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Screening in a collection of crumpled manifolds
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The continuum theory of a collection of self-avoiding D-dimensional manifolds with fixed con-
nectivity embedded in d dimensions is considered. The self-avoiding interaction between multiple
points of a manifold is shown to be screened in the presence of other manifolds. The screening
length and the mean-square distance between two points of a manifold are derived to decrease

with the manifold density p according to p

There is currently considerable interest' > in under-
standing the behavior of random surfaces. Specifically,
the static and dynamic properties of a self-avoiding (SA)
“tethered” (or ‘““fixed connectivity””) surface have been
explored using Monte Carlo simulations and analytical
calculations at one-loop level.>~® In this paper I consid-
er a collection of SA manifolds and demonstrate using a
variational calculation that the bare excluded volume in-
teraction is screened. The scaling results for the depen-
dence of correlation length and the mean-square distance
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and a ~! correspond, respectively, to the Gaussian poten-
tial and the elastic coefficient of a free tethered manifold,
while w measures the strength of the “excluded volume”
interaction. As in the case of polymers, a is some
coarse-grained bare “lattice volume.” There is a cutoff
volume A in the self-excluded volume term correspond-
ing to a minimum internal distance across which the
manifold can self-interact.” I consider below the limit of
A/Y—0. For a single Gaussian tethered manifold
(w=0),

(exp{ik-[r(x,)—r(x,)]} )o=exp[ —k%aG (x, —x,)/2],

(2)
([r(x,)—1(x,))o=daG (x, —x,)~ | x; —x, | >~ P,
where
[Dix)exp |— == [dPx[Vrx) ]
2a
(d))o:
1
fi)[r(x)]exp —Ea—fd”x[Vr(x)]2
37

—(D +2)/2(d —D)

—[4D —(2—-D)d)/2(d —D)

and p , respectively.

between two points on a manifold on the manifold densi-
ty are derived in the “hydrodynamic limit.”

Consider N self-avoiding manifolds each of dimension
D and fixed connectivity, embedded in d-dimensional
space. The internal space of ath manifold is described
by a coordinate x,={x.,...,x2} in a bounded V of
of R?. The position in d space is r,(x,). The probabili-
ty 4di2tribution is given by the generalized Edwards mod-
el,*”

JdPx, [dPxp82(r,(x,)—1hlxp)) | (1)
1

f

and G(x) is the Coulomb potential in D space,
|x |2=2/[Sp(2—D) /2] with Sp=27""2/T"(D /2) being
the unit-sphere area in D dimensions.

Using the Hubbard-Stratonovich transformation, (1)
can be rewritten as
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Since the exact calculation of (3) is impossible, I perform
a variational calculation seeking a trial Hamiltonian.
Due to the presence of other manifolds, we expect the
bare interaction wd(r) in a labeled manifold to be
modified to an unknown interaction A(r), so that
(¢(r)p(r')) =A(r—r’) where the average is done using
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(3). As a consequence of A, the results of (2) for the la-
beled manifold are altered and exact results are yet un-
known even for the case of D=1. Here I assume that A
leads to the effective Gaussian distribution,

exp [——fd x a7 [Vr(x)]?

where a[ ! is the renormalized elastic constant. In gen-
eral a, is a complicated function of D; however, if we
consider (see below) the behavior at large length scales
| x,—x,| compared to a, we expect a, to depend on
[x,—x,| as a power since the expansion ratio’
a,/a~|x,—x,|* 2P Therefore, 1 use the trial
probability distribution,®
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A, is the d-dimensional Fourier transform of A(r).
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where A~ ! is defined by

Ja%ra=tn o)A —r)=8(r—1") .

A and a, are determined below.
The probability distribution for a manifold with A in-
teraction is given by

)dAkexp ik- f
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Adding and subtracting the trial term

%f[d”q/(%r)”][rqz/g(q)] with g (g)=a,(q)/q? in the exponent of (5) we get
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where X is a typical size of V and X? is the internal D-dimensional volume of V. Assuming that the g dependence of

a, is dominated by small ¢ (large | x; —x, | ) and expanding the right-hand side of (7) in g to 0(g?

isolated SA manifold (A, =w)
ds
a,
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For small values of z, (8) leads to
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where ¢, is the exact value’ for D=1.
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tween (9) and (10).
Calculation of A. A, is given by

Ay ={d$_,) = [ DIr1D¢ dy$_, P, {r,]

Adding and subtracting A of (4) in (3),
P, (1,])=P($,{r,}exp[ —(H —H)] .

