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Scattering from a magnetic flux line due to the Lorentx force of the return flux

Donald H. Kobe and J. g. Liang'
Department of Physics, Worth Texas State Uniuersity„Denton, Texas 76203
(Received 4 March 1986; revised manuscript received 28 September 1987)

The di8'erential cross section for the scattering of an electron by an impenetrable, infinitely long
magnetic 8ux line with return magnetic Aux uniformly distributed on the surface of a cylinder of
radius a is calculated. The scattering is due to the Lorentz force from the magnetic field of the re-
turn Aux. In the limit as the radius of the return Aux goes to in6nity (a~(x)), the difFerential

scattering cross section is the same as that obtained by Aharonov and Bohm (AS) for the scatter-
ing of an electron by an impenetrable, in6nitely long magnetic fiux line without return Aux. The
AB scattering cross section is, however, attributed to the e8'ect of the vector potential in a Seld-
free region so no force acts on the electron.

I. INTRODUCTION

Almost three decades ago Aharonov and Bohm' (AB)
calculated the scattering cross section for the scattering
of an electron by an impenetrable, inSnitely long mag-
netic flux line. To the surprise of the physics communi-
ty, the difFerential cross section was not zero and in fact
the total cross section was infinite. AB ascribed the
scattering as due to the vector potential in a region
where the magnetic (and electric) field was zero so no
force acts on the electron. Since they do not mention
the return magnetic flux they have implicitly assumed
that it is outside the region defined by the source and the
detector. Even though AB diffraction eN'ects have been
experimentally observed, ~ there has been no experimen-
tal confirmation of AB scattering. In a previous paper
we have criticized AB scattering for not satisfying angu-
lar momentum conservation.

In this paper we consider another problem, viz. ,
scattering from an impenetrable, infinitely long magnetic
Aux line when the return magnetic Sux is distributed
uniformly on the surface of a cylinder of radius a. In
this problem the electron experiences a Lorentz force
when it passes through the magnetic field of the return
(lux. In the limit as a~oo, the same cross section as
AB originally calculated is obtained. Our problem is
different, however, from that of AB.6 In our case the re-
turn Aux is always inside the region defined by thc
source and the detector, while in the AB case the return
flux is implicitly assumed to be outside. ' In our case
the scattering of the electron is duc to the Lorentz force
from the magnetic field of the return Aux, while in the
AB case it is ascribed to the vector potential in a field-
free region. The infinite total cross section obtained can
be understood in our case as arising from the scattering
by an object of infinite radius, viz. , the cylinder on
whose surface the flux returns.

The return magnetic fiux could be made to return in
ways other than uniformly distributed on the surface of
a cylinder. In our problem we have chosen the magnetic
Aux to return in a cylindrically symmetric way, however,
to preserve the symmetry. The AB cross section is ob-

tained as the radius a goes to infinity. For models which
take into account the return Aux in other ways, this limit

may not be obtained.
We prove the optical theorem for two-dimensional

scattering from the conservation of particle current. '
The problem considered here of scattering from an impe-
netrable, infinitely long magnetic Aux line with the re-
turn flux uniformly distributed on the surface of a
cylinder of radius a is shown to satisfy the optical
theorem even in the limit where a ~ 00. We also show
that the total angular impulse due to the Lorentz force is
zero, so that angular momentum is conserved.

In Sec. II the scattering of an electron is considered
from an impenetrable infinitely long magnetic Aux line,
with the return fiux distributed uniformly on the surface
of a cylinder. The optical theorem for two-dimensional
scattering is proved and applied in Sec. III. In Sec. IV
angular momentum conservation is considered. Finally,
the conclusion is given in Sec. V.

