sec. V our conclusions are presented.

II. THE STARK EFFECT F(3R HYDRQGKNIC IONS

Consider the perturbed Schrodinger equation for a hy-
drogenic ion of nuclear charge Z in a uniform electro-
static Geld of strength I' parallel to the z axis,

(%—E')
~

f') =0, s =1,2, . . .

where & is the perturbed Hamiltonian operator,
~

1(')
and F.

' are, respectively, the perturbed exact normalized
eigenfunction and eigenvalue of the sth state. If spin
and relativistic effects are neglected, & in Z-scaled a.u.
(unit of length, Z ' a.u. ; unit of energy, Z a.u. ; unit of
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field strength, Z a.u. ) can be written in the linearly per-
turbed form

&=&(s(,) =A'0+%, A, ;

here the unperturbed (field-free) &0, and the kinetic and
nuclear-potential operators, T and Vo, respectively, are
given by &a)'(x)=&y'(x) ~a

~
g()t. ) &, (8a)

where, in general, (A &' denotes the expectation value
for the sth state of an arbitrary operator A independent
of A.,

ao= V+Vo
V'= ——,

' V2,

(3) with RS perturbation-series coefficients,

(4a)

(4b)

(8b)

and the perturbing (field-induced) &I and the coupling
parameter A, by

From (1)—(3), (5), and (7), we have

E'=«) +&~.&+&~, ) ) (9a)

(4c} and

(4d) E;=&Y&,'+&'V, &;+&&,);,, J =0, 1, . . . . (9b)

Unlike the great majority of other calculations of the hy-
dr ogenic Stark effect, we shall work throughout in
spherical coordinates as this permits the direct PV-RR
determination of the RS series of the eigenfunction, ei-
genvalue, and associated expectation values. In the
present PV-RR calculations, therefore, we completely
dispense with the complications [see, e.g., Ref. 24(a)] en-
tailed in separating (1) in parabolic coordinates and then
computing the auxiliary RS series of the separation con-
stants, as is customarily done; moreover, the use of
spherical coordinates will facilitate the extension of our
procedure to larger systems which are not separable in
parabolic coordinates.

In general, we seek to high order the real RS series

(5a)

(5b)

in particular, in this exploratory study of the applicabili-
ty of the PV-RR formalism to I.OPT polarizability cal-
culations, we focus our attention on the ground state
(s =1) for which highly accurate large-order results are
available "' 'b' for comparison, In LOFT polarizabili-
ty studies, it is convenient to rewrite (5b) as

(6a)

(6b)

thereby defining, in this notation, the permanent dipole
moment a', , the (customary) polarizability a2, the first
and second hyperpolarizabilities, a3 and a4, respectively,
etc. For the mast part, we shall present our results in
terms of (5b), although occasionally we shall employ (6)
and, for convenience, refer to the e' collectively for all j
as polarizabilitics.

%e also seek to high order the real RS series of the ki-
netic, nuclear-potential, and field-potential components
[(7 )'(s(, ), (Vo)'(A, ), and (iV, )'(A, }, respectively] of the
eigenvalue,

In analogy with (6), it is useful to express the a~ as the
sum of the energetic components by rewriting (9b) in the
alternative form,

~$ ~E,S+~%IS+~F,S (10)

where the kinetic„nuclear-potential, and field-potential
components, o;, ', aJ ', and o., ', respectively, are defined
as

aj N, s p( cy )s

a,"=—j!&m,);, .

(1 la)

(1 lb)

(1 lc)

Once the RS series of the eigenfunction, Eq. (5a}, has
been determined, the RS series of an arbitrary expecta-
tion value, Eq. (7), can be computed with (8b). In the
special case, however, of the components of the a' (or
EJ ), Eqs. (10) and (11), it is advantageous to derive new
relationships between the individual components and the
total polarizabilities via the Stark-effect virial and
Hellmann-Feynman theorems. The Stark virial theorem

2«&'+ & V, &'- &~, &'~=0, (12)

The expansion of (12) and (13) in powers of A, then
yields, respectively, for j = 1,2, . . . ,

K,s+ X,s F,sj
and

(15)

Oll combining (10},(14), aiid (15), oIle obta1lls

ax'=(2j —1)a',

a,"'=(2—3j)a', .

(16a)

(16b)

readily follows from the Fock scaling procedure. Fur-
ther, if one treats A, as the variable of difFerentiation, the
Hellmann-Feynman theorem has the form

(13)
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f a,' f
=

J / a,"'+aF.'
/

—
f

a+'
f (, j=1

Moreover, from the known" asymptotic behavior of
the large-order e' in the hydrogenic Stark eff'ect, we can
also read off' from (15) and (16) the Bender-Wu-type
asymptotic formulas for the individual energetic com-
ponents. For example, for the ground state, where only
the even-order az are nonvanishing, one obtains [cf.
Ref. 51(c)) in obvious notation,

X [1+(—', ) & 00(2j) '+ ( —', )'Boo(2j) '(2j —1)

+0(j ')), (18a)

where

fx(j)=(4j —1), 2(1 —3j), 2j for X=X, X, I', (18b)

respectively, and Aoo ———8.916, Boo ——2S.S7
In Sec. I we alluded to the metastable character of the

perturbed Stark states; we conclude this section with a
brief summary of some of the associated pathological as-
pects of the Stark effect as opposed to ordinary bound-
state behavior.

(1) In principle, as has long been recognized, it fol-
lows from the unbounded nature of the perturbing po-
tential &i that for any real nonzero value of A, (or I'), no
matter how small its magnitude, the discrete hydrogenic
spectrum of JVO dissolves into a continuum ranging from
—ao to ~, in practice, how'ever, for small A,, the per-
turbed Stark states are quasi-stationary (weakly quan-
tized) since it takes a very long time for the initially
bound electron to tunnel through the potential barrier to
the outer region. In the same context, the ordinary
bound-state variational principle does not apply (see,
e.g., Refs. 16 and 52) to the Stark effect because continu-
um states cannot be exactly represented by L, -integrable

