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%'e reexamine the pseudostate expansion used previously to evaluate van der Waals {vdW)

coe5cients and 6nite-mass corrections. In particular, we wish to understand the very rapid con-
vergence of the expansion, which for the case of two hydrogenic atoms requires only ten terms to
achieve an accuracy of 1X 10 '0. The analysis proceeds from the representation of the vd%
coe5cients as integrals of single-atom frequency-dependent polarizabilities. These in turn can be
expanded in power series with coefficients of the form g„M'(nl)/(E„I E„)»,—where M(nl) is a

multipole matrix element between the ground {Is) and excited {nl) states. Although de6ned as
sums over an infinite set of hydrogenic states, the coe%cients of each order k are reproduced ex-
actly by a finite sum over suitable pseudostates. By analytic continuation, the frequency-
dependent polarizabilities computed using pseudostates are expected to be very close to the exact
values, and hence the rapid convergence of the vd% coeScients is understood.

I. INTRODUCTION

We will be concerned in this paper with the computa-
tion of long-range (but unretarded} interactions between
hydrogenic systems in their nondegenerate ground
states. The well-known van der Waals potential is the
leading term in an asymptotic series in inverse powers of
the interatomic distance R and has the form —C6/8; it
results from the interaction of dipole moments induced
in each of the atoms. Further terms result from higher
multipole moments, each successively higher rnornent
corresponding to a more rapid decrease of the potential
by two additional powers of R; for example, the dipole-
quadrupole interaction has the form —Cs/8 . The
literature is full of thorough discussions of these adia-
batic or Born-Oppenheimer potentials which are derived
by holding the individual atoms fixed and solving (in
some approximation) for the quantum-mechanical
motion of the electrons. More recently, in connection
with the interaction of positronium atoms (Ps), it has be-
come of interest to investigate certain mass-dependent
corrections to the usual adiabatic potentials.

One of the most effective methods to compute the ac-
tual values of these coeficients makes use of the so-
called pseudostate expansion. ' %hen used in a varia-
tional derivation of C6 the result is a formal expression
that resembles conventional second-order perturbation
theory with the usual infinite sum over intermediate
states replaced by a finite sum over certain orthonormal
functions. The remarkable fact is that only a few terms
in this sum are needed to achieve very high accuracy in
the evaluation of the coeScient. In an earlier work we
also used the pseudostate expansion to compute some of
the mass-dependent correction coeScients with equal
success. It is the purpose of this paper to examine and

understand this rapid convergence.
The plan of the analysis is the following. We will first

write the van der Waals (vdW} coefficients and their
corrections as a conventional double summation over
single-atom matrix elements. These will be rewritten in
the form of an integral over the single-atom dynamic po-
larizabilities, which can each be expanded in a power
series in the frequency. Finally, each of the coefficients
of these series is seen to be related to a particular mul-

tipole sum rule, whose exact value can be given for the
hydrogenic cases of interest here. It will then be proven
that a Suite pseudostate expansion is capable of exactly
representing a finite subset of these sum rules and,
hence, approximating the coefficients of the power series.
Hence the analytic continuation of the power series is
expected to give very accurate values of the van der
Waals coefficients. Numerical results are given where
they are appropriate to illustrate the mathematical
points being made.

H. THE BASIC PROSI EM

The fundamental quantities needed for the calculation
of vNV coeScients and their generalizations are double
surnrnations over excited intermediate states of the two
interacting systems. (For simplicity we will assume iden-
tical hydrogen atoms, although other one-electron ions
and positronium atoms can be easily treated. ) These
are'

g (lip) y M (nl)M (n l )

[b,( nl ) +h(n 'l' }]"

where M(nl)=(nl
~

2r'P&
~

ls) and 6(nl)=E„t E„for-
multipole order I. These double sums cannot be carried
out exactly. The usual van der %aals expansion is
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V= —g where C6 ———', Q, (11), Cs ———", Q, (12), and C,o ——14Q, (13)+—", Qi(22) .
fl =3

Certain mass-dependent nonadiabatic terms were defined
in Ref. 3 and their coefficients have the following forms:

D = —',Q2(ll) and 6 = —,'Q3(11) . (3)