II. SCATTERING THEORY

Two-dimensional scattering theory'o is applied here to
the scattering of an electron by an impenetrable,
infinitely long magnetic Aux line with the return magnet-
ic Aux uniformly distributed on the surface of a cylinder
of radius a. The source of the electrons and the detector
are both outside a. When an electron encounters the
magnetic field of the return 6ux, a Lorentz force acts on
the electron which scatters it. In the limit as a ~ oo, the
Aharonov-Sohm scattering cross section is obtained.

A vector potential for the solenoid of zero radius with

magnetic Aux 4 oriented along the z axis and return Aux
uniformly distributed on the surface of a cylinder at ra-
d1us a 1s

(4/2trr)e for r ~aA='
0 for r~a .

The time-independent Schrodinger equation for an elec-
tron of mass m and charge q «0 with a vector potential
A 1S
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(2m) '(p —q A/c) Q=Ef, (2.2) H„(kr)~(2/mkr)'~ exp[i(kr ——,'nn —n/4)], (2.12)

where the energy is E=A k /2m in terms of the wave
vector k. When Eq. (2.1) is used in Eq. (2.2), the
Schrodinger equation can be written for r ~ a as

~ |('( i ~~( i i}
2

+r ' +r +ia g +kg =0 (23)
Br

a„(k)=i"b,„ '[J„(ka)H„'(ka) —J„'(ka)H„(ka)] (2.13)

for kr ~~1, which gives the outgoing cylindrical wave in
Eq. (2.6).

The coe%cients a„and b„are determined from the
boundary conditions in Eqs. (2.7) and (2.8) to be

and for r ~a as

Bg Bg Bg&+r ' +r +k f =0
ar

"
g8'

(2.4)

b„(k)= —I'"b,„'[J
~
„+

~

(ka)J„'(ka)

(2.14)

where a= —q@/2' is dimensionless. The boundary
conditions for the problem are as follows.

(1) The wave function vanishes at the origin,

where the denominator is

b,„(k)=J
~
„+,

~

(ka)H„'(ka) —J
~
„+

~

(ka)H„(ka) .

f((0,8)=0, (2.5)
(2.15)

because the solenoid is impenetrable.
(2) The asymptotic form of the wave function as

~ ~~ is an incoming plane wave and an outgoing cylin-
drical wave,

(r, 8)~exp(ikx)+ f(8)r ' exp(ikr), (2.6)

where x =r cos8 and f(8) is the scattering amplitude.
(3) The wave function is continuous at r =a,

P&(a, 8)=g&(a, 8) . (2.7)

(4) The derivative of the wave function is continuous
atr=a,

Bg, (r, 8)
dr

Bg (r, 8)
dr

Boundary conditions (3) and (4) can be obtained by in-
tegrating Eq. (2.2) from a —s to a+a (a~0) and taking
the limit as c,~O+. These are the standard boundary
conditions of quantum-mechanical scattering theory.

The interior solution of Eq. (2.3) which satisfies Eq.
(2.5) is

A prime on a function denotes a derivative with respect
to its argument. Since H„=J„+iF„,where F„ is the
Bessel function of the second kind of order n, Eq. (2.14)
may be written as

b„(k }= i "(1+—iP„)

where P„ is real and is defined as

(2.16)

f(8)=(2/haik)'~ g ( —i)"b„exp(in8) . (2.18)

Consequently, the differential scattering cross section is

a(8)=
~
f(8) ~'

P„=[J~„+ ((ka)Y„'(ka) Jt „,
~

(—ka)Y„(ka)]

y[J, „ (ka)J„'(ka) —J,„
,
(ka)J„(ka)]

(2.17)

The form of Eq. (2.16) is used in verifying the optical
theorem.