Using P as the propagator and expanding exp[—
—A/)) in (11), a perturbatlon theory is constructeds
The leading term of this series in A,. Making all terms
of the series except the leading term vanish provides a
constraint which determines A,

-
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The subscript x on the angular brackets indicates the
averaging over manifold configurations. Denoting ( ),
of (12) by

[p/2(27r)d]fddﬂ¢”§,;¢4p ,

where p=NX?/V is the manifold density (number of
monomers per volume), gives

dk :
W(ﬁkexp[zk-ra(xa )] .

A =w/(1+wpg,) . (13)

Averaging over the configurations of the manifolds and

wpAp BwA}
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For z — «, it follows from (2) and (8) that

(10)

=(D +2)/(d +2) being the Flory exponent.*!° Equation (8) is an approximate crossover formula'! be-
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allowing the center of mass of each manifold to be any-
where inside the volume V of d space, the leading term
of p§,, becomes

(N/V) [ dPx, [ dPx,(explip-[r(x;)—r(x;)]} ),

For the typlcal size X of V very large, this approximates
to ApXP(ua,)~P/2~D) with

Ap=T[D/(2—D)][Sp(2—D)P ~1}>/2=D)
and it follows from (13) that

Ay =w/[14 (k3 ~P/2=Dy | (14
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Thus the &-function interaction is screened and &g is the
generalized Edwards screening length.®!® The mean-
field result of (15) is a consequence of truncating the
series of §, of (12) at the first term. The terms of {, can
be written® as the Dyson equation
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Since we are interested in large volumes X2 of the mani-
fold and large distance (u—>0), (16) becomes in this lim-
it,
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where B is a numerical factor to account for the combinatorial front factors of various diagrams. Therefore £ is given

by
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where the coefficient b(D,d) is proportional to 3. The
unknown a, can be determined by substituting (14) into
(7). In the limit of X?— « for a finite & corresponding
to the situation where the manifolds are interpenetrating
a{P+2/2-D) 1 1

1

; =b(D,dw&’*D | (19

where b,(D,d) is a numerical coefficient related to c,.
Equations (18) and (19) provide the necessary formulas
for the density dependence of £ and the expansion ratio
a,/a. For the “semidilute” condition (Ref. 10), where p
is small but large enough to make the manifolds inter-
penetrating, (18) and (19) give the scaling laws

—(D +2)/2(d —D)
§~p (D +2)/ ,

20
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In the large-p limit, (18) and (19) yield £~p'? =222 and
a,=a [same result as (15)]. These results are, of course,
valid for d >d*=2D/(2—D) which is the relevant
lower critical dimension.

Since we have now established that the bare interac-
tion is screened as the manifold density increases, the re-
sults of (20) can be obtained using the following scaling
argument. For an isolated manifold {[r(X)—r(0)]?)
~X P-4 but for high densities the exponent is changed
to 2—D due to screening. Hence the density dependence
can be written as X229 f (p/p*), where f is a scaling

function and p is made dimensionless using the overlap
density p* ~XP?—9"D.d) Assuming that f(y) is a power
law and requiring that X2~2 is recovered at high p, (20)
is obtained. Similarly, since & ~X"2? for very low den-
sities, £ can be written as

§(p)~XV(D’d)f1 (an'v(D,d)—D) .

Assuming f,(y) to be a power of y and requiring that §
is independent of X at high p, (20) is recovered. In an
analogous manner the osmotic pressure of the system
can be shown to be proportional to p9P +2)/2(d—D),

Using the Feynmann variational procedure, I have
demonstrated that SA interaction between multiple
points of a manifold is screened due to the presence of
other manifolds. As a consequence, the mean-square
distance between two points of a labeled manifold de-
creases to the Gaussian result as the manifold density in-
creases. The derived exponents for the density depen-
dence of the correlation length and the mean-square dis-
tance between two points of a manifold are in accord
with scaling arguments at low densities and the general-
ized Edwards mean-field result at high densities.
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