To begin the analysis we rewrite Qk as a parametric
integral,

These can be expanded for small values of co,

a, (co)= g ( —oi )»i2J+, ,
2 J

j=0

2 J(2j+k —1)!~RePik(}= y ( oi }
)i(/ 1 }) l 2j +k

j=0
—+„M2(n/)/[b(n/}] . We have thus suc-

ceeded in writing the original expression for Qk(//'} in

terms of two power series in co2 whose coefficients are

the negative-power energy-weighted sums SI each of
which can be evaluated analytically. We understand

the dynamic polarizabilities (which can themselves be

calculated analytically ) to be the analytic continuations

of these power series beyond their rather limited circles
of convergence.

The pseudostate method begins with a choice of No

basis functions of angular momentum I taken to have the

form

P, (r)=e "r'+JP( (j =0, 1, . . . , No —1),lj

and linear combinations of these are next used to diago-

nalize approximately the hydrogen Hamiltonian

(Ho = 7 2/r in Rydberg —units—)

= g Ci(N, j)P
J (g)

&N/
I H, I

N'/ & =&~,&~iv»d &N/
I

N'/ & =B'av .

In this method Qi, (//') is approximated by simply replac-
ing the infinite sum over the complete set of hydrogen
states

I
n/ & by a finite sum over the discrete set of pseu-

dostates
I
N/&, with the energies E„i replaced by the

corresponding pseudoenergies ENI. In practice, a ten-
term expansion of this type gives ten-figure accuracy in
the vd% coefficient. ' To understand this rapid conver-
gence we mill return for a closer look at the properties of
the dynamic polarizabilities and their power-series ex-

00

Qk(// )= Re f dalai(~)Pi k(~) (&)
0

where a and P, related to the dynamic polarizabilities,
are defined as follows:

M (n/)b, (n/) M (n/)

b2(n/)+co~ „[h(n/)+ice)"

pansions.
Clearly, the pseudostate approximation to Qz (denoted

by a bar, as are all such approximate expressions from
now on) can be written in terms of approximate dynamic
polarizabilities as in Eq. (4). These, in turn, can be ex-
panded in a power series in co [as in Eqs. (6)] whose
coef6cients are the approximate weighted sums S&

These are defined as follows:

where M(N/)=&N/
I
2r'P,

I
ls &

M (N/)

i [Z(N/)]

and Z(N/) =&ivi —&i,

If these approximate sums are accurate, then the dynam-
ic polarizabilities will be accurate and the van der Waals
coeScients will also be good.

III. PROOF OF THK THEOREM

where Vi 2r'Pi, and——, hence, & ls
I
N/ & =0. To first or-

der in the small parameter A, , the Rayleigh-Ritz varia-
tional principle gives the following expression for the ex-
pansion coefficients:

X&N/
I V, I

is&
C

Z(N/}

I

N/ & & N/
I Vi I

ls &

Iq, &=Ils& —A, g Z(N/)

This evidently has exactly the form of the usual pertur-
bation expression, although it involves only a 6nite sum
on a set of normalizable functions. It is well known, '
however, that the exact expression for the 6rst-order
perturbed wave function of the polarization perturbation
has the form

~l 1+1
Ie, &=

I
is& —X —"+ P, I

is&,
I 1+1 (12)

and this expression can be achieved with a two-term ex-
pansion of the type shown in Eq. (7). (We shall use
wave-function and ket-vector notation interchangeably. )

The variational method guarantees that we will obtain
the exact energy and wave function if we provide a trial

To establish the accuracy of the approximate sums we
wi!I now prove that Si ~ ——Si ~ for m & 2(No —1).