Because of the asymptotic form of the Hankel func-
tion of the first kind in Eq. (2.12)„ the scattering ampli-
tude in Eq. (2.6) is

P&(r, 8)= g a„exp(in8)J ~„+
~

(kr), (2.9)
=(2/irk ) g ( —1) ' b„'b„

where J~„+ I
is the Bessel function of the first kind of

order
~
n+a

~

and a„are arbitrary constants. The exte-
rior solution of Eq. (2.4) which satisfies Eq. (2.6) is

I
n, n = —oo

Xexp[i(n —n')8] . (2.19)

(r, 8)= g exp(in 8)[i"J„(kr)+b„H„(kr)], (2.10)

where H„:—H„"' is the Hankel function of the first kind
of order n. The coeScient of the Bessel function of the
first kind in Eq. {2.10) is chosen because"

The total scattering cross section is

or= f 18
' f(8)

i
=(4/k) g i b„ i

=(4/k) g (1+P'„)-', g.20)

i "exp(in 8)J„(kr}=exp(ikr cos8), (2.11)

which is the first term on the right-hand side of Eq.
{2.6). The Hankel function H„(kr) of the first kind has
the asymptotic property that

from Eq. (2.16). The total cross section depends on the
radius of the return flux a through b„ in Eq. (2.14).
scattering is due to the return Aux at r =a, since a
Lorentz force acts on the electron there. The source of
the electrons and the detector is always outside the re-
turn Aux.
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In the limit that a ~ oo, Eq. (2.19) for the differential

scattering cross section is equal to the AB cross section.
In our case, however, the magnetic flux returns at
infinity, but inside the source and detector. AB assumed

implicitly that the magnetic Aux returned at infinity Out-

side the source and detector. The asymptotic form of
the Bessel function of the first kind is"

J„(kr)~(2/nkr)'~icos(kr ,'n—m—,'.i—r)—, (2.21}

for kr »1. When the asymptotic forms of the Bessel
and Hankel functions in Eqs. (2.21) and (2.12), respec-
tively, and their derivatives'- are used in Eqs. (2.14) and
(2.15},the result for b„when ka »1 is

i" 'sin(ma/2)exp( in—a/2) for n & —[a]
i " —'sin(ma/2)exp(isa/2) for n g —[a],

(2.22)

where [a] is the largest integer less than or equal to a.
When this expression is used in Eq. (2.18) for the scatter-
ing amplitude, we obtain

III. OPTICAL THEOREM

The optical theorem fox scattering theory can be de-
rived in two equivalent ways. Henneberger derived it
for two-dimensional scattering from the unitarity of the
S matrix. ' Here we prove it from the conservation of
probability or particle number. ' %e show that the op-
tical theorem is satisfied for our problem of scattering
from an impenetrable, infinitely long magnetic Aux line
with the return flux uniformly distributed on the surface
of a cylinder of radius a.

In two dimensions the particle (surface) current densi-
ty is

J„=m 'Re/'(p„qA—„/c )f, (3.1)

where p, =1,2 are the components in the plane. The
wave function f is normalized over a unit area of the
plane. Using the Schrodinger equation, we can derive
the equation of continuity

(3.2)

f(8 ) = i (2/m—ik ) '~csin(ira /2)exp( i [a—]8)

X g exp( i ~ /a—2)exp(in8)
@=0

—g exp(iira/2}exp( in 8)—
5 =1

(2.23)

where p=g'i' is the probability per unit area and the re-

peated Greek indices are summed from to 1 to 2. The
integral of Eq. (3.2} over the surface of a circle of radius
7' as T~ oo gives

lim f d8rJ, =0, (3.3)
r —+ ce

X [sin(8/2)] 'exp( —i [a]8)
+(2mik) '~ 2n(costa —1)5(8), (2.24)

which was also obtained by Nagel' using another ap-
proach. It is understood that the principal value of the
first term in Eq. (2.24} is taken. From Eq. (2.19} the
differential scattering cross section is

cr(8) =(2irk ) 'sin (ma)[sin(8/2)] (8+0), (2.25)

which is equal to the AB scattering cross section' with
the incoming particle coming in from x= —ao. (In-
cidentally, AB' considered their particle coming in from
x =+ ao.} Therefore, the same scattering cross section
as obtained by AB is also obtained in this problem where
the scattering 'is due to the Lorentz force on the electron
from the magnetic field of the return ffux.