Thus Eqs. (15) and (16), which also hold (when the
operators are properly defined ) for the exact RS polari-
zabilities of all states of all atoms and, in certain cases,
for diatomic molecules, completely separate the com-
ponents and permit their indirect theoretical determina-
tion via the aj (or ej. ); in view of the fundamentally
different roles of the Hellmann-Feynman5 and virial
theorems in the PV-RR formalism (cf. Sec. III D), it is
significant to note that (15) depends only upon the fore-
mer theorem while (16) results from combining both
theorems. Equations (15) and (16) display quantitatively
the previously mentioned delicate partial balancing of
the components which we have established here in an a
priori manner. These relationships impose severe con-
straints on the relative magnitudes and signs of the corn-
ponents. In general, for j & 2, it follows that

f
aj'

f
&

/
a '/ &

/
aj'

f
& [ aj f, and for all j,a', a ',

and aj-' are of like sign while aj' is of opposite sign;
thus, we can write

basis functions, although for small enough field strengths
and/or variational matrices, normal bound-state varia-
tional behavior is simulated. ' This latter
phenomenon has been made the basis of the so-called
"stabilization" method for attempting to overcome the
failure of the ordinary variational principle; we return to
this point in Sec. IIIB, where the behavior of conven-
tional variational calculations for the Stark effect is com-
pared to that of corresponding PV-RR calculations. Al-
though outside the scope of the present LOPT study,
it should be noted that a number of nonperturbative
approaches, which are independent of the ordinary
variational principle, are also available for Stark calcu-
lations; these include the power-series boundary-con-
dition method, %'eyl's m-function technique, the
minimum-variance principle, "' and the use of complex
coordinates '""

(2) The Stark perturbation is singular because of the
abrupt change in the nature of the eigenvalue spectrum
when the field is applied; hence, the RS eigenvalue series
(5b) are strongly divergent [the ezj diverge factorially
as (2j)!, cf. Eq. (18a)). Nevertheless, paradoxically, the
real ej contain all the information ' ' required to
compute the complex Stark eigenvalues (resonances) to
high accuracy. In this context, the series (5b) are
asymptotic and Sorel summable about imaginary
fields. Moreover, the partial sums of (5b) assume phys-
ical signi6cance via the concept of "spectral concentra-
tion. " 8 Thus one may view the onset of the continuum
as corresponding to the movement of the poles of the
Green's function ofF' the negative real axis, where they
correspond to the unperturbed discrete hydrogenic spec-
trum, down into the complex plane, where they become
Stark resonances. The real part of the complex poles
gives the real part of the Stark resonances to which the
real RS eigenvalue series converge within the limitations
of accuracy imposed by their asymptotic character.
Because of the simplicity of the procedure, partial con-
ventional summation of (5b) over a range of field
strengths offers a convenient method of computing Stark
energy shifts induced by smaller 6elds, and accurate re-
sults have been obtained '" in this manner. Further-
more, it has been shown ' that the widths (ioniza-
tion rates) of the Stark resonances, which are given by
the imaginary parts of the complex poles, can be precise-
ly extracted from the c' by analytic continuation com-
bined with various summation techniques; ' simultane-
ously, these summation-continuation procedures also
yield ' accurate values of the real part of the reso-
nances for larger values of the field strength. These re-
sults demonstrate the central role of the real RS eigen-
value series (5b).

(3) It is evident from Eqs. (15) and (16) that the RS
series of the energetic components of the Stark eigenval-
ues are also strongly divergent (indeed, more so than the
eigenvalue series); we have, however, verified numerical-
ly for the ground state that they converge asymptotically
(as anticipated) to the real part of the corresponding ex-
pectation values. Thus, for smaH 6elds, these RS
eigenvalue-component series have the same practical
computational value as the eigenvalue series.
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III. APPI.ICATION OF THK PV-RR
FORMAI. ISM TO THE STARK EFFECT

A. Preliminaries

The generalized PV-RR procedure strengthens and
extends to large order earlier quantum-mechanical ma-
trix formulations of RS perturbation theory. Although
the basic idea is not new, many of the details of the PV-
RR formalism and of its implementation are. In general,
the PV-RR formalism cleanly extracts to high order the
"perturbational content" of a given perturbed variation-
al matrix eigenvalue equation for either classical or
quantum-mechanical systems. The specific nature of this
perturbational content depends, of course, upon the
choice of the unperturbed matrix eigenvalue equation
taken as a zeroth-order reference system, where in the
PV-RR formalism, unlike conventional RS perturbation
theory, this choice is almost completely at our disposal,
e.g., Refs. 36-39.

For an arbitrary M-electron system, one prepares the
way for PV-RR calculations by introducing a
Rayleigh-Ritz (RR) or configuration-interaction ansatz
for the eigenfunction

~

P'&,

(19)
t=1

where the summation is over, say, E M-electron an-
tisymmetric functions

~

P'& of appropriate symmetry,
and the C" are linear variational coefBcients which form
a column eigenvector C', the

~

P'& are constructed in the
usual manner from an arbitrary complete discrete basis
of A,-independent, L -integrable one-electron functions
(spin orbitals) which may, but need not, be orthonormal.
For a one-electron system, the

~

P'& are themselves the
basis functions, which in the present case of the ground
state (rn =0) of the hydrogenic Stark effect we take to
be the discrete orthonormal basis,

t'n0& =R„r( ) Y'ro(8, $),
where the normalized radial functions R„r(r) are the as-
sociated I.aguerre functions of order 28+2,

H=H(A, ) =Ho+H, )L, ,

Ho ——[H(')'],

H,"=&(t'~m, ~(t &,

H, =[H", ],
H';=&(t'~m, ~(t'&,

(24a)

(24b)

(24c)

(24d)

where A, is not assigned fixed numerical values, but, rath-
er, treated as a variable perturbing parameter. Applica-
tion of the PV-RR procedure to (22) and (23), construct-
ed with the proper choice of orbitals, then yields the ex-
act real RS eigenvector, eigenfunction, and eigenvalue
series,

C'=C'()i. ) = g C,'A.',
j=0

(25a)

~

q'& =
~

q'(~) & = y ~ q,
' &u,

i=o
(25b)

(25c)

s'=s'() )= g s,'u,
i=0

(25d)

as well as the associated real RS expectation-value series,

enables the calculation of the exact RS
~

g'& and s,
'

through arbitrarily high order. If one were to pursue
the customary RR approach, one would assign a numeri-
cal value to A. in (2) in order to obtain the matrix eigen-
value equation

HCRR ~RRCRR ~

where 8 is the total perturbed Hamiltonian matrix, and
CRR and ERR denote the RR approximations to the exact
eigenvectors C' and eigenvalues c.', respectively, which
would be obtained by standard numerical diagonaliza-
tion of H for various fixed values of A, . In the PV-RR
approach, however, in marked contrast to the RR pro-
cedure, H is partitioned according to (2) as

