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DifFerential cross sections for electron-impact ionization of molecular hydrogen are presented in
the factorized Srst Born, Sxed-nuclei, frozen-core Hartree-Pock approximation. The wave func-
tion of the ejected electron is described by a Coulomb @eave distorted by the static-exchange poten-
tial of the frozen ionic core. Transition matrix elements are evaluated in both the length and ve-

locity forms using Pade-approximant corrections to initial estimates based on the Sch~inger varia-
tional principle. For high-energy incident electrons, the length form is in excellent agreement with

experimental Compton defects but the magnitude of the doubly differential cross section is too
large. The magnitude of the doubly difFerential cross section in the velocity form is generally in

good agreement with experiment; however, the maxima occur at energy 1osses which are too large,
particularly for small linear-momentum transfers, Results of calculations of the triply differential
cross section are also presented. The agreement vnth experiment is only fair for 250-eV incident
electrons because of the breakdown of the Arst Born approximation.

I. INTRODUCTION

Theoretical calculations of the differential cross sec-
tion (DCS) for electron-impact ionization of molecules
have generally been restricted to approximate methods
which emphasize the description of the molecular bound
states while essentiaBy treating the continuum electrons
as plane waves. ' Examples of these methods are the
plane-wave impulse approximation, 23 which has been
used to compute the triply difFerential cross section
(TDCS), and the binary-encounter approximation
(BEA), which has been used to compute the doubly
difFerential cross section (D DC 8). Although these
plane-wave theories are generally successful when the
continuum electron energies are high, the neglect of in-
teractions with the ionized target can become significant
for low ejected-electron energies. In the present paper
we will consider the impact ionization of molecules in
the Born approximation (BA), where only the wave func-
tions of the relatively high-energy incident and scattered
electrons are treated as plane waves. A recent calcula-
tion of the TDCS for ionization of helium, based on the
factorized BA, described the wave function of the eject-
ed electron by an orthogonalized Coulomb wave (OC%)
with an empiricaily determined asymptotic charge.
This approximate treatment of distortion was capable of
providing good agreement with experiment for this
atomic system. However, due to the nonspherical nature
of molecular systems, it may be necessary to include the
effects of distortion more accurately. In the present pa-
per we begin an investigation of the elect of distortion
in molecular systems by applying the distorted-wave BA
to the DCS for electron-impact ionization of molecular
hydrogen.

The major dif5culty in allowing for distortion in
molecular systems is the calculation of multicenter-
scattering wave functions. %e apply a technique,

developed in recent studies of molecular photoionization
and low-energy electron-molecule scattering, which is
based on the Schwinger variational principle and in-
volves corrections to the initial variational estimate us-

ing [N/N] Pade approximants. The interaction of the
ejected electron with the ionized target is approximated
by the static-exchange potential evaluated in the frozen-
core Hartree-Pock (FCHF) approximation. Since our
initia1- and Snal-state wave functions are solutions of a
Hamiltonian with a nonlocal potential, the generalized
oscillator strength (GOS) does not necessarily satisfy the
Bethe sum rule and the DCS's calculated in the length
and velocity forms are not equivalent. However, it has
been empirically determined from photoionization stud-
ies that calculations using the velocity form are generally
less sensitive to initial-state correlations. In addition,
although not the only source of error, the discrepancy
between the length and velocity DCS's gives an estimate
of the minimum error in the calculation due to the
frozen-core and Hartree-Fock approximations.

A second complication for molecular systems com-
pared to atomic systems is the treatment of nuclear
motion. In the present study we apply the 6xed-nuclei
approximation which essentially requires the DCS to be
averaged over nuclear orientations. This angular
averaging is performed analytica11y by using single-
center spherical harmonic expansions of all functions.
This also allows the TDCS to be expressed as a 1inear
combination of Legendre polynomials whose coef6cients
are given in terms of an angular-momentum-transferred
summation. Although a large number of matrix ele-
ments are genera11y required to converge the DCS, we
simplify the calculations by neglecting the relatively
small distortion of higher partial waves.

