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The el'ect of the fully relativistic Breit term upon atomic energy levels is investigated. The

gauge dependence of the retarded electron-electron interaction in a self-consistent-Geld scheme is

studied both theoretically and numerically. The complete Breit operator mean values are comput-

ed in Lorentz gauge and compared arith those of the semirelativistic retarded interaction in covari-

ant and radiation gauges for high-Z heliumlike ion singly excited states. The off-shell energy case

is considered in detail even for a perturbative approach.

I. INTRODUCTION

Experiments measuring transition energies and level
lifetimes in two- or three-electron ious have been extend-
ed to the relativistic domain. For example, litt =0
2 Pz-2 S, transitions and hn =1 2 'P&-1'So transi-
tions have been studied in heliumlike krypton ions pro-
duced at the Grand Accelerateur National d'Ions
Lourds in Caen, France' (GANIL) with precisions of
180 and 20 ppm, respectively. The Lyman transitions
have been studied in heliumlike xenon at the same ac-
celerator. It is now possible to study uranium ions at
the Super-HILAC (heavy-ion linear accelerator in Berke-
ley, Cahfornia) and a lifetime measurement has been car-
ried out~ on the 2iPO state. Experiments with increased
precision are being planned. ; lifetime measurements using
hyperfine quenching in heliumlike silver (Z =47) will

hopefully give the fine-structure splitting 2iPO-2 iP, for
that system while spectroscopic studies are in progress
on uranium.

Those measurements, when compared with ab initio
theoretical calculations, provide hints that previously
neglected effects might have to be considered due to
their now measurable infiuence on the atomic structure.
A detailed description of the atomic properties must in-
clude a wealth of contributions and one is rapidly faced
with intricate mixings among them. To be more specific,
let us recall that in few-electron ions of high Z one is
compelled to include correlations induced by the

electron-electron interaction, QED corrections, and, of
course, relativistic corrections. In two preceding pa-
pers, ' hereafter referred to as I and II, correlation and
Lamb shift corrections were considered in two-electron
systems. It has been demonstrated, in these papers, that
electrostatic correlations were exhibiting a relativistic
behavior in the middle- and high-Z ranges and that the
instantaneous magnetic interaction was inducing impor-
tant correlations. Those results have been con5rmed by
a relativistic treatment of the correlations using the pair
equation. In the same spirit, searching for a complete
mixing of relativistic effects and correlation treatment,
Quiney, Grant, and Wilson' argued that the Breit in-
teraction can be included in self-consistent-field (SCF)
calculations. It will be demonstrated that this statement

is only partially valid. The inclusion of the magnetic in-
stantaneous interaction, or Gaunt term, in the SCF is
free of ambiguity and has already been performed in I
and II as well as in previous calculations of binding en-
ergies in superheavy elements. " On the contrary, it has
been demonstrated in I that the retardation terms are
subject to gauge ambiguity when coupled to SCF calcu-
lations. The main difficulty (or even impossibility} in
such a scheme is to define one-electron energy. This
one-electron energy is, in turn, crucial in the calculation
of retardation effects even for the well-known and widely
used nonlocal Breit term. In Coulomb gauge, the one-
electron energy of decisive importance is concealed by
the gradient operators and might be restored by usual
algebraic transformations. In this work, neither correla-
tion nor Lamb shift calculations. are considered (cf. pa-
pers I and II); we focus on the relativistic complete two-
body interaction. While results are valid for any mul-
tielectron system, numerical data are given for helium-
like ions due to the challenging questions presented by
experimental developments.

In Sec. II, the basic treatments for magnetic and re-
tarded interactions are recalled and notations are
specified. In the framework of Dirac-Fock methods' '
the numerical importance of the already mentioned
gauge dependence is given for singly excited states; the
discrepancy in level energy between Coulomb and
Lorentz gauge is found to have a numerical contribution
of ka Z m, c (m, being the electron mass and k a nu-
merical factor depending on the level}.

In Sec. III, the high-order (in 1/c) retardation terms
are considered in Lorentz gauge and numerical data are
given for singly excited states of various heliumlike iona.
A k'a Z m, c energy contribution is found for those
relativistic terms. Among the studied state levels, the
2 I'z state matrix elements are the most important.
Their values point out that hn =0 2 I'g —2 S& transi-
tions are now precise enough to make it mandatory to
include this contribution in theoretical calculations.

