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A quantal two-channel calculation is applied to study charge-transfer differential cross sections
in Ne + on He collisions at laboratory impact energies from 220 to 500 eV. The experimental
data of Tunnell et aI. were used to fit empirical potential curves and coupling terms from which
the observed oscillatory structures in the difFerential cross sections were analyzed. In contrast
with the double-charge-transfer process in C + on He, where the oscillations in the di6'erential

cross sections are attributed to pure Stueckelberg oscillations, we demonstrated that the
differential cross sections for charge transfer in Ne + on He exhibit many fine fast oscillations and
the observed structures are due to the envelopes of these unresolved fast oscillations. Classical
defiection functions are used to help in interpreting the calculated oscillations.

I. INTRODUCTION

Di6'erential scattering cross sections in atom-atom and
in ion-atom collisions provide detailed information about
the interaction potentials between the two collision
partners. For atom-atom collisions and collisions of
singly charged ions with neutral atoms, a considerable
volume of experimental measurements and some theoret-
ical ana1ysis have been made since the 1970s.' With
the availability of low-velocity multiply charged ions in
recent years, measurements of di6'erential cross sections
in charge-transfer processes of these ions with atoms
have now been reported for a number of collision sys-
tems.

In the collisions between multiply charged ions with
atoms, often there are many projectile excited levels pop-
ulated through charge-transfer reactions. In selective
systems, however, there will be only one dominant
charge-transfer channel for collisions at low energies.
Experimentally, this can be confirmed via energy-gain
spectroscopy. For such simple collision systems, a de-
tailed theoretical analysis becomes possible. Information
about the collision system can be further refined through
the investigation of differential cross sections.

The di8'erential scattering patterns, in most cases,
show oscillating features of several types, some of them
are due to the semiclassical rainbow scattering or glory
scattering others can be related semiclassically to the
existence of two or more trajectories resulting in scatter-
ing at the same observed angle and at the same 6nal ve-
locity. In a previous study, we have shown that the
observed oscillatory features in the double-charge-
transfer di8'erential cross sections in C"+ on He col-
lisions can be attributed to "pure" Stueckelberg oscilla-
tions, i.e., the oscillations are due to the interference be-
tween two paths leading to the final double-capture
channel.

Experimental differential cross-section measurements
by Tunnell et al. on a "similar" colhsion system, Ne +

on He, showed that their oscillatory structures exhibit

difFerent features from those shown for the C + on He
system. Furthermore, experimental energy-gain spec-
troscopy indicated that for collision energy in the range
of 220-500 eV, the dominant inelastic process is

Ne +(2p, P)+He(ls )

~Ne'+(2p'3s, ' P)+He+( ls), (1)

such that the collision can be approximated as a two-
channel scattering system (if we neglect the doublet and
quartet splittings). Thus it is desirable to understand the
origin of the different oscillatory features in the two col-
lision systems.

In the lack of reliable ab initio potential curves and
coupling terms for the Ne"+ on He system, we rely in
our analysis on 6tting potential curves and coupling
terms so that a quantal calculation based on these empir-
ical potentials can reproduce the measured differential
cross sections of Tunnell et a/. We first note that the
crossing radius R ~ for the two relevant potential curves
occurs at a much larger internuclear separation (7.1 a.u. )

for the present system where one of the curves is attrac-
tive and the other is repulsive. In contrast, for the C +

on He system, the crossing radius is small (3.1 a.u. ) and
the two potentials inside R ~ are both steep repulsive
curves. Thus, although both systems exhibit oscillatory
structures in the differential cross sections, the theoreti-
cal interpretations are quite difFerent. In this paper we
conclude that the experimental oscillatory features for
Ne + on He are due to the envelopes of the unresolved
(in angles) fast Stueckelberg oscillations. When these
theoretical differential cross sections are folded with ex-
perimental angular resolutions, good agreement with ex-
perimental data is achieved. To understand the diferent
features of the oscillations, a semiclassical analysis in
terms of deAection functions is also presented.

The rest of this paper is organized as follows. In Sec.
II, we review the quantal formulation of heavy-particle
scattering in the adiabatic or diabatic molecular basis
and the solution of the scattering equations. In Sec.
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III A, we discuss the procedure for obtaining semiempir-
ical potential curves and the couphng terms for Ne + on
He, using C + on He as guidance. In Sec. IIIB the
differential cross sections calculated from the fitted
empirical potential curves are compared with experimen-
tal measurements at several energies. To understand the
oscillatory features, the deflection functions are calculat-
ed in Sec. III C and compared with those for C + on He
to explain the origin of the diferent oscillations. A
short summary is given in Sec. IV. Atomic units are
used throughout unless otherwise speci6ed.