For high-energy incident electrons, we 6nd the
distorted-wave velocity approximation (DWVA) to gen-
erally be in excellent agreement with experimental
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DDCS's. However, particularly at small linear-
momentum transfers, the calculated maximum of the
DDCS occurs at too high of an energy loss. Conversely,
although the distorted-wavelength approximation
(DWLA) is in excellent agreement with experimental
Compton defects, the calculated DDCS is too large for
nearly all ejected electron energies and momentum
transfers. Not surprisingly, the effects of distortion are
relatively small for molecular hydrogen and similar,
though less successful, results are obtained in the
Coulomb-wave velocity approximation (CWVA) and the
Coulomb-wavelength approximation (CWLA). We also
compare our calculated TDCS's to experimental results
obtained at incident energies of 250 eV. Although the
agreement with experiment is only fair, the discrepancy
is in large part due to the breakdown of the first Born
approximation and better comparisons might be ob-
tained at higher incident energies.

The TDCS for electron-impact ionization is a measure
of the probability that an incident electron of momen-
tum k, will collisionally ionize a target producing elec-
trons of asymptotic mornenta kz and k3 which are subse-
quently detected in solid angles dQ2 and dQ&. An in-

tegral representation of the TDCS can be derived by
considering the asymptotic form of

~
4;), where

~
4;)

is an exact solution of the Schrodinger equation with ap-
propriate boundary conditions. Neglecting the mass of
the electrons in comparison to the mass of the nuclei,
the TDCS for a spatially unpolarized system is given in

atomic units by'"

initial-state target wave function, and
~ g&) is the final-

state target wave function. The TDCS given by Eqs. (1)
and (3), evaluated in the fixed-nuclei approximation, can
be expressed as

=(k2ki/k, )(4/K )C,„(K,k, )1(K,ki),
dQzd03de

(5)

where C,„ is an approximate correction for exchange
scattering given by"

C,„(E,ki)=1 —(K/k, ) +(E/ki)

I(K,k3) is a transition probability averaged over nuclear
orientations,

I(K, lt&)=(8m )
' f 113sinl3 f da f dy

~
f(K,k&)

~

(7)

f(K,ki) is a purely electronic transition matrix element
for a fixed nuclear orientation,

f(K,k, )=(2n. )
' '(gI'

~ g exp(iK r„)
~ f }, (8)

and
~ g,") and

~

P&') are the electronic wave functions of
the initial and final target states, respectively. %e refer
to Eq. (8) as the length form of the transition matrix ele-
ment. An equivalent velocity form of the purely elec-
tronic transition matrix element is given by

rT

dQzdQ, de
=(khaki/ki)(2n') g J TI; [, (1)

average
f(K,ki)=(2m) (E)

where de is an energy interval of one of the final-state
continuum electrons, the summation and average refer
to a summation over unresolved final states and an aver-
age over populated initial states for a given set of experi-
mental conditions, and T&; is a transition matrix ele-
ment. The transition matrix element is of the form

(2)

where H, and E, are the total Hamiltonian and energy
of the system, respectively, and

~
ipI ) is a wave function

which essentially describes the final state of the ioniza-
tion process. *

%'e consider the rotationally and vibrationally un-
resolved TDCS in the factorized first Born fixed-nuclei
approximation where the possibility of electron capture
is neglected. In the BA, neglecting exchange and cap-
ture, the transition matrix element can be written as

T&; (4m/K )(P;
~ g exp(——iK r„)

~

P—&),

where K, the linear-momentum transferred, is given by

K=k, —k2,

the summation runs over all target electrons,
~ g, ) is the

(9)

where 8 corresponds to the electronic Hamiltonian and
E is the energy loss. Equation (9) is used below to evalu-
ate the velocity form of the TDCS.