In Sec. IV, the problems associated with off-shell ener-

gy matrix elements for retardation are studied both
theoretically and numerically in the case of 1s2p J=1
states. An intrinsic gauge dependence is established and
its relevance to the previously SCF-induced gauge
dependence is discussed.
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II. GAUGE DEPENDENCE OF RETARDED
INTERACTION IN SCF CAI.CUI.ATIQNS

This section is an extension of results given in paper I,
notations will be similar to those previously used, and
demonstrations that were already given in I will not be
reiterated here. To begin with, the difFerent stages at
which the retardation might be taken into account are
briefly reviewed. Two distinct features should be
stressed from the beginning: on the one hand, the neces-
sity to go beyond the second order in 1/c to reach the
precision of recent experiments (see, e.g., Ref. 1 or Table
VI in paper II); and on the other hand, the necessity to
perform actual calculations in a specific gauge.

Of course, there is a total freedom in the choice of the
gauge condition to be satis6ed by the vector potential A
and by the electric potential V, while the true solution of
the physical problem has to be independent of this
choice. Only the two most commonly used gauges are
considered here: the Coulomb (or radiation) gauge in
which A and Vsatisfy

div A=O,

and the Lorentz (or covariant) gauge in which one has

1 VdivA+ -- =0 .
c2 Bt

The photon propagator has a given expression in each
gauge corresponding to a given propagation equation.
This expression for the propagator, in turn, is used to
obtain an efFective potential g describing the interaction
between two electrons. This potential has the same ma-
trix elements as the 5 matrix. Its expression is ob-
tained by means of standard @ED rules in the bound-
state picture. In Coulomb gauge one obtains

1 O'&'+2 cos(coR ) —1
g c ———— cos(coR ) +(a, 8 i )(a2 Bi )

R GP R

while in Lorentz gauge the following expression is ob-
tained:

1 —CX1 CX2

cos(coR ) .

These two expressions de6ne the electron-electron in-
teraction operator in each gauge to all orders in I/c.
The a, 's stand for the Dirac matrices of the interacting
electrons, 8 for the electron-electron separation, and ~
for the energy of the exchanged virtual photon (formulas
are given in atomic units throughout this paper).

For weakly relativistic problems like the study of ex-
cited states in a heliumlike ion (i.e., when the excited
electron has a velocity far from being relativistic), it
seems wise to limit oneself to the erst nonzero order in
I/c. The following incomplete Breit operators are ob-
tained:

gC~ =ge+gm +gRC ~

Ai CX2

g

a, a2 (a, R}(a2.R)
gRC 2g

in Coulomb gauge and

gLI =ge+gm+g~2 ~ (9)

(10)

in Lorentz gauge. In formulas (5) and (9), g, and g~ are,
respectively, the instantaneous electric and magnetic in-
teractions; these two terms appear in Lorentz gauge as
well as in Coulomb gauge. In both expressions the last
term is the retardation in the electric interaction due to
the finiteness of light velocity. In Eqs. (5) and (8), the
subscripts in gRc stand for "retardation in Coulomb
gauge;" in Eqs. (9) and (10), the subscripts in g 2 recall
that the photon energy is explicitly present and that we
restrict ourselves to the second I/c order. It has been
demonstrated in paper I that even to this order the
gauge dependence is present when Dirac-Fock wave
functions are used to calculate the retarded interaction
as a first-order perturbation.