When Eq. (2.22) for b„ in the asymptotic region
ka »1 is used in Eq. (2.20) for the total scattering cross
section, the result is

The summation can be performed using the geometrical
series, ' ' which gives the scattering amplitude

f(8)=(2mik ) '~csin(na)exp( i 8/2)—

since probability is conserved. If Eq. (2.6) is substituted
into Eq. (3.1), the asymptotic (r~~} radial surface
current density is

J„=(Ak/m)Icos8+
~
f(8)

~
r '+Rer ' f(8)

X (1+cos8)exp[ikr (1—cos8)]j, (3.4)

where normalization in a unit area is assumed. The first

term on the right-hand side of Eq. (3.4) is the current
density due to the incoming plane wave, the second term
is the current density due to the outgoing cylindrical
wave, and third term is due to interference between the
plane wave and the outgoing cylindrical wave. When

Eq. (3.4) is substituted into Eq. (3.3), the result is

tr z
—lim——Re f d 8 r '~ f(8)(1+cos8)

r~ oo

X exp[ikr (1—cos8)], (3.5)

where the total cross section o z is given by Eq. (2.20).
Because of the exponential in Eq. (3.5), the main con-

tribution to the integral occurs near 8=0. If it can be
assumed that f(8) is slowly varying when 8 is near zero,
then the scattering amplitude can be evaluated at 8=0
and taken outside the integral. In this case, Eq. (3.5) be-
comes

o.T =(4/k)sin (~a/2) g 1= 00 . (2.26) or ———lim Ref(0)4r'~ f dg(1 —q )'~2
r —+ ce —1

Xexp(i2kril ), (3.6)

It is natural that the total cross section should be infinite
for this problem, since in the limit as a ~ (x) the electron
is scattered by a cylinder of infinite radius.

q =sjn(8/2). The trigonometric identities
2 sunni(8/2) = 1 —cos8 and 2 cos (8/2) = 1+cos8 have
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been used in going from Eq. (3.5) to Eq. (3.6). If we
make a change of variable to g={2kr)' ri and then take
the limit in Eq. (3.6), the result is

o T
———4(2k) '~ Ref (0) f dgexp(ig ) . (3.7)

The value of the integral in Eq. (3.7) is (ni)' . When
this value is used and the resulting expression is
simpli6ed, we obtain

v=m '(p —q A/c) .

The torque operator N is

N= —,'(rXF —FXr),
where the Lorentz force operator F is

F=(q/2c)(v XB—BXv) .

(4.3)

(4.5)

o T
——2(m/k)'~ [Imf (0)—Ref (0)], (3.8)

which is the optical theorem for two-dimensional scatter-
ing. ' Equation (3.8) was first obtained by Henneberger
using the unitarity of the S matrix. The method used
here is essentially the method of stationary phase applied
to Eq. (3.5).

Equation (3.8) should be valid for scattering from the
return flux for a & ao. In this case both the source and
the detector are outside the return fiux, and the scatter-
ing amplitude should be slowly varying near 8=0.
When Eq. (2.18) is substituted into Eq. (3.8), the result is

Ni = —(q/4c)t8i, Ix„,u„I], (4.6)

Equation (4.1) can be proved using only the Schrodinger
equation, ' but we shall explicitly verify it here for
scattering from an impenetrable, infinitely long magnetic
fiux line when the return Aux is uniformly distributed on
the surface of a cylinder.

%hen the return Aux is taken to be uniformly distri-
buted on the surface of a cylinder of radius a, a torque
acts on the electron at r =a. If the magnetic induction
field is in the z direction B=(0,0,8&), then Eq. {4.4) for
the z component of the torque X3 reduces to

o r ———(4/k) g Re( —i)"b„. (3.9)
where [, I denotes the anticommutator and the repeated
Greek index p is summed from 1 to 2.