Evaluating Eq. (8) in the FCHF approximation, the
purely electronic transition matrix element in the length
form is given by

X ( Q"(ltd)
f
(1—P ) exp(iK r)

) vP), (10)

where ri is the occupation number of
~
P), the normal-

ized Hartree-Fock orbital from which the electron is
ejected, I' is a projection operator given by

the sum being over all occupied orbitals, and
~

it'"(k3) )
is the wave function of the ejected electron. Evaluating
Eq. (9) in the FCHF approximation, the purely electron-
ic transition matrix element in the velocity form is given
by
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f v(K, k3)=(2n) ~/ (il)'/ (E) '&g@(ki)
~

(1 P—) exp(iK r)( ,'K——iK V)
~ P& . (12)

&y(k$)
~
y(k, ) & =(217)'5(k', —k, ) . (14)

In view of Eq. (13), the purely electronic transition ma-
trix element can be written as

f '"(K k )=U ' (K k )+D ' (K,ki), (15)

where the undistorted terms U~' (K,k3) are given by

U ' (K,k3)=&/(k3)
~

(1 P)exp(iK r)—
~

P'"&, (l6)

In general, the matrix elements given by Eqs. (10) and
(12) are not equal due to the use of the frozen-core ap-
proximation and the neglect of electron correlation.

%'e consider the wave function of the ejected electron
to be a solution of the Lippmann-Schwinger equation,

(1 —G' 'V)
~

P'"(ki)&= ~P(k, )&,

where 6' ' is a Coulomb Green's function with incom-
ing spherical waves, V is the difference between a pure
Coulombic potential and the singlet-coupled interaction
potential between an electron and the frozen ionic core
calculated in the static-exchange approximation, and

~
P(k3) & is a Coulomb wave satisfying the normalization

condition

and the trial functions g, and g leads to a Schwinger-

type variational expression for the distortion term of
Eq. (15),

D(K, k, )=&/ (k, )
~
V~A(K)&+&/(k, )

~
V~X, (K)&

—
& f", (ki) i

V —VG'+'V
i X,(K) & . (22)

%e determine a zeroth-order variational estimate to
D(K, k3), Do, by expanding the trial functions as linear
combinations of basis functions and requiring that Do be
variationally stable with respect to the expansion
coefficients. We then compute a sequence of Pade ap-
proximants of the form [N/N] for the error in the initial
variational estimate and obtain the variational estimates
D&, which are rapidly convergent. %'e note that if the
final result is weH converged, the calculation is indepen-
dent of the initial basis set.

In order to evaluate the integral over Euler angles in

Eq. (7) analytically, we expand the purely electronic
transition matrix element in terms of spherical harmon-
1cs,

f(K,ki)= g f„j (K,ki)[Fg (K)]"FJ" (kp) .
n,j 3,JI2

the distortion terms D ' (K,k3) are given by

D (K,k, )=&lp(k, )
~

V ~R~ (K)&,

and %'her e

(K) &=G'+'(1 P) exp(iK r—)
~ g '"&,

L
& (2~)—3/2(9)1/2

I 0 &

(17)
(23)

The TDCS given in Eq. (5) is a function of the angle be-
tween the linear-momentum transferred and the momen-
tum of the ejected electron and can be expressed as a
series in Legendre polynomials,

0'
=(k2k3/ki )(4/K )C,„(K,ki )

Q2 Q, de

~

R(K) & =(1—G'+'V)
~
X(K) &, (21)

~ g &=(2n) (ri)' (E) '( ,'K —iK—V)
~

P& .

If the eff'ects of distortion are neglected, then only the
first term in Eq. (15) is retained.

A consideration of the equation

X(4m. )
' pa, (K,ki)Pi(cos8) .