R„r(r)= [2/(n +8+ 1)!] [(n —E —1)!]'~

)&(2r) L + (2r)e (21)
(A &

' = (A & '(A, ) = g (A &,'A, ', A = "T,, Vo,&, , (25e)
j=0

(the overall scaling parameter is fixed at unity), the
L„+r+,(2r) are the associated Laguerre polynomials of
order 28+2 and degree n —8 —1, and the I'10(8,$) are
the usual normalized spherical harmonics. The use of
(21) has long been advocated in atomic RR calcula-
tions because, unlike the hydrogenic radial eigenfunc-
tions which they closely resemble (the

~

1s & function is
identical in both sets), the former constitute a complete
discrete basis without continuum contributions; further-
more, the evaluation of all integrals in this basis by
generating-function techniques is straightforward. The
proper selection of the n, E distribution of the orbitals
[Eq. (20)] in constructing (19) is essential in obtaining ac-
curate perturbational results, and in Sec. III C we derive
a prescription for this via the PV-RR formahsm which

to high order for the ground state in a single computer
run. These calculations are feasible because the large-
order cyclic PV-RR formalism, which embodies a num-
ber of algorithms incorporating the basic procedure aug-
mented by the generalized PV-RR remainder,
Hellmann-Feynman, and Stark virial theorems, is ex-
tremely compact and completely avoids the explicit
cumbersome formulations of conventional RS perturba-
tion theory.

8. Validity of the ordinary variational principle

It is appropriate to compare and contrast the role of
the variational principle in the conventional RR pro-
cedure and in the present PV-RR calculations. It has al-
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ready been noted in Sec. II that the ordinary variational
principle does not apply to the metastable states encoun-
tered in the Stark effect: Hence, unlike bound-state cal-
culations, the eR& obtained via numerical diagonalization
of (22) for fixed values of A, do not satisfy the Hylleraas-
Undheim-MacDonald theorem in the sense that one
cannot be assured that for all X and k, ERR & c',
s =1,2, . . . , X, or that the e'„„for fixed A, monotonically
approach the exact resonance energies c' from above as
X~ ao. For very small A, (this permissible range of A, is
basis, N, and state dependent), normal bound-state varia-
tional behavior is observed, but for fixed N and increas-
ing k, or vice versa, a series of avoided crossings invari-
ably take place, ' ' "where, for example, if we con-
sider the ground state, eRR ceases to be an upper bound
to c' but diverges abruptly below it to 1arge negative
values, being replaced by ERR as an upper bound to c',
after which eRR also diverges in turn, etc. Although, as
previously mentioned, this stabilization phenomenon of
successive, temporarily stable approximations can be ex-
ploited to give good to fair estimates of the lowest real
Stark eigenvalues for small A„ the procedure becomes in-
creasingly inaccurate and difficult to implement ' ' for
larger I,.

The variational collapse of RR calculations for the
Stark effect is, however, completely obviated by the PV-
RR procedure: Although (1) does not admit exact or ap-
proximate L i-integrable solutions, it has been
found o' that Stark PV-RR series can be computed
from (22) and (23) constructed with an I. -integrable
basis, in precisely the same manner as if one were deal-
ing with a bound state, Thus the PV-RR series
coeScients converge variationally with increasing N in a
stable manner to the corresponding exact RS coefficients.
It should be noted, however, that, in general, individual
coefficients of the PV-RR eigenvalue series are nor upper
bounds to the equivalent terms of the RS series; this
applies to both bound states and metastable states.
Despite the absence of a minimal principle in each order,
the extent to which the PV-RR eigenvalue, eigenfunc-
tion, and expectation-value series agree with the corre-
sponding exact RS series depends upon the efFective
choice and degree of saturation of the basis set, and can
be readily monitored as a function of increasing X by ex-
amining ~ the (possibly nonmonotonic) variational
convergence of the individual PV-RR series coefFicients;
this is the basis of the procedure used in Sec. IIIC to
derive a paradigm for constructing the exact RS
via the PV-RR procedure.

Qualitatively, the above behavior finds explanation in
the theory of spectral concentration: The fact that the
Stark perturbation series retain their physical
significance imphes that the exact

~ g~ ), k =1,2, . . . ,
solutions of the hierarchy of RS coupled inhomogeneous
equations, are I. integrable in the sense that the RS in-
tegrals over the

~
g'k), which define the e' are conver-

gent; this is in harmony, for example, with the
observation' ' ' ' that the

~ teak ) for the hydrogenic
Stark effect consist o'f a finite linear combination (FLC)
of the product of truncated polynomials of r and various
Legendre polynomials with an overall factor of a hydro-

genic
~

ls ) eigenfunction. We conclude that although a
global variational principle does not apply to (1) in the
form of (22) with fixed A,, the order-by-order calculation
of variational approximations to the

~ gk ) and ej via the
solution of the corresponding PV-RR coupled inhomo-
geneous matrix equations, obtained by series expansion
of (22), is valid. Furthermore, the partial sums of the
RS eigenvalue and eigenvector series, or equivalently, of
their accurate variational approximations obtained via
the PV-RR method, do not display the anomalous be-
havior of switching states (avoided crossings) associated
with the corresponding RR calculations, but, instead,
converge asymptotically to the proper state limits; this
contrasting behavior of Stark PV-RR and RR calcula-
tions is demonstrated in Sec. IV.

C. Construction of the exact RS
~ tPJ )

It is essential in the PU-RR procedure to construct a
systematic sequence of RR trial eigenfunctions with in-
creasing N in order to test for variational convergence of
the individual s', Eq. (5b), and (A ),', Eq. (7). Normal-

ly, it would be entirely adequate to proceed in analogy
with previous PU-RR calculations by including in
(19) gradually increasing numbers of the difFerent n, P
types of orbitals [Eq. (20)]. In the present case, however,
we can find via the PV-RR formalism a prescription for
the construction of the optimum ansatz [Eq. (19)] which
enables one to generate the exact RS

~ P,
' ) and ez to

any prespecified order in the mast economical way possi-
ble. We start by nating that the matrix elements (24) are
subject to severe selection rules due to symmetry. Thus
Ho is block diagonal in 8, which greatly reduces the
computational labor of the PV-RR zeroth-order calcula-
tions. Furthermore, 8 &' vanishes unless t =n, 8,0
and s =n, 8+1,0 or s =n+1, 8%1,0; these selection
rules for Hi furnish the necessary clue for deriving
the prescription. From these rules and the RS
(and PV-RR) equations defining the s,', we
infer that given