First, let us show that SI &
can be obtained by a varia-

tional calculation. We introduce a perturbed Hamiltoni-
an H and construct a trial function from the pseudo-
states,

No

I
+i&=

I
»&+ X Cw IN/& and H=&o+~Vi, (10)
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function of se+ciently general form. But the perturbed
energy in this case is just

(ls
( V, [N/)(N/ ) V, (

ls)
!ATE = —A,

lL(NI)

and the wave-function norraahzation is

(is ] V, )N/&&N/] V, ]is&
(q, )%, &=i+X2 g

%=1 [E(N/) ]

=1+}I, Si 2 . (14)

M(11)=(—", )'~2, Z(11)=—', ,
' )/2

t»&= 2
3m

(3r —r )e 'P„E2, ——1,

Using Eq. (15) in Eq. (11)we show easily that

M(11)
~

1& M(21} [ 2&

b,(ll) Z(21)

Thus we have proven that a two-term basis set (NO=2)
wiH give the sums S1, and Si 2 exactly; the former from

the energy and the latter from the wave-function nor-

mahzation.
To illustrate this point, we show the orthogonal basis

functions in the two-state dipole (/=1} approximation,
their energies in Rydbergs, and show how the exact sum

rule results from what has been discussed above, s

" 1/2

From Eq. (17}we can write

I N/& &N/
~ V, i

is &

%k [Z(N/)]'
(20)

provided that Gil
~

ls) can be represented by a finite
(N &No) expansion in

~

Nl ). Then substituting Eq. (20)
into Eq. (19) we can write

( ls
( Vi i

N/)(N/
i Vi i

ls)
(21)

[Z(NI)]'"+'

with a similar expression holding for Si 2k+2. Again, if
the trial function is sufficiently general, Eq. (20) is vahd,
and the variational principle will guarantee that

S12k~i ——S12k+1 (from the "energy" nunmuzation) and

Si 2k+2 ——Si 2k+2 (from the normalization).
To complete the proof, we simply note '" that each

successive 6 contains one additional power of r. We
prove this by induction. Let us write 6+ ——gIkPI and as-
sume that gIk &

is a polynomial with k terms. Then the
Dalgamo-Lewis equation' for gIk is1, 1(1+1}

Ak +~ l glk glk glk —1r2

[g(n/}]2k+1

(ls
i Gil i

n/)(n/ j Gs, i
ls)

h(n/)

This is just the second-order energy shift when 6Ik is
considered to be the perturbation. Just as in the k=o
case, a variational trial function [Eq. (10)] wiH have the
form of Eq. (11),with V, replaced by Gik. That is,

( ls [ Gik i
NI ) (N/

i Gik i
ls )

Sl,2k+1 (19)
%=1 Z(NI)

in agreement with the general expression in Eq. (12). By
direct sllbstltlltloll it ls also easy to show tllat S, , = —,

and S, 2 ———", , the well-known values of these sums. (In

fact, ihe sums S, o and S, , are also given exactly, a
fact brieffy discussed in the Appendix. } As expected,
however, S, 2

=—",,' is not correct in this approximation;
however, it dilers froxn the exact value S& 3

———",~ by only

about 1%.
To evaluate sum rules for ni ~ 2 we use a simple trick

to convert the expression into the form of a second-order
perturbation sum, after which the variational method
can be apphed as above. If we de5ne Glk by

k —]
= g djr'+J . (22)

j=0

If we assume that glk has one more power than gIk
then Eq. (22) takes the following form:

k k k —1

Cj (j +21+1)r~ —2 g C.(j+l)rj '= g djrj,
j=l j=0 j=0

(23)

where C- are the coe%cients of the polynomial of degree
k assumed to represent gik/r'. Since there are exactly
k+1 powers of r appearing in Eq. (23) and k+1
coef5cients Cj to be determined, we can equate like
powers of r and derive the following set of recursion re-
lations:

G«~»&=(H, E„) "V, ~is) wh—ere G-« —V, (17}
Ci(/+1) —ICO ——0,

then SI2k+& takes the form of a second-order energy
shift with 61k playing the role of the perturbing poten-
tial,

(24)

for 0&j ~k —1.

2Ck(/+k) = —dk

C)+2(j +2)(j+3+2/) —2C.+,(j+/+1}=d.
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TABLE I. Sum rules S~ for (=1 for several expansion lengths Xo. Only odd values of m are displayed since even moments are

not needed for the expansion of Eq. (6). The asterisks denote the first entry in each column that is not exact according to the

theorem: m ~2(No —1).