The expectation value of Eq. (4.6) gives

When Eq. (2.16) is substituted into Eq. (3.9), the total
cross section is

trr =(4/k) g (1+P~ )
n = —cc

(3.10)

The time rate of change of the expectation value of
the kinetic angular momentum is equal to the expecta-
tion value of the quantum-mechanical torque operator.
By integrating this equation from time —ao to oo, the
change in the angular momentum is equal to the angular
impulse. Even though there is a Lorentz force acting on
the electron in our problem, we show that the angular
impulse is zero and consequently angular momentum is
conserved.

The time rate of change of the expectation value of
the kinetic angular momentum operator L satis6es an
Ehrenfest theorem'"

(4.1)

The kinetic angular momentum operator is

L=rgmv,
where the velocity operator v is

which agrees with Eq. (2.20). The optical theorem is
therefore satis6ed for scattering from the return Aux.

When ka ~~1, b„ is given by Eq. (2.22). Equation
(3.9) is then equal to Eq. (2.26} for the total cross sec-
tion. Therefore, the optical theorem is still satis6ed in
this case.

IV. ANGULAR MOMENTUM

8& 45(x )—5—(y ) (2m a )—'45( r —a ) . (4.8)

When Eq. (4.8) is substituted into Eq. (4.7), the integral
over the radial coordinate can be performed, which gives

(P
~
Nip) =(q4/4nc)Re f d8$'I „u, xjg

~ „

(4.9)

The wave function g in Eq. (4.9) is a wave packet

g(r, 8, t)= f dk P(k)gk(r, 8)exp( itot }, (4—.10)
0

where the angular frequency is to=fik /2m and P(k) is
the probability amplitude in momentum space. The
wave function gk(r, 8) is

g„(r,8)= g exp(in 8)R„(kr), (4.11)

where the radial function R„(kr) is

'a„J
~
„~(kr } for r ~ a

R„(kr)= '.„i "J„(kr)+b„H„(kr) for r ~a, (4.12)

from Eqs. (2.9) and (2.10). Equation (4.11) is thus a solu-
tion to the Schrodinger equation in Eqs. (2.3) and (2.4).
When Eq. (4.10) is substituted into Eq. (4.9), the expecta-
tion value of the torque operator is

(P
~
Xi/)= —(q/2c)Re(Big

~ Ix„,u„IP} . (4.7)

The magnetic Seld is zero everywhere except on the z
axis, from which thc electron is excluded, and on the
surface of a cylinder of radius a. Since the magnetic Aux

on the z axis is 4, the magnetic induction is

(/~X, P)= —(q A/ )
' f d ' f dkP'(k')P(k) g „*(k') „(k)k J~„~(k' }J',„

n = —oo

Xexp[ i (tu tu')t ], — —
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(Q(L~P)=(g —()) +F8(a r)—
88

(4.14)

where co' =Ak' /2m. The expectation value of the
torque operator is time dependent and involves only the
value of the radial coordinate at a.

The expectation value of the z component of the kinet-
ic angular momentum can also be evaluated in order to
verify Eq. (4.1). The expectation value of the z com-
ponent of the kinetic angular momentum L3 in Eq. (4.2)
18

—i)) ())

=2m% f dk k '
i (I}(k) i g ns„(k), (4 15)

0

which is time independent. The wave function g in Eqs.
(4.14) and (4.15) is given in Eqs. (4.10)-(4.12). To obtain
Eq. (4.15) we used the integral (see Appendix A)

r rR„' k'r R„kr =k 's„

where

from Eq. (2.1). The Heaviside function is 8(x}=1 for
x &0 and 0 for x &0. The expectation value of the
canonical angular momentum —ifiB/88 in Eq. (4.14) is

s„(k)= f dx R„(x)

The expectation of Ax8(a r) in—Eq. (4.14) is

(4.17)

(g ~

Aa8(a —r)P)

=2m%x Re f dk' f "
dk p'(k')(II)(k) g a„'{k')a„(k}

0 0

+
~

«J~ + (4.18)

when Eqs. (4.10)-(4.12) are used. Equation (4.18) is time dependent. The expectation value of the kinetic angular
momentum is obtained by adding Eqs. (4.15) and (4.18).