II. REVIEW OF THE QUANTUM FORMUI. ATION
OF ION-ATOM COLLISIONS

The Hamiltonian of a scattering system consisting of
an ion and a neutral atom in the center-of-mass (c.m. )

frame is

1 2 ZIZZ 1 2H = — Vg+ V, + V(R, r)
2p, R 2m

(2)

where Hz and H, are the nuclear and the electronic
Hamiltonians, respectively, r stands for the coordinates
of ail the collisionally active electrons, R is the internu-
clear separation, p is the reduced mass of the two nuclei,
and m (=1) is the reduced mass of the electron in the
system; Zz and Zz are the charges of the ion and of the
atomic core, respectively.

%@thin the perturbed stationary-state approximation
for slow collisions, the heavy particle with mass p is re-
garded as being scattered by an effective potential which
consists of many discrete energy surfaces, namely, the
Hamiltonian for the heavy particle is

The potential surfaces V,s are the sum of the Coulomb
repulsion ZzZ„ /R between the two nuclei and the elec-
tronic eigenvalues, E„(R), obtained by solving the elec-
tronic Hamiltonian at each fixed R:

In (7), we consider radial coupling only. The boundary
condition for g is

C(R)~I as R ~Do .

For two-channel systems, the transformation matrix can
be written as

cosa(R ) sina(R )

—sina(R ) cosa(R )

where the transformation angle is

a(R)= J P&z(R')dR'.

In the diabatic representation, F now satis6es

(10)

VII+V (R)—EI F (R)=0,
2p

where the diabatic potential matrix V =C 'V'C has
nonzero ofF-diagonal matrix elements.

The partial difFerential equation (11) can be solved by
expanding into partial waves,

' 1/2

L,,M

where L, is the total angular momentum of the whole
collision system, M is its projection along the laboratory
axis, A is the projection of the electronic angular
momentum along the internuclear axis, and DAM is the
usual rotation matrix. The radial partial wave functions
f (R) satisfy for each I. the coupled differential equa-
tions

of the Hamiltonian are the nonadiabatic couplings,
P„.=(C„ i V„i+.).

The second-order differential equations (6) contain
6rst-order derivatives. From the numerical computa-
tional viewpoint, it is more convenient to transform the
equations to the diabatic representation such that the
wave function of the heavy particle is F"=C 'F' where
the unitary transformation matrix g satisfies

dC/dR +P C=0 .

H, (R,r)4„(R;r)=E„(R)4„(R;r). (4)

the motion of the heavy particle is governed by the
differential equation

(VRI+P)'+ V' EI F'(R)=O, —
p

where the potential matrix is diagonal, V„
=[E„(R)+Z,Z„/R j5„~, and the off-diagonal elements

These energy surfaces, E„(R)+HZ„/R, are the adia-
batic potentials.

If the total wave function is expanded in the adiabatic
basis,

(R,r)= gF„'(R)4„(R;r),

2p dR
I+V (R) EI-

R

X f'(R) =0 . (13)

In calculations considered here, M =0 because of the cy-
lindrical symmetry of the scattering. Under the two-
channel approximation, (13) reduces to a set of two cou-
pled differential equations. Each set of equations is
solved numerically using the log-derivative method of
johnson" to obtain the asymptotic scattering wave func-
tions f (R) from which the scattering matrix S is ob-
tained.

The S matrix calculated is used to evaluate the
differential cross sections and to extract information
such as the semiclassical deflection functions for a more
detailed understanding of the collision system.
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A. Modebng of scattering potentials and coupling terms

In this work we do not attempt to obtain the ab initio
potential curves for the Ne ++He system, instead we
model the potentials with the aid of experimental
difFerential cross-section data. For reasons to be ex-
plained later, the construction of the model potentials
starts from the adiabatic representation. Let the poten-
tials be E, (R } and E2(R }, for the elastic and the
charge-transfer channel, respectively. In the limit of
E. ~00, they are equal to the separated-atom energies.
From the atomic binding energies (or the Q-value mea-
surements) we know that E2 is 0.46 a.u. lower than E,
in this limit. Furthermore, at large R, E,(R } is given by
the polarization potential —aZI /2R, where a=1.28 is
the polarizability of helium and Zr ——4 for Ne +. For
the charge-transfer channel, asymptotically Ei(R) is
given by (Zr —1)/R, the Coulomb repulsion between
Ne + and He+. At small internuclear separations, both
potentials are dominated by the Coulomb repulsion