1

3
5
7
9

11
13
15
17
19
21
23
25
35
45

No ——3

4.500 000 000
6.645 833 333

10.756 872 106
18.071 OS9 490
30.814673 369
52.851 869 216
90.852 689 618

156.310750 644
269.018922 534
463.053 781 434
797.078 167 150

1372.076 626 03
2361.885 635 29

35 700.115436
539 611.903 34

10.761 754 919
18.157 673 463
31.289 676 080
54,557 837 165
95.788 396040

168.878 859 561
298.497 036 115
528.422 459 447
936.350 896 495

1660.168 358 2S
2944.579 716 37

51 793.222 326
911713.017 87

31.289 711684
54.559 078 118
95.799 562 542

168.937 240 771
298.723 274 206
529.149065 365 57*
938.406 631 952

1665.484 322 86
2957.447 166 12

52 402.189016
930 197.054 62

Exact values'

4.5
6.645 833 333

10.761 754 919
18.157 673 463
31.289 711 684
54.S59078 118
95.799 562 542

168.937 240 771
298.723 274 206
529.149065 365 64
938.406 631 962

1665.484 323 05
2957.447 168 12

52 402.192 93
930 197.573 05

'Obtained using the analytic results of Ref. 7.

TABLE II. Dynamic polarizability a&(co) for 1=1, evaluated for several expansion lengths. Frequencies are in Rydbergs, and

powers of 10 are indicated by superscripts. Asymptotically, a&{co)-4/~'.

0
0.2
0.6
1.0
1.4
1.8
2.0
2.8
3.6
5
7
9

12
16
20
24
50

100

'Reference 6.

4.500 000000
4.250 298 265
2.978 325 2S
1.905 385 708
1.258013 206
8.745 688 320
7.424633450-'
4.245 686 268
2.719793 245
1 482096 367-'
7.804 209 068
4 793 537 772
2.727 878 816
1.545 734 825
9.929 116688
6.909 622 835
1.598 086094
3.998 793 861

No ——10

2.978 325 539
1.905 388 437
1.258 015 644
8.745 550 795
7.424407 521
4.245 466 115
2.719919962
1.482 515 864-'
7.806 734 823
4.794 143 961
2.727 338 352
1.545 045 355
9.923 874 603
6.905 982104-'
1.597 671 933
3.998 473 640

No ——15

8.745 550 799
7.424 407 530
4.245 466 034
2.719919937
1.482 516637
7.806 725 510
4.794 121 430
2.727 334 058
1.545 065 744
9.924 101 249
6.906137649-'
1.597 631 269
3.998 376064

Exact'

4.5
4.250 298
2.978 326
1.905 388
1.258 016
8.745 551
7.424407
4.245466-'
2.719919
1.482 516
7.806 725
4.794 121
2 727 334
1.545 065
9.924092
6.906 132
1.597 637
3.998 364

TABLE III. van der %aals coeacients in Rydbergs, evaluated by the pseudostate method for vary-

ing expansion lengths. C, are the usual coencients of 8 ' in the long-range H-H potential, while D
and 6 are nonadiabatic and energy-dependent coef6cients de6ned in Ref. 3 and Eq. (3). The higher

multipoles required for j=8 and 10 were evaluated individually by diagonalizing Ho using basis func-

tions of the appropriate /. They could also have been obtained' from the dipole values by invoking

the invariance of Ho under the group 04.

12.996 887 966
248.773 127 44

6570.997 258 7
7.400 246 889 4
4.356 966 680 5

'Reference 13.

12.998050710
248.798 088 99

6571.654 479 1

7.398 630 690 9
4.356 498 437 8

No ——10

12.998 053 410 66
248.798 167 164 7

6571.656 829 885
7.398 625 218 328
4.356 504 821 206

Xo ——15

12.998 053 410 811 3
248.798 167 167 241

6571.656 829 934 80
7.398 625 218 232 3
4.356 504 821 254 09
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Thus we see that the system of equations is consistent.
To complete the proof we note that the correct two-term
expression for g &

results from the above equations with
the potential g+ ——V& ——2r', and our assertion about the
form of successive GN. is proven. It follows that the
pseudostate method with No terms will give S& exactly
up to m =2%0 —2.