~
l(o) =

~

ls ) (which follows from
our choice of orbitals),

~

g', ) must be a FLC of 8 = 1

orbitals,
i $2) a FLC of /=0, 2 orbitals, . . . , i gzk ) a

FLC af 0,2,4, . . . , 2k, and
~ l(zz+, ) a FLC of

=1,3, 5, . . . , 2k +1, where k =0, 1, . . . ; evidently, for
arbitrary

~

f'}, we have P,„=j, where 8,„ is the
maximum vaIue of 8 which occurs. The specific n, F
distribution of the orbitals cannot be obtained in a com-
pletely a priori manner since it is basis independent. To
make further progress, we use the PV-RR formalism as
a sensitive analytical tool. Thus, in an order-by-order
manner, we systematically OUersaturate the ansatz and
inspect the elements of the perturbed eigenvectors CJ", t
=1,2, . . . „X, rejecting those orbitals for which the cor-
responding eigenvector elements either vanish identically
or are vanishingly small; this is feasible because the PU-
RR procedure automatically samples the contribution in
each order of each of the N orbitals. Simultaneously,
one examines the eij (which are obtained from the C,.',
i =0, 1, . . . ,j, via the generalized PV-RR remainder
theorem ) for variational saturation. In this manner,
the following paradigm was derived by induction: For
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k =0, 1, . . . , the orbitals [Eq. (20)] required to con-
struct the RS

~ tPzk ) exactly are

Nr(2k)=4k+1 8,—8=0,2, . . . , 2k,
and to construct the RS

~
gz'k+, ),

Nr(2k+ l)=4k+3 —8, t'= 1,3, . . . , 2k+1 . (26b)

Here, N& denotes the number of orbitals with the subin-
dexed common value of 8 with values of n varying over
the range n =8+1,8+2, . . . , 8+Nr. The optimum
total number of orbitals X, distributed in accordance
with (26) and required to compute the RS series (25)
correctly through

~ /2k ) and e~k+, , are then

k k —I

N(2k, 4k+1)= g Nqq(2k)+ g N2 +,(2k+1)
q=Q q=0

=6k +3k +1,

an«h«ugh
I &2k+1) and e4k+3»

N(2k+1, 4k+3)= g [N2 (2k)+N2 +,(2k+1)]

Thus each optimum N(j, 2j +1) defined by (26) and (27)
has associated with it an n, 8 distribution which is used
to construct the corresponding RR ansatz [Eq. (19)],
e.g., for N(2k+1, 4k+3), this distribution is given by

Nc( 2k,}N( 2k+1),N~(2k), . . . , Nik+, (2k+1); note
that (26) also gives the dimensions of the largest t' block
in Hc for a given choice of N, namely, No(2k)=4k+1
for N(2k, 4k+1) and N, (2k+1)=4k+2 for N(2k
+1,4k +3).

D. The energetic comyonents of the a',.

As described in Sec. II, our method of analysis of the
physical origins of the high-order a is based upon the
resolution of the polarizabilities into their energetic com-
ponents [cf. Eq. (10)]. Two independent methods of
computing the latter via the PV-RR formalism are avail-
able: (1) From the basic PV-RR formalism, as with
the expectation value of any k-independent operator„we
have the purely numerical procedure,

vector series (25a) through (2n +1)th order is required
to compute the RS component series (25e) through like
order; with (15) and (16), however, the component series
can be determined through (2n +1)th order, with but
negligible computational effort, from the nth-order
eigenvector series since the latter yields the eigenvalue
series (25d) through (2n+1)th order via the PV-RR
remainder theorem. In the present case, where the ex-
act RS a~ (or ej') can be determined to arbitrarily high
order via the paradigm of (26} and (27), the use of (15}
and (16), rather than (28), is to be preferred because of
the a priori theoretical insight so obtained plus the con-
siderable reduction in computational labor.

Nevertheless, it is of some theoretical and practical in-
terest to analyze in greater detail the distinction between
the results computed with the two methods. The
Hellmann-Feynman theorem is precisely satisfied ' in
each order of all states of the exact RS solutions and of
arbitrary PV-RR solutions, regardless of the uariational
quality of the latter; hence, (28) and (15) are constrained
to yield identical PV-RR results for a given o. ' and
value of X, and no conclusions can be drawn from this
equality concerning the exactness of the corresponding
jth-order PV-RR eigenvector series. In contrast, the
virial theorem, although satisfied in each order for all
states of the exact RS solutions, is only satisfied in the
PV-RR formalism through that order of a given state for
which the PV-RR eigenvector series has become quite
exact with increasing X; this is a consequence of the fact
that the present PV-RR formalism does not employ an
overall scaling parameter to force satisfaction of the viri-
al theorem in each order. In general, it follows that for
smaller X, the virial theorem will not be satisfied in
higher order so that (28) and (16), due to their difFerent
order dependency on the eigenvector series, will yield
difFerent PV-RR results for a given (larger) j and value
of N for both o. ' and n ', where the variational accu-
racy of (16) will be somewhat greater; as N increases, the
a. ' and a, ' computed with (16) will converge more

rapidly to their respective exact RS limits than the cor-
responding values computed with (28); when the latter
have converged, the virial theorem will be satisfied with
good accuracy through jth order. In this context, (28)
furnishes a useful supplementary criterion for the varia-
tiona1 accuracy of the PV-RR eigenvector series, as well
as a general check on the consistency of the PV-RR cal-
culations; such an application is illustrated in Sec. IV.

(A),'= g C'„'A.C; „, A=T, V,, H, ,
k=0

the matrix equivalent of (8b), which together with (11),
yields the components directly; here A is the matrix rep-
resentation of A in the chosen basis (20). (2) Alterna-
tively, we also have the Hellmann-Feynman and Stark
virial theorems at our disposal, where the former leads
to (15), and both theorems combined lead to (16); these a
priori relationships completely separate the a ', o,j',
and o,'. ', and permit them to be expressed individually as
simple order-dependent multiples of the a'.

