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The continuum theory of a collection of self-avoiding D-dimensional manifolds with fixed con-
nectivity embedded in d dimensions is considered. The self-avoiding interaction between multiple

points of a manifold is shown to be screened in the presence of other manifolds. The screening
length and the mean-square distance bete'een two points of a manifold are derived to decrease
with the manifold density p according to p

'~+ ' '" ' and p
' '" 2'" ~', respectively.

There is currently considerable interest' in under-
standing the behavior of random surfaces. Specifically,
the static and dynamic properties of a self-avoiding (SA)
"tethered" (or "fixed connectivity") surface have been
explored using Monte Carlo simulations and analytical
calculations at one-loop level. In this paper I consid-
er a collection of SA manifolds and demonstrate using a
variational calculation that the bare excluded volume in-
teraction is screened. The scaling results for the depen-
dence of correlation length and the mean-square distance

between two points on a manifold on the manifold densi-
ty are derived in the "hydrodynamic limit. "

Consider N self-avoiding manifolds each of dimension
D and fixed connectivity, embedded in d-dimensional
space. The internal space of tzth manifold is described
by a coordinate x, = Ix ', . . . , x I in a bounded V of
of I . The position in d space is r (x ). The probabili-
ty distribution is given by the generalized Edwards mod-
el

P(Ir I)=exp — g fd x [Vr (x )]' ——g f dDx f dDxp5D(r, (x, ) —rti(xti))
O. = I O, ,P=1

D

(Vr.)'= y. (ar. /ax. ,-)'

and a ' correspond, respectively, to ihe Gaussian poten-
tial and the elastic coefficient of a free tethered manifold,
while io measures the strength of the "excluded volume"
interaction. As in the case of polymers, a is some
coarse-grained bare "lattice volume. " There is a cutofF
volume A, in the self-excluded volume term correspond-
ing to a minimum internal distance across which the
manifold can self-interact. I consider below the limit of
A, /V~O. For a single Gaussian tethered manifold
(ui =O),

(expIik [r(x, ) —r(xz))] )a=exp[ —k aG(x, —xz)/2),
(2)

([r(x, )—r(x )] ) =daG(x, —x )- ~x, —x

where

f2)[r(x)]/exp — fd x [Fr(x)]il

f2)fr(x)]exp — fd x [Vr(x)]2l

and G (x ) is the Coulomb potential in D space,
~

x
~

/[Sti(2 —D)/2] with SD=2& /I (D/2) being
the unit-sphere area in D dimensions.

Using the Hubbard-Stratonovich transformation, (l)
can be rewritten as

P(Ir J)=JY ' f2)PP(P, Ir I),
where

P(P, Ir ) )=exp( H), —

H=g fd x [Vr(x )]+ifdDx, g[r(x )]

+ d 2' r1

2LJ

JV= f2)P exp — fd"rgb(i)l

2N

Since the exact calculation of (3) is impossible, I perform
a variational calculation seeking a trial Hamiltonian.
Due to the presence of other rnanifolds, we expect the
bare interaction w5(r) in a labeled manifold to be
modified to an unknown interaction h(r), so that
(P(r)P(r')) =b(r —r') where the average is done using
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(3). As a consequence of b„ the results of (2) for the la-
beled manifold are altered and exact results are yet un-
known even for. the case of D=1. Here I assume that 5
leads to the effective Gaussian distribution,

P(P, Ir })=exp(—8),
Q= —,

' g f dDx a, '[&r (x )]'
(4)

exp —,' f—dx a& '[ t('r(x)]

where a
&

' is the renormalized elastic constant. In gen-
eral Q ) ls a complicated function of D; however, if wc
consider (see below) the behavior at large length scales

x, —xz
~

compared to a, we expect a, to depend on
x& —x2

~

as a power since the expansion ratio
a, /a —

~
x, —x2

~

" ++. Therefore, I use the trial
probability distribution,

+—' fd "r fd~r'p(r)b '(r, r')p(r'),

where 5 ' is de6ned by

fd r'b, '(r, r')b(r' r"—)=5(r r")—.

6 and a
&

are determined below.
The probability distribution for a manifold with 5 in-

teraction is given by

V(Ir, })=exp ——,'f q, '
,' f—'d—xfd'x'f, ~ exp il f q, r, (e"*—e"*')

(2~)D g.(q) ' (2~)' (2~)n '

r(x) = r exp(i q x)
(2~)D '

and go(q)=a/q . 5» is the d-dimensional Fourier transform of h(r). Adding and subtracting the trial term
,' f [d—q/(2m } ][r /g(q)] with g(q}—=a, (q)/q in the exponent of (5) we get

V( [r~ }) =exp ——,
' f D

—y (g, &, [r~ } )
(2~)D g(q}

6 g I

(2m )n go(q}
r'+ —f dDx fdDx' f „5»expliit. [r(x}—r(x')]} .

g q 2 (2m )"

Thus the entropy S of one manifold is

=lnf ff d rq'V(Ir })&]n f gd r exp ——,
' f

where k& is Boltzmann's constant and

(y) =f gd r yexp ,'f——
(2~) g(q)

At the extremum, 5S/5g=0 gives

p'q exp
(2m)D g q

'q' x} x2 J i» [r(x()—r(x& j] zd x( d x2
(2n )

where X is a typical size of V and X is the internal D-dimensional volume of V. Assuming that the q dependence of
a ( is dominated by small q (large

~

x
&

—x2
~

) and expanding the right-hand side of (7) in q to 0(q ), (7) becomes for an
isolated SA manifold (b,» ——m)

d/2
0) —1 =ciz,
Q

c( =(2 D)SIp 1 —4I—
2

D(D+1)I'
2

z =[SD(2 D)/4na] i (aX', —e=4D —(2 —D)d .

