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Dynamic ion-ion structure factor of strongly coupled hydrogen plasmas at arbitrary degeneracies
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Results are reported for the dynamic structure factor S(km) for ions in the hitherto theoretical-

ly inaccessible regime of strongly coupled partially degenerate hydrogen plasmas where the
electron-ion interaction is not weak. Results from density-functional theory and molecular dy-

namics have been used to provide a rigorous approach which avoids linear-response approxima-
tions or the construction of pseudopotentials. The results are discussed in terms of a microscopic
theory and a hydrodynamic model. Values of the sound velocity, thermal difFusivity, the specific-
heat ratio, and the viscosity for these plasmas are reported.

A hydrogen plasma is one of the simplest condensed-
matter systems which is also a real system of great prac-
tical interest in many diverse fields such as astrophysics,
semiconductor physics, and in inertial fusion. The static
structure factor $(k) and the dynamic structure factor
$(kto) of the ions are of great importance in describing
bremsstrahlung, light scattering, screening and other
properties af a hydrogen plasma. Nevertheless, sys-
tematic theoretical methods are not available except in
the limit where all particles can be assumed to behave as
classical points, or in the one-component plasma (OCP}
limit where the electrons can be modeled by a uniform
static background. ' In the OCP the electron-proton
system is reduced to an effective one-component classical
problem where the interaction U(r) between the iona is
simply the Coulomb potential. A slightly more realistic
model is obtained by allowing the electrons to respond
linearly to the ions. Then we have a classical problem
in which U(r) is the linearly screened Coulomb interac-
tion, viz. , V(q)/e(q), where V(q) is the Coulomb poten-
tial 4n/q, and .e(q) is the electron gas dielectric func-
tion. This too can be handled by molecular dynamics
simulation, ' once a form for e(q) is chosen. In this ap-
proach the electron gas correlations are embedded in

e(q), and molecular dynamics {MD) is used to deal with
the ion-ion correlations. This approach assumes that the
electron-proton interaction is weak, and is useful in a re-
stricted regime of (very high) densities and (low electron)
temperatures. A two-component plasma model, where
both the electrons and the ions are treated as classical
(and with the electron-ion interaction still assumed to be
weak), can also be studied by MD if suitable (if some-
what artificial) cutoH's are introduced to prevent classical
collapse of electron-ion orbits. Here there are problems
as to which pair interaction should be used, and the
MD simulation yields data on ${kco) for the electrons,
but not for the ions, due to the differe neinesti'me scales
for these two species.

Hence, it is clear that a systematic method capable of
calculating S(kco) for plasmas, where (a) the electrons

are of arbitrary degeneracy and (b) the electron-ion in-
teraction is not weak, is needed. At this point we note
that, as far as static correlations are concerned, a
rigorous first-principles method is available via density-
functional theory (DFT). That is, the ion-ion structure
factor S(k) for an arbitrary plasma can be calculated us-

ing the method given in Ref. 7. There, the ion-density
profile p(r) around a given ion at the origin, taken as the
"external field, " is calculated self-consistently, together
with the associated neutralizing electron density profile
n(r), using a pair of coupled density-functional equa-
tions for the ions and electrons, respectively. If the
average ion density is p, the ion-ion pair correlation
function g(r) is equal to p(r)/p. This incorporates the
nonlinear screening effects implicit in the self-consistent
solution of the Kohn-Sham equations. Once g(r) is
known [see Fig. 1(a)], S ( k) is available through a
Fourier transformation. In Ref. 7 it was shown that this
procedure leads to good agreement with known MD re-
sults for g (r) in the relevant limits.