Note that if (28) is used, a knowledge of the RS eigen-

IV. RESULTS AND DISCUSSION

In the present work we have extended our preliminary
PV-RR study of the ground state of the hydrogenic
Stark effect to the wide range of optimum X values from
N =3(1,2) to N =459(17,35). The calculations were
performed in ordinary double-precision arithmetic
(about 16 significant digits) with a Ilexible computer pro-
gram for implementing the PV-RR formalism, which in-
corporates all PV-RR algorithms and theorems; a key
feature is the extension to large order via the generalized
PV-RR remainder theorem. In all computations, the
odd-order c' were found to vanish identically as re-
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quired, although, as a test of our formalism, this con-
straint was not explicitly imposed.

In the 6rst phase of our study„we have subjected the
paradigm of (26) and (27) to exhaustive tests. In general,
all of our results are in complete harmony with the para-
digm. Typical calculations of this type are collected in
Table I, which exhibits the variational convergence to
the exact RS values of c. '. , j =10,16,22, 28, as functions
of optimum N. It is seen that, as predicted, full varia-
tional convergence to the number of digits given, is
achieved, respectively, for N =45( 5, 11 ), 109(8,17),
198(11,23), 316(14,29); these results were checked by
comparison with the exact I.PT values of Ref. 25(b),
converted to our more conventional choice of units.
Several additional interesting features emerge from a
study of Table I. Thus, the penultimate entries in each
column furnish rigorous upper bounds to the corre-
sponding exact s~; this follows because the former are
computed with N values with distributions which are
correct to one order lower than required in the eigen-
function, e.g., % =273(13,27) yields an upper bound to
the exact e,zs. This special result is a consequence of a
more general property of the paradigm, namely, that the
distribution corresponding to any optimum E necessarily
contains all orbitals required to calculate all exact
lower-order results; furthermore, this feature is automat-
ically exploited by the PV-RR formalism which selects
out of the total N orbitals in each order only those that
are required, commencing with

~ gI ) (N, =2), then

~ Pg ) (Np = 5 X2 =3 ), etc. Conversely, however, the
distribution corresponding to any N contains a portion of
the orbitals required to compute terms of higher order
than the cutoff value of j corresponding to that E. Note
that as X increases, the relative number of orbitals per-
taining to still higher-order terms also increases (cf.
Table I of Ref. 30); this implies that the PV-RR eigen-
value series computed with large N will not only yield
the exact RS c.' through the cutofF' value of j specified
but, in addition, good to fair PV-RR approximations to
the sj' over a considerable range of still higher orders. A
good example of this e8'ect is displayed in Table I, from
which it is evident that as N increases, better and better
approximations to the corresponding exact c' are fur-
nished over a wider and wider range of lower N values.

We stress that although such a simple paradigm as
(26) and (27) will not, in general, be available for more
complex systems, the method of analysis used in deriving
it remains valid. Thus, it is far more eScient to monitor
the relative importance of the contributions of the vari-
ous

~

P') via the PV-RR formalism in an order-by-order
manner than to attempt to judge their relative overall
importance in a conventional RR calculation, as is usu-
ally done. Indeed, it would have been impossible to
derive the required n, E distribution of the orbitals, (26)
and (27), from standard numerical diagonalization be-
cause the small perturbational e6'ects involved are com-
pletely submerged in the total variational eigenvalues;
for example, RR calculations with N =64(6, 13) and
X =360(15,31) yield eRR values which are in exact
agreement for 0&A, &0.010 although correct through
13th and 31st order, respectively, in the RS eigenvalue
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TABI.E II. Stark-effect RS perturbation energy coeScients
(in Z a.u. ) for the ground state of hydrogenic ions computed
via the PV-RR formalism for various values of N.

235
273
316
360
409
459
459
459
459
459
459
459
459

24
26
28
30
32
34
36
38
40
42

46
48

—0.153407 588 358y 10"
—0.229 270663 418y 10
—0.397 189605 14@10"
—0.789 781 11108 ~ 10"
—0.178 690 8184' 10"
—0.456 504427 x 104'
—0.130786169 X 10"
—0.417 628 97g 10'
—0.147 82069 y 10"
—0.577069 7 y, 10"
—0.247 343 4x 10"
—0.1159190g 1Q
—0.591 760' 10"

series.
In our preliminary calculations, the exact RS

e. ',0&j &22, were computed via the PV-RR method
with N =198(11,23). In the present study we have ex-
tended these PV-RR calculations to higher order with
larger ¹ Table II presents the exact RS ej, 24 &j &48,

For j & 34, the n, 8 distribution of the basis set is fully saturat-
ed for each value of N in accordance with Eqs. (27); for j& 36,
cf. text.
bVariationally converged to the exact LPT values of Ref. 25(b)
with a maximum deviation of three units in the last digit re-
ported.
'See Ref. 30 for the hydrogenic Stark e8'ect e.,', 0 &j & 22, com-
puted via the PV-RR formalism to 18 signi6cant digits for
X= 198(11,23).

computed with N up to N =459; these results, verified as
in Table I, have variationally converged to within a max-
imum deviation of three units in the last digit reported.
Note that the c.' for 36&j &48 are actually PV-RR ap-
proximations to the exact values arising from the previ-
ously discussed partial fulfillment of (26) and (27} for
these higher orders for N =459(17,35); as anticipated,
however, for such large X, their accuracy is quite high,
yielding six significant digits in the worst case of c«.

%'e have also investigated the two procedures for
computing high-order polarizability components (11),
namely, Eq. (28}, on one hand, and Eqs. (15) and (16) on
the other. Application of the two methods to the calcu-
lation of the ai2', a+&', and af&' over a wide range of N
yields the results collected in Table III, which compares
the variational convergence as a function of X of all
components computed both ways. It is seen that in ac-
cord with theoretical predictions (cf. Sec. IIID), both
entries for a&z' are identical; furthermore, the o;&z' and

a,z' computed with (16) converge variationally some-
what more rapidly than those computed with (28), the
former pair, and o, &&', attaining the exact RS values at
N =64(6, 13) as required. By N =84(7, 15), all results
have variationally converged to the exact values to 14
signi6cant digits; note that this implies that the Stark
virial theorem (14) is satisfied through 12th order to this
degree of accuracy at %=84. In principle, a",z' and
aiz' do not attain full variational convergence when

computed with Eq. (28) until N =235(12,25); the excel-
lent approximations for smaller N are due to the partial
ful611ment of (26) and (27) in higher orders, already dis-
cussed in connection with Tables I and II.

Table IV displays the high-order RS polarizability

TABLE III. Comparison of variational convergence as a function of X of PV-RR polarizability components a12', a»', and a12'
(all in Z a.u. ) for the hydrogenic Stark effect; for each value of X, the first row of entries is computed with Eq. (28) and the second
with Eqs. (15) and (16).