I

(24)

The expansion coeScients a&, expressed as a summation
in terms of J„ the angular-momentum transferred, are
given by

ul«ki)=(4'ir) ' X g g [(2Jiz+ 1)(2ji+1)(2J'i2+ 1)(2ji+1)l'"(—1)'+'& jiOjÃ I
iO& & Ji20Ji20

l
iO&

J3» IZ g3,JI2

j3 j3
X "J J J Fjj g (K ki )[Fg J (K ki )] (25)

Xf„, q (E,k3) . (26)

where &J»nJ rn
~

JM& is a Clebsch-Gordan coefficient,
the quantity in curly brackets is a %igner 6-j coeScient,
and the angular-momentum-transferred transition matrix
elements are given by

FJ J (K,k3)= g( —1)"&J,~ —njin
~
JO&

In general, a large number of matrix elements are re-
quired to converge the TDCS. For high angular mo-
menta, however, the effects of distortion are relatively
unimportant. Therefore, for values of j3 greater than
some maximum value j~ we neglect the efrects of distor-
tion. This greatly simpli6es the expression for, and the
calculation of, the transition matrix elements.
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Integrating Eq. (24) over the directions of the ejected
electron, we obtain a l3DCS which is given bys

a, (K,k, )=(4m) ' g ~F,&,, (K,k, )~z.
J,J3,J12

(28)

We note that the DDCS given in Eq. (27) corresponds to
the cross section for the production of a given final state
of the ionized target.

A DDCS may also be defined where only the energy
lost by the incident electron is known and no knowledge
of the energy of the ejected electron is assumed. This
cross section is obtained by summing the cross section of
Eq. (27) over all possible final target states for the given
energy loss. In the factorized BA, the cross-section
difFerential with respect to the solid angle of the scat-
tered electron and the energy loss can be written as"

=(kz/k, )(4/K )(K /E)C, „(K,ki)

where the GOS is de6ned as

=(kzki/k i )(4/K )C,„(K,k, )ao(K, ki ),
dOzde

where, from Eq. (15), the coeflicient ao(K, ko) can be
written as

q =(E——,'Kz)/K .

The Compton profile is given in our approximation by

J(q,K) =(Kk& )ao(K, ki ), (36)

1 —(E/c')(1 —P')'"
[1 (E/cK—) ] (1—P )

(38)

where p is the ratio of the incident electron velocity to c.
In addition, we include the relativistic corrections to C,„
suggested by Bonham and Tavard and note that the rel-
ativistic SEA de6nition of q is given by

~hereas in the BEA, the Compton pro51e is given by"

J(q)=2m f dppp(p}, (37)
lel

where p(p) is the spherically averaged molecular
momentum density. %e note that in the BRA, the peak
height of the Compton pro61e is independent of E and
the location of the peak is at q =0.

At incident energies sufficiently high for the BA to be
valid, relativistic effects may become important. There-
fore, at high incident-electron energies, we use relativis-
tic energies and momenta and we include in the
definition of our approximate DDCS, Eq. (27), the multi-
plicative relativistic correction factor C„~ given by

df (K,E) [E/(8 zKz))
dE

x x (g~ x exp(iK r„) p, )
'

average Q

q =[E+(E /2c ) ,'K ]/K —. —

III. METHOD

(39)

x5(E+E;—E/), (30}

where the momentum of the ejected electron is obtained
from

—,'k 3 ——E—Vip,2 (32)

and V&p is the ionization potential. In the limit of small
linear-momentum transfers, the GOS is equal to the di-
pole optical oscillator strength and we obtain an approx-
imation to the total photoionization cross section given

6, 7

o~(E)=(4n /3c) lim (Ekz/K )ao(K, ki),

where c is the speed of light. .
Another related quantity is the Compton pro61e,

deaned by"

J(q, K)=(K /E)

E; is the energy of the initial target state and E& is the
energy of the final target state. The partial GOS for the
production of a given final target state can be obtained
by comparing Eq. (29) with Eq. (27) and is given by