Due to the explicit or hidden presence of the photon
energy in expressions obtained for g, g 2, g c, and g Rc,
those expressions are only valid for matrix elements
satisfying energy conservation (the 5-matrix elements ac-
tually comprise a 5-function factor in the energy). The
distinction between g„and g„c or between g„2 and gRc
are physically meaningless as far as the matrix elements
for those operators are equal. It has been demonstrated
in previous works (e.g., Ref. 15 and paper I) that the
choice of a particular class of wave functions is deter-
minant to satisfy gauge invariance. EfFective operators
in distinct gauges have equal mean values if, and only if,
the used wave functions are solutions of a Dirac one-
electron equation in a local potential. If the wave func-
tions of the Dirac-Fock model are to be used, the two
potentials corresponding to the two gauges lead to two
distinct interaction energies. The SCF treatment of the
mean contribution to the interaction (the instantaneous
electrostatic repulsion between the electrons or, as well,
the sum of this interaction and of ihe magnetic instan-
taneous interaction) gives a precise value for the total
energy more rapidly and more elegantly than any pertur-
bative scheme. Unfortunately, this eScacious treatment
of the instantaneous interaction comes into convict with
an unambiguous treatment of the retardation. The
gauge ambiguity traces back to the nature of the SCF
wave function that should only be considered as a
mathematical tool used to approximate the eigenstate
wave function. Two questions, among others, remain
open. The Dirac-Fock calculations are based on a
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many-electron Hamiltonian that is deduced from QED
by means of a no-pair approximation. ' The effect of
virtual electron-positron pairs (vacuum polarization) is
thus neglected and the corrections to be introduced
behave as higher order in Za. Furthermore, the relation
between the no-pair approximation snd the boundary
conditions imposed in numerical calculations needs to be
clarified. The numerical differences between the mean
values of g„z and gRc are now studied in detail to show
whether or not this gauge dependence is important com-
pared with experimental precisions and with other QED
contributions.

Heliumlike ions are chosen to avoid the complexity of
dealing with many electrons. Having pointed out the
present inability to calculate retardation correlation, the
most relativistic case, that of the ground state, has to be
discarded. We focus on singly excited states in ions for
which experimental data are, or are becoming, available.
Desclaux's code' is used to generate the SCF wave func-
tions and subroutines to calculate g„2 or, as below,
g„—(g, +g +g„z) mean values were implemented us-

ing standard angular moment algebra. Mean values for
the gauge dependence operator g~, whose expression is

a, az (a) R)(az R)
g~ =g~z —gac = — — + (11)J QP 2 2g 2R

are given in Tables I-V for the four is2p states and for
the ls2s zS, state. The Z dependences for these states
are plotted on a log-log scale in Figs. 1-5. Gauge
dependence values (second column in tables and solid
squares in figures} are given together with high-order re-
tardation values to be discussed in Sec. III (third column
in tables and open squares in figures). Numerical values
smaller than 10 peV are not reported. We made a test
of our code by calculating ga mean values with purely
hydrogenic wave functions. As expected in a local po-
tential, the gz mean values vanish and the nonzero data
reported in Tables I-V are originating only from the na-
ture of the Dirac-Fock wave functions.

The calculated values for gauge dependence in the
Dirac-Pock scheme show that this previously unmen-
tioned eff'ect is important compared with experimen-
tal precision st low or medium Z. For example, hn
=0 2 P2-2 S& transition energy in heliumlike argon
has been measured with a precision of 4 meV (or 32

TABLE II. Mean values for gzj (gauge dependence) and g~
(high-order retardation) operators for the 1s2p P& state in heli-
umlike ions. Two-con6guration Dirac-Fock wave functions are
used and values are given in meV.

6
10
18
26
36
54
92

Gauge dependence

—0.33
—1.00
—3.31
—5.56
—6.06
—4.73
—2.03

High-order retardation

—0.04
—0.83
—4.43

—14.0
—42.4
+29.3

cm ' },' while the gauge effect value reported here is
more than 2.5 meV (or 20 cm '). In Paper II, we es-
timated, by a phenomenological method based on the
Welton picture, the importance of self-energy screening
and found, for this particular example, a 9-meV (or 72-
cnl } contribution.

For this gauge dependence ambiguity, s ko; Z m, e
dependence is shown by Figs. 1-5 and by changing arbi-
trarily the value of the fine structure in the code. The
second-order terms in both gauges grow approximately
as Z; thus, the gauge ambiguity in SCF schemes has a
decreasing relative importance. The values taken by the
constant k or equivalently by the mean values show that
this effect is semirelativistic; indeed, at low Z, the ambi-
guity is the same for all 1s2p triplet states. Besides, the
considered efFect clearly hss a more involved behavior
for lsd states having J =1 (Figs. 2 and 4) than for the
other states (Figs. 1,3, and 5). This is related to the
description of the J =1 states as a sum of two j—j
configurations [see below, Eqs. (19) and (20)] treated in
intermediate coupling; it has been established that if sin-
gle configurations are used ( ls, /z2@ i/z J= 1 and

1s&/z2p3/z J=1) the monotonic variation and the quad-
ratic scaling law encountered for the other states are re-
stored.