31

235

—1.3 x10"
—5.0y, 10"
—4,5 g10"
—2.0x 10"

1.68@10"
2.23 ~ 10"
6.288 X 10"
6.603x 10"
7.275 804' 10
7.285681' 10"'
7.300 213 277 x 10"
7.300223 118612 3 ~ 10"'
7.300223 1186122x 10"'
7.3002231186123g 10"'
7.300 223 118612 3 g 10"'
7.300223 118612 3 ~ 10"'
7.300223 118612 3 x 10"'
7.300223 118612 3x 10"'

3.7x10"
7.3 g10"
5.5 g10"
2.9g 10'

—2.75' 10"
—3.30' 10"
—9.446 ~ 10'"
—9.760 X 10"
—1.076026' 1021

—1 077014' 1021 '
—1.079 162433~ 1021

—1.079 163 417 5340' 10 '

1 079 163417 5340~ 1Q
—1.079 163417 5340~ 1021"
—1.079 163 417 5340~ 1021 '
—1.079 163417 5340~ 1021'
—1.079 163417 5340~ 1021'
—1.079 163417 5340' 1021 '

—2.6y 10'
—2.6 &&

1015

—1.0g 10'
—1.0X10"

1.16' 10"
1.16)& 10
3.445 ~ 10"
3.445 X 10"
3.801 225 g 10"
3.801 225' 10"b

3.808 812061 884 7 ~ 10"'
3.808 812061 884 7 g 10"'
3.808 812061 884 6X 1021'

3.808 812061 8846~ 1021'

3.808 812061 884 7 X 1021'

3.808 812061 884 7 X 1021 '
3.808 812061 8847)(10 '

3.808 812061 8847~ 10 '

The n, f distribution of the basis set for each value of A' is in accordance with Eqs. (27).
Rigorous lower bound in the sense of Ref. 68.
Rigorous upper bound in the scnsc of Rcf. 68.
Variationally converged to exact RS values with a maximum deviation of one unit in the last digit reported.
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TABLE IV. High-order RS polarizability components o;j ', a,"-', aj'„and total polarizabilities a,'. (all in Z a.u. ) for the ground
state of hydrogenic ions computed via the PV-RR formahsm for N =459 with Eqs. (15) and (16), and uniformly rounded to five de-

cimal places; for the 2 &j & 22 components, see Ref. 30.

24
26
28
30
32
34
36
38
40
42
44
46
48

44.735 30X 10"
47.15608X 10"
6.66042X 10"

12.36001 X 10"
29.62200X 10"
9.029 93X 10"

34.542 62 X 10~
16.382 20X 10"
9.52812X 10'~

67.295 28 X 10'"
57.203 03 x 10'"
58.045 14X 10"4
69.787 55X 10"'

—66.627 05 X 10
—70.271 80x 10"
—9.93008X 10"

—18.435 27 X 10"
—44.19792X 10"
—13.477 51 X 10
—51.57068 X 10
—24.46409 X 10"
—14.231 88x 10'~

—100.537 52 X 10'"
—85.475 79X 10'"
—86.748 78 X 10'"

—104.31402X 10' '

F, l
J

22.843 56X 10"
24.040 35 X 10"

3.39076X 10"
6.284 75 X 10"

15.046 10X 10"
4.582 35 X 10"

17.514 57 X 10"
8.300 32 X 10"
4.824 37x 10'~

34.053 03 x 10'"
28.930 27 x 10'"
29,3415OX 10'"
35.26108X 10"'

l
Aj

0.951 81 X 10"
0.92463 X 10"
0.121 10X 10"
0.209 49 X 10"
0.47019X 10"
0.13478X 10"
0.486 52 X 10~
0.218 43 X 10"
o.i2061X 10'~
0.81079 X 10"
0.657 51 X 10'"
0.637 86 X 10'"
0.73461X 10"'

components a ', ai ', a ' computed with (15) and (16),
as well as the total polarizabilities a', all for 24&j &48,
and obtained via the PV-RR formalism for X =459; pre-
viously, we have presented similar results for 0 &j & 22
computed for N =198. The partia1 cancellation of the
larger shifts in the components in summing via (10) to

the a, is evident. it is significant that all nonvanishing
a', and hence, a11 a ' and cx ' are positive and a11 a '
are negative (cf. also Ref. 30). It follows from the
definitions (11) of the components that the physical ori-
gins of the polarizabilities for the ground state of hydro-
genic ions are, in each order, unambiguously due to a de-

TABLE V. PV-RR partial sums (from the 5=235 ansatz) of Stark-effect eigenvalues for the
ground state of H compared with values computed by other methods.

I' (a.u.)

0.001
0,002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.015
0,020
0.025
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.110
0.120
0.130
0.140
0.150
0.200

a
Jmax

6
8

10
10
10
12
12
14

16
26
30
24
20
14
10

8

6

2

—0.500002 250055 5518
—0.500009000 889064 3
—0.500 020 254 502 879 9
—0.500 036014240 154 5
—0.500 056 284 793 793 0
—0.500081 072 219072 9
—0.500 110383 950075 8
—0.500 144 228 820081 5
—0.500 182 617086 1249
—0.500225 560457 959 9
—0.500 509 120 120459 3
—0.500 909 224 259 24
—0.501 429 291 80
—0.502 074 272 5
—0.503 771 5
—O.S06099
—0.509 18
—0.512 9
—0.5167
—0.5219
—0.528 1

—0.535
—0.532
—0.538
—0.544
—O.SS1
—0.59

I
oti er ~a u ~

—0.500002250055 56b

—0.500 036014240 0 b

—0.500 056 284 793 7
—0.500081 072 2194 b

—0.500 110383 958
—0.500 144 228 821 b

—0.500 182 617088
—0.500 225 560 459

—0.500 909 224 258

—0.502074272 607 1'
—0.503 771 5910137'
—0.506 105 425 362 6'
—0.509 203 450 879 '
—0.513076 765 81'
—0.517 560 61700
—0.522412807 i5'
—0.527 418 17509"
—0.532 45 '
—0.537 40 '
—0.542 16'
—0.546 75 '
—O.S51 20'
—0.570 53 '

'Highest order through which the PV-RR series is summed.
Average of upper and lower bounds of Ref. 54.