The initial-state wave function for Hz which we use in
our calculations is the restricted-Hartree-Fock wave
function of Cade and %ahl' which was constructed
from 12 Slater-type orbitals centered at each nucleus
with an equilibrium nuclear separation of 1.4 a.u. In all
calculations, we assume that only the ground state of
H2+ is produced in the ionization and that the ionization
potential for producing Hz+ in the ground state is 16.4
eV, which is the vertical ionization potential. '

The initial basis set for the trial wave functions for the
scattering calculations is similar to the set used in a re-
cent study of the photoionization of Hz. ' For each
symmetry, the initial basis set consists of four spherical
Gaussians centered at each nucleus and one spherical
Gaussian centered at the bond midpoint. %ith this
choice of initial basis set, the [N/X] Pade approximants
for the matrix elements are converged with X =1.

To evaluate all matrix elements needed to compute the
Pade approximants, we re-expand the target and trial
wave functions about the bond midpoint in a linear com-
bination of, at most, 12 products of radial functions and
spherical harmonics of the appropriate symmetry. In
evaluating the static-exchange potential„all resulting
direct and exchange integrals are computed without fur-
ther truncation in the spherical harmonics. A maximum
of 60 partial waves are used in the expansions of
Coulomb-wave and plane-wave functions, but J of Eq.
(25) is restricted to a maximum of 6. The maximum
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value of JD 1s 12~ and all possible symmetr1es consistent
with j& are included in the evaluation of the angular-
momentum transferred transition matrix elements. For
each K and k3, the parameters were chosen so as to con-
verge the DDCS to four significant figures.

All radial integrals are computed using numerical
quadrature as is described elsewhere. ' The integrals are
evaluated on a grid of 970 points extending out to 32.0
a.u. The smallest grid spacing of 0.005 a.u. is used for
points within 0.3 a.u. of the nuclei. The largest grid
spacing is 0.04 a.u.

IV. RESUI.TS

For inrident energies in excess of 20 keV, the results
of several experiments have suggested that the first Born
approximation, with the inclusion of corrections for rela-
tivistic and exchange effects, is valid for the determina-
tion of the GOS. ' ' In the BEA, the GOS is obtained
from Eqs. (34) and (37). As part of an investigation to
determine the validity of the BEA, Rueckner, Barlas,
and Wellenstein performed experiments on molecular
hydrogen which accurately measured the location of the
Ioaximum of the Compton profile as a function of the
linear-momentum transferred. ' The experimental evi-
dence indicates that even at comparatively large linear-
momentum transfers, the SEA breaks down in the high
accuracy limit. The BEA is based, in part, on the as-
sumption that the wave function of the ejected electron
is accurately described by a plane wave. %'e have found
that a more realistic treatment of the interaction of the
ejected electron with the ionized target is capable of
greatly improving the comparison between theory and
experiment for molecular hydrogen.

The BEA predicts that the maximum in the Compton
profile occurs at an energy loss Em» obtained by setting

q equal to zero in Eq. (39). The difFerence between the
experimental value of E~,„and the SEA value of E,„
has been termed the Compton defect. Using a parabolic

fit of values of the Compton profile calculated in the vi-
cinity of the maximum, we have explicitly determined
the value of E,„ for each of our approximations,
D%LA, D%'VA, C%LA, and C%'VA. In Fig. I we plot
the corresponding quantity q~» as a function of the
linear-momentum transferred. The agreement between
the D%"LA and experimental Compton defects is excel-
lent. The agreement between the distorted-wave calcula-
tions is good for large values of the linear-momentum
transferred, but the D%VA value of E,„ is too large at
small values of E. A similar trend is found in the OC%
calculations with the C%LA yielding slightly better
agreement with experiment. However, although superi-
or to the SEA, the value of E,„predicted by the OC%
calculations is too large even for relatively high E.
These results suggest that the determination of the
Compton defect may be more sensitive to the description
of the ejected electron than the description of the bound
state.