Lastly, this gauge ambiguity is not shaded off in
multiconfigur ation Dirac-Fock (MCDF) calculations.
Discarding the questions associated with a sensible
de6nition of one-electron energy, one might be tempted
to associate the gauge difficulties with the approxima-

TABLE I. Mean values for g&, (gauge dependence) and g~
(high-order retardation) operators for the 1s2p 3PO state in heli-
umlike ions. Dirac-Pock wave functions are used and values
are given in meV.

TABLE III. Mean values for g&, {gauge dependence) and

g~ (high-order retardation) operators for the 1s2p 'P2 state in
heliumlike ions. Dirac-Fock wave functions are used and
values are given in meV.

Gauge dependence

—0.33
—1.00
—3.46
—7.36

—14.3
—32.2
—89.7

High-order retardation

—0.16
—1.05
—5.07

—28.5
+349

6
10
18
26
36
54
92

Gauge dependence

—0.33
—1.00
—3.46
—7.39

—14.3
—32.9
—97.2

High-order retardation

—0.09
—1.87

—12.1
—63.0

—486
—7049
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TABLE IV. Mean values for gz, (gauge dependence) and

g~ (high-order retardation) operators for the 1s2p 'P& state in
heliumlike ions. T~o-con5guration Dirac-Pock wave functions
are used and values are given in meV.

100.0

High-order retardationGauge dependence

0.33
1.00
3.53
7.21

12.4
23.8
60.8

6
10
18
26
36
54
92

sgas ~ aaaa

0.07
1.47
8.67

36.6
225

2998

1.0

0.1

10
z

100

FIG. 1. g&J gauge dependence (solid squares) and g~ high-

order retardation (open squares) operator mean value Z depen-
dence for the 1s2p Po energy level in Dirac-Pock calculations.

tions made in the wave-function determination and think
that a "better" wave function would reduce the ambigui-
ty. This is not true, as is demonstrated by calculating
retarded interaction elements with an extended sum of
determinants (the half sum rule derived by Mittle-
man's's was adopted for oF-shell elements). For the
ls2p P2 state in heliumlike aluminium (Z =13) the
single-configuration Dirac-Fock calculation leads to a
1.8-meV ambiguity and the multiconfiguration calcula-
tion (on the same extended basis set as in paper I, Secs.
III and IV) leads to a 3.9-meV ambiguity. Far from
correcting for these gauge difliculties, the MCDF treat-
ment worsens them. The gauge ambiguity is unavoid-
able in any SCF scheme (and in any scheme for which
no one-electron energy is clearly defined).

A complete relativistic calculation in Coulomb gauge
will have to be performed in the future to give more reli-
able data for heavy ions but it has been demonstrated
that the gauge ambiguity is still present for the whole
U/c series and it is expected that the present results are
giving the main contribution to this eI'ect in the studied
Z range. From the given examples, the gauge ambiguity
is seen to be nonnegligible compared both to experimen-
tal precision and to theoretical uncertainties in the cal-
culation of the two-electron Lamb shift. Thus extracting
information on the screening of QED corrections from
experimental data demands a clarification of this gauge
dilemma.

III. RETARDATION TO ALL v /c ORDERS
IN TWO-EI.ECTRON SYSTEMS

In Sec. II, the semirelativistic (or incomplete}
electron-electron interaction has been studied in two
different gauges. This approach is, as will soon appear,
limited to elements lighter than iron (Z=26). Indeed,
for heavier systems the complete operators g z and g
[Eqs. (3}and (4)) have to be used instead of their incom-
plete counterparts ga and gz; [Eqs. (5) and (9)]. The
calculation of retarded interaction is then made to all or-
ders in 1/c (i.e., to all orders in the exchanged photon
energy}. The numerical importance of high-order retar-
dation, in Lorentz gauge, is demonstrated by calculating

100.00

10.00

1.00TABLE V. Mean values for gz, (gauge dependence) and g~
(high-order retardation) operators for the 1s2s 5& state in heli-
umlike ions. Dirac-Pock suave functions are used and values
are given in meV.