'Reference 60; underlined digits are not physically significant.
Reference 51(c).

'Reference 55.
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TABLE VI. PV-RR partial sums 4,from the X =235 ansatz)
of the eigenvalue-6eld slope for the ground state of H.

F (a.u. )

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0,050
0.060
0.070
0.080

aJmax

9
11
11
13
15
17
17
21
21
23
39
29
21
17
13
11
7
5
3
3

I ~&'~~F)pv-RR

—0.450022 221 695 298 4x 10
—0.900177 844 310642 1 x 10-'
—0.135060062 319652 2 x 10
—0.180142 502 579 635 4 x 10-'
—0.225 278 659 584 522 1x 10-'
—0.270482 232 755 688 7 x 10-'
—0.315767105 348 1302x 10-'
—0.361147385003 878 2x 10-'
—0.406637 446 517 107 6 x 10- '

—0.452 251 977 311722 4 x 10-'
—0.682 734 12097670x 10
—0.918810700x 10-'
—0.116308 50
—0.141 920
—0.16926
—0.199 1

—0.267
—0.34
—0.39
—0.47

'Highest order through which the PV-RR series is summed.
From the Hellmann-Feynman theorem, Eq. (13), the slope is

given by partial summation of the PV-RR series of & %, ) ';
here, the even-order coeScients vanish identically.

crease in the average kinetic energy of the electron cou-
pled with an increuse in the average negative displace-
ment (along the z axis) of the electron from the nucleus,
these positive contributions being largely offset by the
decrease in the magnitude of the average nuclear poten-
tial of the electron. This behavior is formally identical
to that determined for non-Born-Oppenheimer polari-
zabilities for the ground state of Hz+.

To demonstrate the effectiveness of conventional sum-
mation of the asymptotic RS eigenvalue series (5b) in
computing the real Stark energies, we have extended the
similar calculations of Ref. (24a) for the ground state of
H to higher order and over a wider range of F, using
the e~ computed with the X =235 ansatz. These results
in ordinary a.u. are collected in Table V, where the
appropriately truncated partial sums cpvRR are com-
pared with the best values currently available, e,',h„,
computed by nonperturbative "" ' and perturbative-
summation methods; the spv R„have converged pertur-
bationally to the exact values to within several units in
the last digit reported. It is seen that in the range
O~F &0.02 a.u. , epv. RR is considerably more accurate
than the nonperturbative results of Ref. 54. For
F &0.02 a.u. , the accuracy of epv „„starts to dimmish,
but excellent results are still obtained up to 8=0.05
a.u. , and good to fair estimates even up to I' =0.20 a.u.

We have also computed the various energy-related
Stark expectation values for the ground state of H by
asymptotic summation of the RS series (7), using the ap-
propriate (A )' computed with %=235. Table VI
presents our results in ordinary a.u. for the Stark slope
(Be'/t)F)pv „„, obtained via the Hellmann-Feynman

TABLE VII. PV-RR partial sums (from the X =235 ansatz)
at F=0.01 a.u. of Stark-efect energy-related expectation
values [cf. Eq. (7)] for the ground state of H.

Expectation value

& T&pv-RR

& Vo &pv-RR

&o&pv-RR

&W &pv-aR

&Pv-RR

&pv-RR
1

&pv-RR

~aR

PV-RR partial sum (a.u. )

0.499 321056 503 336 5 '
—0.999094 364 983 984 7 '
—0.499 773 308 480648 2'
—0.452 251977 3117224x 10-' '
—0.500225 560457 959 9'
—0.500 225 560457 959 9
—0.500225 5604579599'
—0.500225 560457 9600"

'Summed through 20th order.
"Summed through 23rd order.
'Summed via Eq. 4, 9a).
"Summed via Stark virial equation 4', 29).
'Summed through 16th order via Eq. (5b).
Computed via numerical diagonalization of Eq. (22) for
X =235.

theorem (13) by forming partial sums of the RS series
of (&,)' over a range of F. In Table VII the asymp
totically converged partial sums in a.u. of the expec-
tatiotl vallles ( V )pv RR, ( Vo) pv RR, ( JVo )pv RR, and

(%()pv RR are collected, as well as three independently
computed values of c.pv RR, all at E=0.01 a.u. ; the three
independent values of cpv RR were obtained, respectively,
from Eq. (9a), from the Stark virial relationship

"=3«) +2(V, )'

[which follows easily from (9a) and (12)], and from Eq.
(5b). All results in Tables VI and VII are judged to have
converged perturbationally to the exact values to within
several units in the last digit reported; there do not seem
to be previous similar calculations available for compar-
ison, Note that the range of F in Table VI is more limit-
ed than that of Table V; this follows because the RS
series of (%()' is more divergent [cf. (15)] than that of

It is seen from Table VI that, as anticipated, the
slope becomes more negative with increasing F. The ex-
act agreement (to 16 significant digits) displayed in Table
VII, among the three independent values of epv RR and
the conventionally computed e„'R, verifies the high de-
gree of internal consistency of the PV-RR calculations as
well as the applicability of the Stark virial theorem.
Tables VI and VII demonstrate that for small I the c;x-
pectation values can also be computed perturbationally
with great accuracy.

In Table VIII the asymptotic convergence of the real
Stark PV-RR eigenvalue series for the ground state of H
is contrasted with the vanational collapse of the corre-
sponding RR calculations; since both the PV-RR and
RR calculations are based on the same X =198 ansatz,
we are in the advantageous position of being able to
compare the perturbational and variational behavior of
precisely the same quantities. In particular, the PV-RR
eigenvalue partial sums e.pvR& are compared with the
6rst two RR eigenvalues FRR and ERR as functions of I
over the range F =0.005 —0.030 a.u. Throughout this
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TABLE VIII. The asymptotic convergence of the Stark-elect PV™RReigenvalue series for the ground state of H contrasted with
the variational collapse of corresponding RR calculations. (Both PV-RR and RR calculations are based on the N =198 ansatz. )

I' (a.u. )

0.005
0.010
0.014 30
0.0143500
0.014 350 5
0.014 350 8
0.014 350 9 '
0.0143510'
0 014 3520
0.014 39 d

0.020'
0.025'
0.030'

—&i v-RR
b

0.500 OS6 284 793 79
0.500 225 560457 96
0.500462 468 687 02
0.500465 725 39908
0.500465 758 024 83
0.500 46S 777 600 83
0.500465 784 126 26
0.500 465 790 651 73
0.S00465 8SS 909 03
0.500468 339 127 68
0.500909224 25924
0.501 429 291 80
0.502 074 272 5