In Fig. 2 we plot our calculated values of the peak
height of the Compton profile as a function of K and in-
clude the results of BEA calculations using a self-
consistent-field (SCF) target, a target wave function in-
cluding configuration interaction (CI), and a vibrational-
ly averaged CI (VACI) calculation. ' We also include
the experimental data of Lee. In the SEA, the peak
height is independent of the linear-momentum
transferred, an approximation which becomes worse
with decreasing E. Although the DWLA was the most
successful in determining the location of the Compton
profile peak, the D%LA is the least successful of our ap-
proximations in predicting the magnitude of the peak.
The best overall agreement with experiment is obtained
with the DWVA, while the CWLA overestimates the
peak height and the CAVA tends to underestimate the
peak height. This result is similar to photoionization
studies of N2 in which the D%VA was both in better
agreement with experiment and less sensitive to initial-
state correlations than the D%LA.

+0.050

+0.025 -'

0.000-

155 ~P%
er~~rr ~+~a ~a+ e~

/%50 -].
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VAQ

II

-0025-

FIG. 1. Compton defect for an incident energy of 25 keV:
, 0%'VA; ———,0%'LA; - - - -, C%'VA;

CWLA; solid circles, experimental resglts of Rueckner et al.
(Ref. 18).

FIG. 2. Peak height of the Compton profile for an incident
energy of 25 keV: 0%'VA; ———,DWLA; - - - -,
C%'VA; —,C%LA; solid circles, experimental re-
sults of Lee (Ref. 20).
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Mz ——(4/
~

exp(iK. r)
~

ql, ),
m~ = & e/ ~

[a„exp(iK.r)] [ e, & /E,
(40a)

(40b)

where 4, and ql/ are the exact wave functions for the in-

itial and final target states. In the BA, matrix elements
arise which are of the form of Eq. (40) but with an addi-
tional term which is introduced to enforce orthogonality
between the initial and final target states. Although this
additional term is zero for the exact wave functions, it is
not necessarily zero for approximate wave functions.
The required matrix element in the length form for ap-
proximate wave functions can be written as

We next discuss the large-E convergence of the peak
heights in the length form. The e8'ect of distortion on
the peak height rapidly becomes small in the length
form, the 0%LA and the C%'I A apparently dil'ering by
less than 0.1% for linear-momentum transfers in excess
of 4 a.u. %hile not included in Fig. 2, we have also
determined the peak height of the Compton pro61e in
the length form by describing the wave function of the
ejected electron by an orthogonalized plane wave
(OPW). For linear-momentum transfers in excess of 6
a.u. , the use of an OPW yields results essentially indis-
tinguishable from the BEA SCF limit. Even for IC as
low as 3 a.u. , the correction remains small (less than
0.5%). These results indicate that the BEA is valid for
the determination of the peak height at large E and that
the peak height of the Compton profile is a sensitive test
of the description of the molecular target state.

In contrast to the length form, calculations in the ve-

locity form are sensitive to the description of the ejected
electron and the convergence of the peak heights is com-
paratively slow. Although the difference between the
DWI.A and the DWVA is small (less than 0.3%) for E
greater than 4 a.u. , the C%I.A and CAVA still di8'er by
more than 1.0% for values of K as large as 6 a.u. In ad-
dition, the use of an OPW predicts the peak height to be
much smaller in the velocity form than in the length
form, nearly 9.0% smaller at linear-momentum transfers
as large as 6 a.u.

In an attempt to understand the discrepancy between
calculations in the length and velocity form, reconsider
the equivalent length and velocity forms of the matrix
element

where V/ (V, ) is the part of the potential which is not
included in the Hamiltonian of the approximate 6nal-
state (initial-state) wave function. The length form
essentially involves a correction term based on the over-
lap of the approximate wave functions, awhile the veloci-
ty form essentially involves corrections based on the
neglected potentials.