High-order retardation

6
10
18
26
36
54
92

—0.08
—0.24
—0.83
—1.80
—3.57
—8.66

—32.70

100
0.06
0.41
2.16

16.50
217.10

FIG. 2. gz,- gauge dependence (solid squares) and g~ high-
order retardation (open squares) operator mean value Z depen-
dence for the 1s2p P I energy level in two-con6guration
Dirac-Pock calculations.



EFFECT OF THE COMPLETE BREIT INTERACTION ON T%0-. . .

1 0000.00 1000,00

1 000.00
1 00.00

1 00.00

10.00

1 0.00

E
~ s ~
~ a a

0.1 0
0.10

0.01
100

FIG. 3. g» gauge dependence (solid squares) and g~ high-
order retardation (open squares) operator mean value Z depen-
dence for the 1s2p I'2 energy level in Dirac-Pock calculations.
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FIG. 5. g~, gauge dependence (solid squares) and g~ high-

order retardation (open squares) operator mean value Z depen-
dence for the ls2s 3S, energy level in Dirac-Pock calculations.

mean values of the following operator:

gm=g~ —(ga+gm+g~2)
r

=1 N 8
cos(coE )—1+

R 2
[cos(coR ) —1] .

1 0000.00
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FIG. 4. gzj gauge dependence (solid squares) and g~ high-
order retardation (open squares) operator mean value Z depen-
dence for the 1s2@ 'PI energy level in tw'o-con6guration
Dirac-Fock calculations.

(12)

Magnetic retardation (last term in the preceding expres-
sion) is described by this operator while it was neglected
by means of incomplete operators. As in Sec. II, mean
values have been calculated for several heliumlike ions
using Dirac-Fock wave functions. Results are reported
in Tables I-V (third column) and the Z dependence is
plotted on a log-log scale in Figs. 1-5 (open squares).
Compared with gauge dependence, this relativistic efFect
is seen to grow much more rapidly. For medium Z, its

energy contribution is found to be well fitted by a
ka Z m, c scaling law. This scaling law has already
been quoted and interpreted in terms of fourth-order
leading terms by Hata and Grant. ' In this work, calcu-
lations were performed in Coulomb gauge and the gauge
dependence in SCF schemes was not discussed (as in ear-
lier works hke the study of is binding energy for heavy
atoms. Calculations to all orders in I.orentz gauge are
done for the first time in the present paper.

Hata and Grant' have considered elements lighter
than molybdenum (Z =42) and the Zs scaling law is
then valid. For heavier elements, Figs. 1-5 show that
higher-order terms become important and that no scal-
ing law fits to the data. In the case of 1s2p J=1 states,
the Z dependence is strongly distorted by the superposi-
tion of two difFerent effects, the studied relativistic retar-
dation and the intermediate coupling effect. If calcula-
tions are performed on a pure j-j single configuration,
results are similar to those obtained for lsd J =0 or
J=2. Besides, we have verified that for heavy elements,
numerical results for g~ mean values are nearly equal
whether Dirac-Fock or hydrogenic wave functions are
used.

As for the gauge dependence, values for the three lsd
triplet states are roughly equal in the low-Z range.
When Z increases, high orders become more and more
important so that states with different J act very
difFerently (in the lsd J=0 case there occurs a change
in sign for high Z; for that reason the gauge dependence
is not plotted for elements heavier than xenon in Fig. 1).

It is clear from Tables I-V that relativistic efFects are
quite different on various states due to difFerent magnetic
properties. The state on which this efFect is the most im-
portant is the lsd Pz state (Table III and Fig. 3). Rel-
ativistic high-order efFects in the retarded interaction
have to be looked for in transitions involving this state.
The 7-eV g~ mean value for uranium is striking because
of the availability of this ion and the experimental pre-
cision that is anticipated. A high-Z experiment to mea-
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sure the hn =0 2 P2-2 5& transition in krypton has
been performed by Martin et al. ' with a precision of 20
meV, while the g~ mean values give a —65-meV contri-
bution to the energy. The self-energy screenings have an
estimated contribution of 47 meV to the considered tran-
sition energy (Paper II, Table VI) and this comparison
shows that both effects have to be considered to get in-
formation on the many-electron self-energy problem
from experiments. Further comparisons between experi-
mental precision, Lamb shift screening, gauge ambiguity,
and relativistic retardation and comparisons between the
scaling laws for these contributions to the energy show
qualitatively the following.