The time rate of change of the expectation value of the total kinetic angular momentum in Eq. (4.14) is the time
rate of change of Eq. (4.18), which gives

= —2whaRsi J dk' f dk()'(k')(i(k) x a„'(k')a„(k)
Il = —ao

g(co —co') f dr rJI„+ 1(k'r)JI„+ 1(kr)exp[ i(ro co'}r—] . —

In Appendix 8 we evaluate the integral in Eq. (4.19},and show that

(k —k' ) f dr rJI„+ I(k'r)JI„~
I

(kr)=k'aJ'I„+
I
(k'a)JI„+

I

(ka) kaJI„+
I

(k'a—)J'I„~
I

(ka} .

Since co=()lk~/2m, Eq. (4.19) becomes

d(g(L3$)

(4.19)

(4.20)

Rei f dk' f dk (I)'(k'}(I{)(k) g a„'(k')a„(k)kaJ „(k'a )J' „(ka)exp[ i (co co'—)r ] . —
Pl f' 0 0

(4.21)

If Eq. (4.21) is compared with Eq. (4.13) we see that Ehrenfest's theorem,

d( L, )
(4.22)

is indeed satis6ed.
If Eq. (4.22) is integrated from —00 to + 00 we obtain

= f «(PI& 0) .

The angular impulse on the right-hand side of Eq. (4.23) is obtained by integrating Eq. (4.13), which gives
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I d &Wl 3W&= —( 9 ~ } I I{('( )I' X I .( }I' ~.+.~( } I.+.~(
n = —oo

(4.24)

In obtaining Eq. (4.24) we have made use of the integral representation of the 5 function,

(2n )
' f dt exp[ —i (co co—')t ]=5(co ci)'—) =(m /flak )5(k —k') . (4.25)

Since the right-hand side of Eq. (4.23) vanishes, angular momentum is conserved.
In the limit as a —+0o, Eq. (4.22) remains satisfied. From Eq. (4.21) the expectation value of the torque operator in

Eq. (4.13) can be written as Eq. (4.19). Equation (4.19) in the limit as a ~ 00 is

—2~~Rei f dk'f dk@'(k'}y(k} y &„'(k'}&„(k}(~—~}I0 0 n=-

=0 as a~00 .

Xexp[ i (—co co'—)t ]

(4.26)

( p ~

I.,g & = crux as a ~ oo, (4.28)

which is constant. The wave function g is assumed nor-
malized, so Eq. (4.18) becomes Aa. Equation (4.15) ap-
proaches zero in this limit, since

ns„(k)~ g n=0 as a~ao .
n= —cc n = —oo

In this limit, Eq. (4.17) for s„(k) becomes

s„(k) ~a„ f"dx J~„+ ~(x}~' 1 asa
0

(4.29)

(4.30)

because the asymptotic form of a„ in Eq. (2.13) gives

a„~(—1)"( i) ~
"+—~ as a~Do, (4.31}

and the integral in Eq. (4.30) is unity. Therefore, in the
limit as a ~ ao, Eq. (4.22} reduces to an identity 0=0.