If the integral containing the neglected potential is
small compared to the energy loss and the overlap is
negligible, the length and velocity forms will yield
equivalent numerical values. Not surprisingly, the re-
sults of calculations using an OPW in the length form
indicated that the efFects of orthogonalization are rela-
tively small for large ejected-electron energies. There-
fore, the matrix element in the length form is well ap-
proximated by the first term of Eq. (41) at high energies.
This suggests that the rate of convergence of the length
and velocity forms for a particular choice of ejected elec-
tron wave function is indicative of the magnitude of the
neglected potential. Apparently, even at high linear-
momentum transfers, the magnitude of the neglected po-
tential is relatively large when the ejected-electron wave
function is treated as a plane wave. We conclude that
although the BEA accurately describes the peak height
of the Compton profile, the poor description of the in-
teraction of the ejected electron with the ionized target
is responsible for the large discrepancy between the
length and velocity forms as well as the Compton defect.
Furthermore, even the Coulomb wave calculations ap-
pear to be inadequate in the high accuracy hmit, and
only the distorted-wave calculations yield good agree-
ment with experimental Compton defects.

Thus far, we have concentrated on the location and
magnitude of the peak of the Compton profile as a func-
tion of E. We next discuss the DDCS as a function of
the energy loss. In Fig. 3 we plot the high-E portion of

~i = & y/ I
exp(iK. r)

I y &

—(P/ ~ @;)(P;
~

exp(iK r)
~ g; ), (41)

~,=(y,
~

exp(iK. r) ~q, )

+ (P/ ~
(V//E) exp(iK-r)

—exp(iK. r)( V, /E)
~ P; ), (42)

where the second term ensures the orthogonality of the
approximate states. As long as the initial-state wave
function is a real function, this additional term does not
appear in the velocity form. Therefore, the matrix ele-
ment in the velocity form for approximate wave func-
tions may be expanded as

FIG. 3. Doubly differential cross section for an incident en-

ergy of 25 keV. For EC=0.7953 a.u.:,velocity approxi-
mation; - - - -, length approximation; open squares, experiment.
For E= 1.552 a.u. : ———„velocity approximation;

, length approximation; solid circles, experiment.
Experimental data are representative points from the experi-
mental curve of Ulsh es al. (Ref. 17).
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FIG. 4. Doubly difkrential cross section for an incident en-
ergy of 25 keV and linear momentum transfer of 1,552 a.u. :

, D%VA; ———,D%'LA; - - - -, CWVA;
C%'A;; —,experimental results of Ulsh et al. (Ref.
17).

the DDCS for an incident energy of 25 keV and linear-
momentum transfers of 0.7953 and 1.552 a.u. and in-
clude the experimental data of Ulsh, %ellenstein, and
Bonham. ' At large ejected-electron energies„ the e8'ect
of distortion is relatively small and the distorted-wave
and OC%' calculations are essentially indistinguishable
on the scale of Fig. 3. Although the DDCS calculated in
the length form is too large, the agreement with experi-
ment is excellent for calculations in the velocity form.
The good agreement in the velocity form is probably due
to the approximate inclusion of initial-state correlations
and the comparatively small effects of final-state correla-
tions for high-energy ejected electrons.

FIG. 6. Generalized oscillator strength for an ejected-
electron energy of 9.0 eV (same designations as in Fig. 5).

In Fig. 4 we plot the low-energy portion of the DDCS
for a E of 1.552 a.u. Although excellent agreement was
obtained with experiment at high E, the DDCS in the
velocity form is too small at low E and slightly too large
at moderate E. For E less than 30 eV, calculations in
the length form are actually in better agreement with ex-
periment than those in the velocity form. The agree-
ment with experiment might be improved by explicitly
including initial-state correlations. Although the veloci-
ty form approximately includes initial-state correlations,
the correction has generally been found to increase with
decreasing E, as suggested by Eq. (42). This may also
explain the low-K disagreement between the calculated
Compton defect in the length and velocity forms. How-
ever, particularly at low ejected-electron energies, final-
state correlations may be significant.