(a) For semirelativistic systems {lighter than argon ion)
high-order retardation is negligible compared to gauge
ambiguity; this term is.then small compared to the self-
energy screening.

(b) For ions ranging from argon to krypton the three
quoted eFects have the same order of magnitude.

(c) For heavy ions (like xenon or uranium iona) the rel-
ativistic high-order retardation (scaling as Z ) dominates
over the self-energy screening (scaling as Z ).

In paper II and in Ref. 21, a detailed analysis of the
difFerent contributions to transition energies is given for
various ions. The interested reader is referred to these
articles for more quantitative information.

Lastly, we would like to clarify the notation used in
papers I and II. We used the expression "higher order"
in the tables to designate the mean values of g~+gaJ.
This terminology is seen from the above discussion to be
misleading for hght elements because, at low Z, gauge
dependence (or, more precisely, changing from Coulomb
to Lorentz gauge in second order) dominates high-order
terms.

IV. Rj;x.ARDATION TERtVIS
AND GFF-SHELL MATRIX ELEMENTS

In this section, the treatment of the retarded electron-
electron interaction is discussed in the case of the com-
plex states for which the multiconfiguration scheme has
to be used. In two-electron systems, the prototype of
such states is given by the two singly excited ls2p states
having J=1. For those states the intermediate coupling
is handled by considering a linear combination of
1s,&z2p, &z and 1s&&22p3&2 states. awhile introducing re-
tarded interaction, one has to compute an o8'-shell ener-

gy matrix element {owing to the relativistic energy sepa-
ration between 2p, &2 and 2p, ~z states). A generalization
of the Breit operator has been introduced by Mittle-
man. '8'9 This generalized Breit operator has, as already
br1e6y ment1oned, the 58%' that lt 18 1ntr1nslcally gauge
dependent. This point needs to be somehow clari6ed. It
can be demonstrated that even on a hydrogenic basis set
the mean values of the retarded interaction are dinerent
when two different gauges are used. The same result
holds true whatever local potential is used.

%hen applied to single-con6guration states, the gauge
dependence discussed in paper I and in Sec. II was only

a consequence of the mean-6eld approximation used to
determine the wave functions. In tee MCDF scheme '
this type of gauge dependence is, of course, still present
and is far more important numerically (see below) but,
from a theoretical point of view, the gauge dependence
arising from the operator itself shows that the treatment
of retardation is lacking consistency for states as com-
mon as 1s2p triplet and singlet P& states in heliumlike
ions. Perturbative schemes on an extended basis set are
also subject to this gauge ambiguity and, to our
knowledge, this fact has never been clearly mentioned.

In Sec. II, the on-shell S-matrix elements were used to
derive an e8'ective interaction potential. This potential
reproduces the scattering amplitude from state

~

AB ) to
state

~

CD ) to first order in a (paper I, Sec. II) when the
energy is conserved. This deduction demands that the
exchanged photon energy satisfies

(13)

This condition restricts our ability to determine interac-
tion matrix elements to the direct and thereby retardless
case for which C = A and 8 =D, or to the exchanged
case in which C =B and A =D. Thus the matrix ele-
ment between 1s)~22p)~2 J=1 and 1s)~22p3~2 J =1
states is not manageable due to the fine-structure split-
ting between 2p&&2 and 2p3&2. Generally speaking, to
perform any nonperturbative calculation or any pertur-
bative calculation on an extended basis, one has to con-
sider o6'-shell matrix elements. To handle those ele-
ments Mittleman introduced the generalized Breit opera-
tor

(14)

in which g(co„c) stands for the operators given in (3)
and {8), or in (4) and (10), depending on the gauge.
These operators semirelativistic or fully relativistic) have
been used in published calculations (for example, Ref.
15, 23, 24, and paper II) regardless of their known in-
trinsic gauge ambiguity. Our purpose is to clarify the
status of this gauge ambiguity. Mean values for the
operator that corresponds to the difkrence between the
two gauges are given. An important consequence of the
gauge dependence is made more explicit: the mell-
known classical retardation operator (8) is definitely re-
stricted to the Coulomb gauge. This fact seems to have
been ignored in the past. Even for purely hydrogenic
wave functions the o8'-shell matrix elements of this g„c
operator are distinct from those of its Lorentz gauge
counterpart g 2.