For small values of z, (8) leads to



BRIEF REPORTS

& [r(x, ) —r(x, )]'& =daG(x, —x, )(a, /a),

a, /a =1+c,z+0(z'),
where c i is the exact value for D= 1. For z ~ ao, it follows from (2) and (8) that

& [r(x, ) —r(x, )]'& —))x) —x,
~

"Dd', (10)

with v(D, d) =(D +2)/(d +2) being the Flory exponent. ' Equation (8) is an approximate crossover formula" be-
tween (9) and (10).

Caiculation of b,. 5„ is given by

&.=&a.O .&= f&[ +CD.C .P(O, I .]) f&[ e&P(&.[.I} (11)

allowing the center of mass of each manifold to be any-
where inside the volume V of d space, the leading term
of pg„becomes

(N/V) fd x, fd x &exp[ip[r(x, ) —r(x )]] &

For the typical size X of V very large, this approximates
toA X ((ua )

' 'with

AD ——I [D/(2 —D)][SD(2—D) '] /'

and it follows from (13) that

Adding and subtracting 8 of (4) in (3),

P((}},[r })=P(P,[r ()exp[ (H 8—)] .—

Using P as the propagator and expanding exp[ (H-
—A')] in (11), a perturbation theory is constructed.
The leading term of this series in hk. Making all terms
of the series except the leading term vanish provides a
constraint which determines Ak,

(iH') J

(2j)!

~ /[ 1+(k 2g2)
D/(2 —D)]-

a i /2
( g p~ )(D —2)/2D

(14)

X exp —
—,
'

(t) b '(}} =0,
2 (2 )d P P P

N ddtH'= g fd x f d(()),exp[ik r (x, )] .
(2m )

h„=w/(1+)Dpg„) . (13)

Averaging over the con6gurations of the manifolds and

The subscript x on the angular brackets indicates the
averaging over manifold configurations. Denoting &

of (12) by

[p/2(2n. )"]fd pP„g„(t)

where p—=iiiX /V is the manifold density (number of
monomers per volume}, gives

t

JL I

I

I

I

&p
I

I

I

I I

IV
I I

I

I

I

i
)(

8 V1I

(16)

Since we are interested in large volumes X of the mani-
fold and large distance (p~0}, (16) becomes in this lim-
it,

Thus the (2-function interaction is screened and (E is the
generalized Edwards screening length. ' The mean-
field result of (15} is a consequence of truncating the
series of g„of (12) at the first term. The terms of g„can
be written as the Dyson equation

~p0„=—(c k)
u)p+D pu)QD ddp [1+(pg)—2D/(2 —D)] —i

(
2 )D/(2 —D)

( 2a )D/(2 —D) J (2 )d (
e)2D/(2 —D)( 2 )D/(2 —D)P QI VT Pg p a]

(17)

where P is a numerical factor to account for the combinatorial front factors of various diagrams. Therefore g is given
by

g
—2D/(2 —D) g /r D/(2 —D), b (D d) ee/(2 —D) —D/(2 —D)

]DNP gQ I +, ling 0 I
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where the coefficient b(D, d) is proportional to P. The
unknown a, can be determined by substituting (14) into
(7). In the limit of X ~oo for a finite j corresponding
to the situation where the manifolds are interpenetrating

a(D+2)l(2 D) —
b (D d) gelI2 D—) (19)

1 l
Q Q)

where b, (D,d) is a numerical coefficient related to c, .
Equations (18) and (19) provide the necessary formulas
for the density dependence of g and the expansion ratio
a, /a. For the "semidilute" condition (Ref. 10), where p
is small but large enough to make the manifolds inter-
penetrating, (18) and (19) give the scaling laws

—(D +2)/2f d —D)
p

(20)

In the large-p limit, (18) and (19) yield g-p'D 2'l2D and
ai ——a [same result as (15)]. These results are, of course,
valid for d ~ d ' =2D /(2 —D) which is the relevant
lower critical dimension.

Since we have now established that the bare interac-
tion is screened as the manifold density increases, the re-
sults of (20) can be obtained using the following scaling
argument. For an isolated manifold ([r(X)—r(0)] )
-X "' '"', but for high densities the exponent is changed
to 2 —D due to screening. Hence the density dependence
can be written as X2"'D d'f (p/p'), where f is a scaling

function and p is made dimensionless using the overlap
density p*-X ~ ' '. Assuming that f (y) is a power
law and requiring that X is recovered at high p, (20)
is obtained. Similarly, since g-X"' ' ' for very low den-
sities, g can be written as

g( ) Xv(D, d)f (
Xdv(D, d) D)—

Assuming f, (y) to be a power of y and requiring that g
is independent of X at high p, (20) is recovered. In an
analogous manner the osmotic pressure of the system
can be shown to be proportional to p

' + '~ '"
Using the Feynmann variational procedure, I have

demonstrated that SA interaction between multiple
points of a manifold is screened due to the presence of
other manifolds. As a consequence, the mean-square
distance between two points of a labeled manifold de-
creases to the Gaussian result as the manifold density in-
creases. The derived exponents for the density depen-
dence of the correlation length and the mean-square dis-
tance between two points of a manifold are in accord
with scaling arguments at low densities and the general-
ized Edwards mean-field result at high densities.
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