ZIZ~ /R so that the behavior of E„(R) in this region is
not important. From the knowledge of the potentials in
these two limits, we can smoothly join the small-8 re-
gion to the large-8 region. The nonadiabatic coupling
term P,2(R) is chosen to be a Gaussian form. It was
found that the calculated diNerential cross sections do
not depend on the width or height of the function

~ 5.0
(o)

4.0-

significantly. %'e thus finally used the P&2 from the C"+
on He system in the present calculation. The energy
separation at the crossing point is adjusted until the cal-
culated differential cross sections resemble the experi-
mental data.

The empirical adiabatic and diabatic potentials used in
the final analysis are shown in Fig. 1(a). Details in the
crossing region are shown in the inset. In Fig. 1(b) the
coupling terms and the transformation angle are
displayed.

8. The differential cross sections

cr(8) =2m sin8
~ f (8)

~

k2 2

ki

where the scattering amplitude is

(14)

f (8)= g (2L + 1)S,2PL (cos8) .
2t +k, ki

(15)

In (15), S,z is the scattering matrix element for charge
transfer and I'I is the I.egendre polynomial of order I..
In the actual calculation, partial waves from L =400 to
1300 are included in the summation to achieve con-
verged results.

The quantal differential cross sections calculated from
our fitted potentials are shown in Fig. 2(a) at the labora-

In the c.m. frame the differential cross section for a
particle with incident momentum k &, scattered with
momentum k2 at angle 8 with respect to the incident
direction is given by
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FIG. 1. (a) Adiabatic and diabatie potential surfaces of
(NeHe)"+. The sohd curves represent the diabatic potential
surfaces. The dashed curves on the upper right corner are the
adiabatic potentials. (b) Channel couplings: V&2 (solid hne)
and P&2 (dashed line). The dash-dotted line is the diabatic
transformation angle c. (the scale is referred to the right verti-
cal axis).
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FIG. 2. {a} Quantal result of differential charge-transfer
cross section for Ne ++He at E&,b ——380 eV. (b) Comparison
of experimental data (Ref. 7) with theoretical results folded
with experimental angular resolution (4.8 mrad).
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on Fig. 3. The agreement is quite satisfactory except for
the lowest energy where one expects that the theoretical
result is more sensitive to the potentials used.

C. The denection function

~ 04 +.0
CO

L
7l2 .-

L

The number of partial waves contributing to the sum
in (15) is quite large. The sum can be evaluated using
the stationary-phase approximation. For large L and
LOg~1, we have

20.0

tO.G

2
PL (cosa) = L+—,

' n sin8

' 1/2

0.0
500 700 e00 ~i00 )300

g sin[(L + ,' )8+—n /4]

which is oscillatory. The matrix element S,2 (considered
as a function of L) is also oscillatory, we can express it
as

FIG. 4. Phase parameters of S» for Ne +He at c.m. ener-

gy 2.3 a.u.

Si2 = 3 slug exp(l 7/i2)
(niz+0» (19)

I—ex.p[I (r)„+g)] ex—p[i (g„g)—]], (17)
1

where the envelope A is a slow-varying function of L.
The L integration in (15) of these oscillatory functions
gives a negligible contribution to the difFerential cross
section o(8) except at points of stationary phases. These
stationary phases are determined at the points where the
derivative of the total phase of the products with respect
to L is zero. An analysis based on the stationary-phase
approximation provides a better means of understanding
the calculated difkrential cross sections.

In the weak-coupling limit, one can define the
deflection function semiclassically as the derivative of
the Je(freys-Wentzel-Kramers-Brillouin (JWKB) phase
shift with respect to the angular momentum L. Within
the two-channel model there are two possible charge-
transfer paths, hence two defiection functions can be
de6ned:2

eg ——e,„Red,
where

d'g ) d'g2

where rl, z and g are the phase parameters of S,z [see Eq.
(17)]. Note that dr), 2/dL is well approximated by e,„of
(18) and the diff'erence between d(/dL and 8„ is a mea-
sure of the strength of the channel coupling.