To get an expression for the difference between opera-
tors in the two gauges, the usual double commutator
transformation has to be performed to change factors in-
cluding photon frequencies coze and coca in Lorentz
gauge formulas into gradient factors in Coulomb gauge
formulas (see paper I, Sec. II). Starting from a general
matrix element for the retardation in Lorentz gauge

I = I d 1 d2@~(1)4s(2)
X-,'l~~c+ ~c(1 2)+~aD+.aD(1 2)1
x@c(1)&&D(2), (15)
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in which l and 2 are the electron locations and

cos(co „zR ) —1
F.~c(1 2)=

Qp gcR
(16)

TABLE VI. Mean values for g&J- (gauge dependence) opera-
tor for the 1s2p 'P, state. Hydrogenic wave functions are used
and values are given in peV.

[h, ,[h„F ])+[hl,[Ill,F ]] . (18)

one is willing to recover the retardation in Coulomb
gauge. For semirelativistic systems, the same reasoning
to second order in 1/c, one has to consider the matrix
element obtained from (15) by replacing F by F& with

FIl„c(1,2)= ——,'8

Using (13), the matrix element I' in (15) is found to be
half the mean value of the sum

55
60
65
70
75
80
85
90

15.9
23.5
33.5
46.4
62A
82.2

106A
134.6
167.9

A tedious calculation demonstrates that this last expres-
sion has distinct mean values as the 2[h&, [Ill,F ]]
operator required to satisfy gauge independence whatev-
er basis set is used for the wave functions. The retarded
interaction energy is found to be gauge dependent. This
result holds true either for the full series or for the
second-order term. This ambiguity is not related to the
nature of the wave functions; its origin is more funda-
mental than that of previously discussed gauge ambigui-
ty due to the SCF scheme used to obtain the wave func-
tions.

To determine what the importance of this elect is for
heliumlike ions, we carried out calculations of second-
order retardation in both gauges on the example of Is2p
J =1 states. The two levels are described by linear com-
blnat1ons

I
2'~i &=ci

I Ising't/3 &+cz I lsi/12P3n &

I
2 Fi & =cz

I »I/22Pl/1 & cl I lsl/22P3/1 &

where the coeiicients are obtained by diagonalization of
the Dirac-Coulomb Hamiltonian

(21)

on the purely one-electron hydrogenic wave-function
basis set. The retarded interaction energy is then treated
as a perturbation on these states. The numerical results
for the singlet state of several heavy ions are given in
Table VI (for triplet states, results are exactly the oppo-
site). Values lower than 10 )MeV are discarded so that
the lightest ions in the table have Z equal to 50. Com-
paring the values in Table VI to those in Table IV shows
that this gauge ambiguity is much smaller than the one
discussed in Sec. II. More precisely from data in Table
VI, this gauge dependence is found to behave as 2.58Z
peV. For heavy ions, this effect is negligible compared
to other sources of uncertainties and also to the expected
experimental precision; for example, the second-order re-
tardation energy in the uranium 2 I'& state divers by

only 60 meV according to the gauge. The smallness of
this efFect in the problem under study is of course related
to the smallness of the fine-structure splitting but in per-
turbative calculations on an extended basis set the
discrepancy between the two gauges might be strongly
enhanced by the importance of the energy nonconserva-
tion involved in calculated matrix elements. This ques-
tion will have to be studied in the future.

%e hope that the results given in the present paper,
though incomplete, will throw some light on the
difilculties one is faced with when judiciously handling
the complete Breit operator. Let us recall that
diSculties are encountered as soon as noninstantaneous
interactions are involved. New theoretical methods will
have to be developed if such phenomena as retardation
correlation are 'to be included 111 atonllc structure calcu-
lations. We also hope that numerical data concerning
high-order retardation efects, reported here, will en-
courage further experimental investigations in the highly
relativistic region.
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