Finally, we assert that the values given for the dynarn-
ic polarizabilities are the analytic continuation of the
power series discussed here and that the exactness of the
6rst terms of that series should also lead to high accura-
cy in the analytic continuation. Then from the dynamic
polarizabilities we obtain the vd% coefBcients with

equally high accuracy. An obvious weak point in this
argument concerns the remaining, higher coeicients
whose inexactness could threaten the accuracy of the
vd% coeicients. But since the pseudostates are ob-
tained through a varistional calculation they approach
the actual hydrogenic states as Xo increases. For fairly
modest values of Xp the lowest few pseudostates are
quite close to the first few states of hydrogen. As m in-

creases the lower values of E dominate since 5(Nl) be-
comes raised to the power of m. Eventually, only the
lowest few states are needed to evaluate S&, for Xo
large enough, then, we can assure the adequate represen-
tation of all coeicients in the power series. In addition,
for very high frequencies there are asymptotic forms of
a& and P+ which involve only S, p and S, , ; these will

be shown to be exact in the Appendix.

IV. NUMERICAL RESULTS AND CONCLUSIONS

In this section we will present sample results, illustrat-
ing numerically the mathematical statements made
above. The prediagonalizstion of Ho was carried out
with the use of quadruple precision on the IBM 3081
computer. This enabled us to avoid the loss of accuracy
experienced by Martin when long expansions (Np & 10)
were used. The details are otherwise identical to the
work described in Ref. 5.

In Table I we give a series of values for the odd-order
dipole' sum rules S& that are needed in the expansions
of Eq. (6}, computed with different values of the expan-
sion length No. These are compared with the values ob-
tained from the exact expression derived by Au. The
perfect agreement up to order m =2(Np —1) is evident,
and the good agreement beyond this point is also clearly
shown.

In Table II we show representative values of the dy-
namic dipole' polarizability a, (ro} for a wide range in co.

These are computed for three different expansion lengths
and are compared with the values obtained using an ex-
act analytical expression in Ref. 6. The agreement is
very good, even for Xo =5, but for Xo = 1S it is really re-
markably good. Note also that for the higher values of
u the asymptotic expression 4/m is also quite good. In
the evaluation of the vdW coefficients from a and P the
lower frequencies dominate, and our approximation is
best in that region.

Finally, in Table III we give several di6'erent vd%
coeScients for three different values of No to display the
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APPENDIX

A slightly different technique is needed to prove that
the pseudostate expansion yields exact values for the two
sums S&0 and S& &, since these are not in the form of
second-order perturbation sums. To convert them into
the standard form we begin with S&

5&,——g ( ls
~

V&
~

nl ) ( n l
~

V&
~

1s ) b ( nl }

where Vi 2r'P& . (Al)——

If we define the function IV& as the solution of the equa-
tion

[Hp Vi)
~

ls)=W(
~

ls)

then S» can be written in the form

( ls
~

W/
~

nl ) ( nl
~

W/
~

ls )
l, —1 X

(A2)

(A3)

which is in the standard form; the pseudostste expansion
technique can be applied as before. The solution to Eq.
(A2) is 8;=4lr' 'P, .

To complete the proof of exactness we need only show
that the form of basis functions defined in Eq. (7} is ade-
quate to represent the wave function. To show this, we
note that Eq. (A2) is the Dalgarno-Lewis equation' cor-
responding to the perturbation sum in Eq. (A3), and,
therefore, the perturbed wave function is V&

~

ls ). This
has just the form of the first term of the pseudostate
basis. Therefore S&, will be exact for Xo ~ 0, and S& 0 is
obtained from the normalization in the usual way.

rate of convergence. These include the usual dipole-
dipole, dipole-quadrupole, snd quadrupole-quadrupole
coeScients C6, C8, and C,o, respectively. In addition,
we show the convergence of the nonadiabatic coeScients
D and 6 needed to take into account the finite mass of
the atoms. Note that all these coeicients are evaluated
directly, from the pseudostate equivalents of Qk [Eq.
(I)), not by integrating over the dynamic polarizabili-
ties.

%e have thus completed our demonstration of the in-
teresting properties of the pseudostate expansion tech-
nique for hydrogenic systems and have shown why its
convergence is so rapid and eScient. It seems that this
method deserves to be even better known and applied to
still more computations involving summation over inter-
mediate states.
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