The parameters g,2 and g for the present system at the
c.m. energy 2.3 a.u. are displayed in Fig. 4 and the cor-
responding deflection functions are shown in Fig. 5.
Note that the slopes of r),2 and g are quite close in the
region L =700-800 and thus one of the deflection func-
tion reaches a near-zero value at the corresponding im-
pact parameter b, =4.5 to produce glory scattering.
This situation is quite difFerent from the deflection func-
tions studied previously [Fig. 4 of Ref. 7, also repro-
duced on the top of Fig. 6(b) here] for C ++He where
the two deflection functions decrease monotonically with
increasing L and are nearly identical because dg/dL is
very small.

The di8'erences in the deflection functions are due to
the nature of the potential curves and the location of the
crossing radius R~. For C ++He, R„=3.1 and for

80.0

Sd(L, R x )=
dq', dye

(18)

In (18), rl, and rj2 are the JWKB phase shifts obtained
from the two adiabatic potentials, q& and gz are the
same phase shifts obtained from the two adiabatic poten-
tials in the region R «8 ~. Note that these phase shifts
can be obtained from diabatic potentials if the Landau-
Zener localized coupling condition holds.

In defining (18), however, the role of channel coupling
V,2(R) is absent. For the Ne"++He system, this cou-
pling cannot be neglected and thus the two deflection
functions are defined from (15) using the stationary-
phase approximation,

60.0F

O~

CP

40.0

20.00
CP

47
Cl 0.0

3.0 5.0

1 {a.u )

8.0

FIG. 5. Inelastic deflection function of Ne ++He obtained
from g and g, z of S„.
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~ both opotential curves are repulsive so that both
nica y ecreasing withdeflection functions are monotonicall d

increasing I.. Under this circumstance, the os ll
cross sect&on is due completely to the

Stueckelburg oscillation, or equivalentl th 1y, e resu t of in-
cr erence etween the two charge-transfer " th

dependence of the potential curves near

8 ~ =7. 1 as shown in Fig. l for Ne ++8
or e e avior of the deflection functions displayed in

Fig. 5. Since the crossing radius is at such a large E., the
interaction potential between th t

0

e wo atomic centers is

V E. is ov
atomic in nature. Thus one of th e potential curves,

, is governed by an attractive polarization
e arger region. This potential eventually be-
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comes repulsive in the small R region as the charge
cloud from the two centers begin to overlap. Since there
is a change in the slope of V&, (R ), this would give rise to
an inelastic rainbow. Note that the inelastic rainbow an-
gle 8, at b =b„(see Fig. 5) is close to zero. The other
potential, Vz2(R), is almost completely repulsive in the
whole region of E. and thus the deflection function is
monotonically decreasing with increasing I.. At small
impact parameters, since the inner turning point is far
away from R ~, this results in fast Stueckelberg oscilla-
tlons.

These deflection functions allow us to interpret the os-
ciHatory structures in the calculated difFerential cross
sections; the forward peaking is due to the glory
phenomenon, hence the fast oscillation in the forward
angle is the supernumerary rainbow oscillations. By ex-
amining the area enclosed by the deflection functions,
the Stueckelberg oscillations can be identi6ed. Because
8„ the rainbow angle, and 0„ the angle corresponding
to b =bm„, are well separated, the oscillation is a mix-
ture of Stueckelberg and rainbow oscillations.

There is also an interesting difFerence in the relation

0.6 R.O
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Q.p I.b

O. I

0.0

-O. I

~Q Q

Cf 0.5

0.4

0.0

(b)

0.5

4p o.p
Ld

0.}

l.b

0.0

-O. l
49
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FI~. 7. Differential cross sections obtained by using di8'erent diabatic potentials (solid curve) which were transferred from the
same adiabatic potentials (dashed curve) but difFerent channel coupling strengths. (a) The Demkov-type scattering, (b) the Landau-

ener type of scattering, (c) the noncrossing type scattering. The scattering energy is 380 e&. Note that the major features of the
di6'erential cross sections are quite similar in aH three cases.
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between the scattering angle and the range of 1.'s con-
tributing to the sum of (15) for the two systems. We
define the relation to bc 1oca1 if ther e is a deSni te
range of I.'s responsible for the structure at s certain
range of angles. Otherwise, the relation is "nonlocal. "
In this sense, C ++He is a local case and Ne ++He is
a nonlocal case. This is illustrated in Fig. 6.