We have also calculated values of the GOS as a func-
tion of K for ejected-electron energies of 4.5 eV (Fig. 5)
and 9.0 eV (Fig. 6). Even at these relatively low ejected-
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FIG. 5. Generalized oscillator strength for ejected-electron
energy of 4.5 eV: „D%'VA; ———,D%'LA; - - - -,
CWVA; —,CWLA; solid circles, experimental re-
sults of Ulsh et aI. (Ref. 17); solid square, interpolated from the
experimental results of Samson and Cairns (Ref. 23) and the
experimental results of Cook and Metzger (Ref. 24).

FIG. 7. Triply differential cross section for an incident ener-

gy of 250 eV, an ejected electron energy of 4.5 eV, and

Ol2 ——12:,DWVA; ———,D%LA; - - - - -, CWVA;
, CWLA; — „experimental results of

Jung et al. (Ref. 21). The binary peak of the experimental re-

sults has been normalized to the binary peak in the D%VA.
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FIG. 8. Triply differential cross section for an incident ener-

gy of 250 eV, an ejected-electron energy of 4.5 eV, and 8» ——8'

(same designations as in Fig. 7).

FIG. 9. Triply differential cross section for an incident ener-

gy of 250 eV, an ejected-electron energy of 4.5 eV, and 8l2 ——4'
(same designations as in Fig. 7).

electron energies, the use of an OCW provides a good
approximation to the eFects of distortion, particularly in
the velocity form. In general, the difference between the
distorted-wave and OCW results is smaller than the
difference between the length and velocity results. This
suggests that the discrepancy in the length and velocity
calculations may in large part be due to initial-state
correlations.

The previous comparisons between theory and experi-
ment have been based on data obtained at incident ener-
gies sufBcienily high for the first Born approximation to
be valid. %e next compare our results to the experimen-
tal TDCS's measured by Jung et an't. at an incident ener-

gy of 250 eV and an ejected-electron energy of 4.5 eV.2'

Since the experimental cross sections are only relative,
we have arbitrarily normalized the binary peak of the ex-
perimental cross section for 8,2

——12' to the binary peak
in the DWVA (Fig. 7). We present our results for
8,z ——8' in Fig. 8 and for 8,2

——4' in Fig. 9. The most ob-
vious discrepancy between theory and experiment is in
the location of the binary peak. This discrepancy indi-
cates the breakdown of the factorized 6rst Born approxi-
mation. Nevertheless, the relative magnitudes of the
binary peaks are in fair agreement with experiment.
However, as Fig. 9 indicates, the magnitude of the recoil
peak is greatly underestimated in the first Born approxi-
mation. These results are similar to those obtained in
studies of atomic systems at low incident energies.
Better agreement with experiment might be obtained at
higher incident energies, as suggested by a recent study
of he11um.

V. CGNCLUSIQN

The explicit inclusion of distortion has a relatively
minor effect on the DCS for electron-impact ionization

of molecular hydrogen and the description of the
ejected-electron by an OCW is generally a good approxi-
mation. However, an accurate treatment of the interac-
tion between the ejected-electron and the ionized target
is important in the determination of the Compton defect.
Calculations in the velocity form are generally in better
agreement with experiment than calculations in the
length form, This may be due to the approximate in-
clusion of initial-state correlations in the velocity form.
However, further improvement might be obtained by us-
ing an explicitly correlated initial-state wave function.

Although a relatively minor eft'ect in H2, distortion
may be more important for larger molecular systems.
%e are currently performing calculations of the DCS for
electron-impact ionization of N2. Although the
discrepancy between the length and velocity DCS's gives
an estimate of the error in the calculation, the non-
equivalence makes comparisons with experiment more
difficult. We are presently investigating the possibility of
calculating the GOS in the random-phase approxima-
tion. In this approximation, the length and velocity
forms would be equivalent and the GOS would satisfy
the Bethe sum rule.
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