—E,RR (a.u. )

0.500 056 284 793 78
0.500 225 560457 95
0,500 462 468 687 00
0.500465 725 39907
0.500 465 758 024 82
0.500465 777 600 84
0.500467 949 231 76
0.500 471 447 277 67
0.500 506 427 768 30
0.501 835 728 689 12
0.698 801 151 164 80
0.87S 17098981977
1.052 013 807 182 4

0.178 111533 470 56
0.348 9S5 478 848 96
0.498 687 S18227 24
0.500436 466 844 18
0.500453 957 053 78
0.500464451 186 37
0.500465 784 126 23
O.S0046S 79065172
0.500465 855 90902
0.500468 339 127 67
0.622 747 266457 43
0.782 836 149 215 54
0.943 384 731 71846

'Highest order through which the PV-RR series is summed.
Asymptotically converged to a'.

'The first avoided crossing occurs at this critical value of I' so that ERR is no longer stable.
dFor these I' values, ERR has temporarily stabilized to approximate e'.
'Additional avoided crossings have now occurred so that s&R is no longer stable; cf. text.

entire range, cpv RR is seen to converge asymptotically to
the exact real energies s' (cf. Table V). Furthermore„ for
small enough F, eRiR is stable and in excellent agreement
with epv RR. At the critical-field strength (for E =198)
of F =0.0143509 a.u. , however, the erst avoided cross-
ing takes place abruptly (in an interval of F less than
IX10 a.u. ) and one sees that s„'R has started to
diverge, being replaced by the temporarily stable sRR as
the RR approximation to e'. For F =0.020 a.u. , several
avoided crossings have evidently taken place s)nce ERR 1s

now diverging, and the temporarily stable RR approxi-
mation to s' is furnished by e&~R ———0.500909 224259 38
a.u. As I' continues to increase, the avoided crossings
multiply and it becomes ever more diScult to locate the
temporarily stable sitR which have moved to large s.
These results highlight the advantages of using the
asymptotic PV-RR eigenvalue series as opposed to the
RR stabilization method.

Finally, we touch upon the PV-RR calculation of the
RS ground-state eigenfunction series (25b) via (25c). To
illustrate in the simplest case of

~
P', ) (Ni ——2), one Suds

via the PV-RR method for optimum N )3 that

~ f,') =C, '
~
210)+C, '

~
310), (30a)

where C2i' ———2.Z50000OOOOOO000= —-'„, C
=0.5590169943749474=&5j4, and all other Ci' van-

ish identically or are vanishingly small; to demonstrate
the accuracy of this result, note that simpli6cation of
(30a) via (20) yields

(30b)

%vhlch ls the exact solution . Determination of the
higher-order

~
g~') proceeds in the same manner; in the

actual calculations, of course, one uses the computer-
generated decimal equivalents of the C'- .

The PV-RR hydrogenic Stark calculations reported

herein can be readily extended to still higher order. For
example, it follows from (26) and (27) that the
N =693(21,43) ansatz will yield the exact RS ground-
state eigenvalue series through 43rd order, and, based on
our experience, supplementary good PV-RR approxima-
tions to the e', j)44 through at least 60th order„ this
ansatz presents no diSculty since the largest 8 block to
be diagonalized in Ho is only of dimensions N, =42.
Furthermore, if desired, greater accuracy in higher order
can be achieved by working in quadruple precision,
which is not uncommon in LOPT; this is feasible be-
cause of the simplicity and proven computational. speed
of PV-RR calculations in general.

V. CONCLUlNNG REMARKS

In the context of methodology, the present work has
again demonstrated that the PV-RR formalism is cap-
able of extracting the perturbational content of a given
Suite variational eigenvalue equation such as (22) to high
order with great accuracy. In summary, the PV-RR for-
malism owes its power and flexibility to the following
principal factors.

(1) Unlike the specialized methods of LOPT, the PV-
RR formalism can be applied to arbitrary atomic and
molecular systems because it is based upon the variation-
al principle as well as upon perturbation theory. More-
over, the PV-RR formalism is an eminently practical
procedure which can be implemented in every case
where the conventional RR approach gives meaningful
results, and, indeed, in certain cases where the latter
breaks down, e.g., the metastable states of the Stark
effect.

(2) The horribly cumbersome explicit formulations of
conventional RS perturbation theory are completely
avoided by the introduction of several auxiliary matrices;
these lead to compact PV-RR algorithms whose recur-
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sive invariant form enables the procedure to be readily
programmed and facilitates the computation of the PV-
RR series to large order.

(3}The PV-RR formalism automatically permits sensi-
tive tests to be made of the degree of variational satura-
tion resulting from the choice of the type and number of
basis functions used; e.g., it was thi. s diagnostic insight
which led to the discovery of the paradigm (26) and (27).

Finally, it is of interest to compare the present PV-RR
LOPT polarizability calculations for hydrogenic ions
w'th the similar PV-RR LOPT polarizability stud-
ies of Hz+. If we arrange the systems considered in
the sequence of increasing complexity, i.e., hydrogenic
iona, Hz within the Born-Oppenheimer approxima-
tion, ' and a non-Born-Oppenheimer model ' * of
Hz+, we find that the ground-state polarizability series
were determined via the PV-RR formalism through
48th, 30th, and 20th order, respectively, with variational
matrices of dimensions N =459, 576, and 540, where the
computational efFort in each case was roughly
equivalent; this reduction in the maximum order com-
puted with increasing complexity of the system is pre-
cisely in accord with expectations. It should be noted,
however, that previous atomic and molecular polar-

izability calculations, using matrices OE similar size as
those mentioned above (or larger} and routinely based
on either the variational-perturbational or finite-
perturbation method, were limited to fourth-order po-
larizability series [see, e.g., Refs. 44, 52(c), and 70].
Thus, for a meaningful comparison with these previous
low-order non-PV-RR calculations, it is appropriate to
consider the computational efFort expended in the PV-
RR calculations to generate fairly low-order, say sixth-
order, polarizability series; one 6nds for the sequence of
systems described above that the PV-RR calculations re-
quired X values of only X =18, 36, and 100, respective-
ly„ to reach sixth order accurately. The trend of these
data suggests that it should be possible to extend the
PV-RR formalism to polarizability studies of more com-
plex systems where larger variational matrices will be re-
quired.
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