Figure 6(a) lllllstratcs tlic case fof Nc ++Hc. 011 thc
top frame of this Agure, the deflection functions and

~
S»

~

' are also shown. The next four frames show the
structure of the difFerential cross sections as more and
Blorc paI'tlal waves Rrc added to thc su111IIlatloI1 ill (15).
If we add L from L, =1107, where

~
S,z ~

has the first
minimum (see the top frame), to L,„=1300,we obtain
a broad peak around 8, . As we add more partial waves,
say from L I

——1031, where
i S,z i

I has the second
minimum to L,„, the broad peak splits into two peaks
on each side of 8, . [The number of peaks n in the
differential cross section is related to the phase g of SII
through g(L2) g'(L, ) =—nlr. ] As more and more partial
waves are added, say from L„(corresponding to b„) to
L,„, we begin to see the profile of slow oscillations (the
bottom frame). If partial waves smaller than L„are add-
ed, the Anal fast Stueckelberg oscillations begin to ap-
pear. Therefore, in this case it is not possible to attri-
bute a certain range of L to the structure of diff'erential
cross sections in a local angular region.

The situation is much simpler in C ++He. A similar
partial sum over L indicates that as morc small L's are
included, the structures at small angles do not change;
only that new features appear at larger angles. Thus it is
possible to relate on a one-to-one basis the oscillatory
structures in

~ Slz ~
with respect to L to the structures

in the differential cross sections with respect to 8. This
situation is considered to be local.

We close this section by remarking that experimental
observations are unable to determine definitely whether
the forward peaking in the differential cross section is a
glory scattering or that the peak occurs at a Anite angle.
The model potentials chosen here is such that the peak
is a glory scattering.

The model potentials chosen to At the experimental
differential cross-section data are not unique. Utilizing a
semiclassical argument, it has been shown' that the
transition amplitude does not depend upon the individu-
al V,, (I',j = 1,2)„but rather upon the ratio
(V» —VII)/2VII only. Therefore, different sets of dia-
batic potentials could give almost identical scattering
matrices and difFerential cross sections in a limited ener-

gy region.
There is less freedom in constructing model potentials

in the adiabatic representation than in the diabatic rep-
resentation. For a Axed potential V', any change in the
coupling P&2 forces the change in each V, ss well as a

change in the ratio ( V» —Viz )/2VIz (this ratio is related
to P,z through the diabatic transformation angle c).
However, changing P&2 alone does not change the
features in o(8) significantly except the absolute magni-
tudes. To illustrate this point, we display in Fig. 7
several differential cross sections obtained with Axed adi-
abatic potential curves with various coupling terms. The
coupling strength is measured in terms of the maximum
transformation angle c. ,„which is equal to 1.266 for the
potentials shown in Fig. 2. The diabatic potentials for
each case are shown in Fig. 7 by solid lines.

Case (a): P, I is reduced by a constant factor such that
the C,„=Ir/4 Th. us V» and Viz are nearly equal when
8 ~R ~. This is the Demkov-type crossing. '

Case (b): P,I is very narrow and e,„=m /2. Here the
diabatic coupling is significant only near E. =E.~. This
is the Landau-Zener type coupling.

Case (c): P,I is small and s,„gIr/4 The .two diabat-
ic potentials do not cross each other and this is the
"noncrossing" scattering.

From Fig. 7, we note that the features of the
differential cross sections are very similar in all three
cases, despite that the disbatic potentials are very
different. Thus it is easier to model the potentials in the
adiabatic representation to extract the dominant features
in the differential cross sections and then At PI2 to ob-
tain absolute cross sections.

In summary we have shown in this paper that by ap-
proximating the charge-transfer reaction (1) as a two-
chsnnel problem it is possible to adjust the empirical po-
tentials so that a quantal calculation would reproduce
the major features of the measured differential cross sec-
tions. The oscillatory structures in the experimental
data were attributed to the envelope of the unobserved
fast oscillations, the latter being due to the combined
effect of rainbow scattering and of Stueckelberg oscilla-
tions. This interpretation is differen from the one for
the oscillation in the previously studied system
C ++He. Semiclassical analysis is used to aid the un-

derstanding of the origin of these differences.
%'e remark that the model potentials deduced here are

capable of explaining experimental results. This is by no
means implying that calculated ab initio potential curves
will lie on top of the present ones because ef the many
degrees of freedom in the fitting of potential curves to
obtain experimental differential cross sections. Never-
theless, the model potentials deduced here do sBow us to
analyze the major features of the observed structures in
the differential cross sections. In this respect, ab initio
calculations of potential curves for this system are highly
desirable.
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