V. CONCLUSION

To obtain Eq. (4.26), the closure equation for Bessel
functions,

I dr rJ„(k'r )J„(kr)=k '5(k —k'), (4.27)

is used. In the limit as a ~ ac, the expectation value of
the kinetic angular momentum operator in Eq. (4.14) be-
comes

AB problem the scattering is attributed to the vector po-
tential in a field-free region. ' Remarkably, the differ-
ential scattering cross section in our problem is equal to
the differential scattering cross section for the AB prob-
lem when tt -+ ao (or ktt »1, where k is the wave num-
ber). Even when a~ao, the return flux in our problem
is always inside the region defined by the source and
detector, which is taken at the start of the calculation to
be at in6nity. The scattering from an in6nitely long
cylinder of finite radius has also been studied. '

An experiment to measure the differential cross sec-
tion of an electron scattered by an impenetrable, long
magnetic flux line would be of interest. The magnetic
fiux could be made to return at a given 6nite, but large,
radius a from the magnetic flux line by using a material
of high permeability to guide the flux. If the analysis of
AB' is correct, it should make no difference if the source
of the electrons is inside or outside of the return flux. In
both cases the differential scattering cross section of Eq.
(2.25) should be observed as long as ka »1, where k is
the wave number. The mechanism of scattering in the
two cases is quite different, however. AB scattering is
due to the vector potential in a 6eld-free region, whereas
in our problem scattering is due to the Lorentz force of
the magnetic 6eld of the return flux. Such an experi-
ment would be a test of AB scattering, which is a
different physical phenomenon from AB interference. '

The problem considered here is that of an electron
scattered by an impenetrable, infinitely long magnetic
flux line with the return fiux uniformly distributed on
the surface of a cylinder of radius a. This problem is
different from the one considered by AB." Aharonov
and Bohm' consider an electron scattered by an impe-
netrable, in6nitely long magnetic Aux line without men-
tion of the return fiux. Implicitly they assume that the
return fiux is outside of the region defined by the source
and the detector. In our problem the return Aux is in-
side the region de6ned by the source and the detector.

In our problem the scattering is due to the Lorentz
force of the magnetic 6eld of the return fiux. ' In the
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APPENDIX A: PROOF OF EQ. (4.16}

The function R„(kr} in Eq. (4.12) is a solution for
r~a to

D R„(kr)+r 'DR„(kr)+[k r—(n +a) ]R„(kr)=0,

where D =d/dr, and for r ~ a it is a solution to

D R„(kr)+r 'DR„(kr)+(k r—n )R„(kr)=0 .

(A2}

Equations (Al) and (A2) can be multiplied by R„'(k'r).
If the complex conjugate term with k and k' inter-
changed is subtracted, then we get

(k k' )R—„'(k'r)R„(kr)+R„'(k'r )D R„(kr)

—R„(kr)D R„'(k'r)+r 'R„'(k'r)DR„(kr)

r'R—„(kr)DR„(k'r }=0 .

If Eq. (A3) is multiplied by re '" where s~0, and in-

tegrated from zero to in5nity, we obtain

(k2 —k' ) f dr re '"R„'(k'r)R„(kr)

r D re '"R„'rDR„r—
(A4)

after integration by parts. The integral in Eq. (A4) can
be performed, which gives

(k —k' ) f dr re "R„'(k'r)R„(kr)

= lim [k're '"R„(kr)R„"(k'r}—(k~k')')+0 (s)

(A5)

The limit of re '"R„(kr)R„"(k'r) as r~ao gives terms
like sin(kr)exp( —sr) which vanishes as r~ao. In the
limit as e-+0+, Eq. (A5) therefore becomes

(k —k' ) f dr rR„'(k'r )R„(kr)=0 . (A6)

The integral in Eq. (A6) is deSned as the limit of the in-
tegral in Eq. (A5) as a~0+ for convergence reasons.

Equation (A6) has the solution

f dr rR„'(k'r )R„(kr)=k 's„(k)5(k —k'), (A7)

where s„(k) has to be determined. When Eq. (A7) is in-
tegrated over k', and assuming that the integrals can be
interchanged, we obtain

f "
dr f"dx R„'(x)R„(kr)=k -'s„(k), (A8)

where x=k'r. Multiplying Eq. (AS) by k gives Eq.
(4.17) for s„(k).

(k —k' )J„(k'r)J„(kr)

+[J„(k'r )D J„(kr) J„(kr)D —J„(k'r )

+r 'J„(k'r )DJ„(kr)

r'J„(kr)—DJ„(k'r )]=0 . (82)

If Eq. (82) is multiplied by r and integrated from zero to
a, we obtain

(k —k' ) f dr rJ„(k'r)J„(kr)'
= —f dr D[krJ„(k'r)J'„(kr) (k~k'}]—, (83)

after integration by parts. %'hen the integral is per-
formed, the lower limit gives zero. The upper limit gives
the result of Eq. (4.20) for v=

~

n +a
~

.

APPENDIX 8: PROOF OF EQ, (4.20)

In order to derive Eq. (4.20), consider the differential
equation satisfied by J„(kr),

D J„(kr)+r 'DJ„(kr)+(k re@2)J—„(kr)=0,
where D=dldr. If Eq. (81) is multiphed by J„(k'r)
and the equation with k and k' interchanged is subtract-
ed, we obtain

'Present address: Department of Physics, Shanxi University,
Taiyuan, People's Republic of China.

'Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
2R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960).
3D. H. Kobe and J. Q. Liang, Phys. Lett. A 11$,475 {1986).
4M. Peshkin, Phys. Rep. 80, 375 (1981); M. Peshkin, I. Talmi,

and L. J. Tassie, Ann. Phys. (N.Y.) 12, 426 (1961).
sJ. Q. Liang, Phys. Rev. D I, 1014 (1985).
6Y. Aharonov, C. K. Au, E. C. Lerner, and J. Q. Liang, Phys.

Rev. D 29, 2396 (1984).
7S. N. M. Ruijsenaars, Ann. Phys. (N.Y.) 146, 1 (1983).
8'. C. Henneberger, Phys. Rev. A 22, 1383 (1980};J. Math.

Phys. 22, 116 (1981}.
9K. Crottfried, Qttantum Mechanics (Benjamin, New York,

1966), Vol. I„pp. 106-108.

S. K. Adhikar, Am. J. Phys. 54, 362 (1986); I. R. Lapidus,
ibid. 50, 45 (1982); P. A. Maurone and T. K. Lim, ibid. 51,
856 (1983).

"Handbook of Mathematica/ Functions, Natl. Bur. Stand.
Appl. Math. Ser. No. 55, edited by M. Abramomitz and I. A.
Stegun (U.S. GPO, %'ashington, D.C., 1964), pp. 355-365.

'28. Nagel, Department of Theoretical Physics, Royal Institute
of Technology report, Stockholm, Svveden, 1980 (unpub-
lished).

~38. Nagel in Ref. 12 shows that

g exp(ing)=P[1 exp(i8) j '+n—Q(g),

where P denotes the principal value. To prove it, he consid-



DONALD H. KOBE AND J. Q. LIANG 37

ers the convergent sum obtained by replacing 0 with 0+is,
where e g 0, and takes the limit as a~0.

i~K. H. Yang, Ann. Phys. (N.Y.) 101, 62 (1976).
'5G. Arfken, Mathematica/ Methods for Physicists, 2nd ed.

(Academic, New York, 1970), p. 495.
~6T. Takabayasi, Hadxonic J. Suppl. 1, 219 (1985).
~7An abstract of this paper appears in Proceedings of the

Second Internationol Symposium on the Foundations of

Quantum Mechanics, Tokyo, I986, edited by M. Namiki

(Physical Society of Japan, Tokyo, 1987), p. 367.
S. Olariu and I. I. Popescu, Phys. Rev. D 27, 383 (1983);Rev.
Mod. Phys. 57, 339 (1985).

9R. A. Brown, J. Phys A 20, 3309 (1987); N. Gauthier and P.
Rochon, J. Math. Phys. 26, 2218 (1985).

~oB. Nagel (unpublished).
~~See, e.g., D. H. Kobe, Ann. Phys. (N.Y.) 123, 381 (1979).