At this point we ask if the rigorously obtained infor-
mation regarding the static correlations in the system
contained in S(k) could be used to develop an S(kco).
This is very much in the spirit of renormalized kinetic
theory where dynamic correlations are constructed as-
suming that the static correlations are known. Our ap-
proach is to note that the g(r) for the ions obtained
from DFT de6nes an effective ion-ion interaction via the
relation

g (r) =exp[ 13U(r)+N(r)+B—(r)],

where P=(k~T) ' is the inverse temperature in atomic
units and N(r), B(r) are the nodal and Bridge diagram
contributions. The hypernetted-chain (HNC) approxi-
mation is to set B (r } to zero. Then N {r) can be ex-
pressed in terms of g(r) and hence U(r) can be deter-
mined ' from a knowledge of g(r) only [see Fig. 1(b)].
If we define the strong-coupling plasma parameter I;,
for the ions as the mean potential energy divided by the
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FIG. 1. (a) shows g(r) for r, =1, I =10, solid'line; r, =l,
I =2, dashed-dotted line; r, =2, I =2.17, dashed line. (b)
shows U(r) obtained by inversion of the g (r).

kinetic energy, then I;;=PU(ro), where ro is the mean
ion-sphere radius, such that pro/3=p. The HNC ap-
proximation is known to be excellent for I;; & 15 and
hence certainly applicable to the hydrogen plasmas stud-
ied here. Another important coupling parameter, I";„is
defined by the electron-ion interaction V„, which is at-
tractive and could generate electron-ion bound states.
For weak V„and small I;; the pair-potential U(r) ob-
tained from the inversion of (1) would prove to be noth-
ing but the linearly screened Coulomb potentiaL But for
strong V„ the pair potential U(r) would be a nonlinearly
screened Coulomb potential which would have to be
determined from (1) for each temperature and density.
We should also emphasize that "three-body" effects, etc. ,
are not necessary in the regime of I;; studied here.
Indeed, even if three-body efFects were present they
would merely modify the exact two-body term to give an
effective two-body potential defined via (1).

Thus the method exploited in this paper is as follows.
We carry out a density-functional calculation for the
plasma along the lines given in Ref. 7. The resulting
ion-ion pair correlation function is inverted ' via Eq. (1)
to obtain the nonlinearly screened efFective ion-ion pair
potential. This U(r), containing nonlinear static screen-
ing can be consistently used for obtaining S(kco) for ions
since the co entering into ion dynamics is much smaller
than those for electrons (i.e., co~~co~ where co~ is the
electron plasma frequency). The S(kco) is obtained from
a MD simulation for the ions interacting via the effective
pair potential U(r). That is, the two-component prob-
lem has been replaced by an efFective one-component
problem. Note that this procedure is similar in spirit to
that used in the theory of liquid metals' to reduce the
two-component problem to an efFective one-component
form. However, the usual theory' invokes linear
response (LR) and hence the methods used here can be
exploited for hquid metals (e.g., transition metal liquids)
for which LR is inadmissable.

Having obtained S(kt0) from MD using the U(r) de-
duced from the g (r) of DFT, we are now in a position to

look for microscopic and other models for S(kco) for
this system. Here we consider hydrogen plasma with
electron densities n and ion densities p =n /Z, Z = 1,
such that the electron-sphere radius r, = 1 and 2 a.u. We
also consider temperatures T =P ' such that the
strong-coupling plasma parameter I'=P/r, ranges from
2 —10. The lower density (r, =2) high-temperature
(smail-I ) regime is very close to the onset of bound states.
In the examples presented here, the degeneracy parame-
ter T=T/TF, where Tt; is the Fermi temperature of the
electrons, ranges from 0.05—0.5.

We report results for S(kco) from MD using the pair
interactions obtained from DFT, from a simple micro-
scopic theory with no adjustable parameters, and from
the macroscopic hydrodynamic form of S(kto) where
the parameters are fitted to the MD data. The latter
model enables us to directly extract results for the ratio
of the speci6c heats y, thermal difFusivity DT, kinematic
viscosity b, sound velocity c„and the sound attenuation
coefficient y, for this hitherto inaccessible regime of
plasmas.

The microscopic model, to be called the local-field
model (I.FM), is the well-known generalized linear-
response form 6rst suggested by Hubbard. " The ion-
response function X(kco) is related to the dynamic struc-
ture factor by

S(ka)) = ImX(ken—)/mPa) .

The response function can be expressed as"

X(ka))=X (kt0)/[1 —Z Vk(1 —Gi, )X (kto)] .

(2)

(3)

Here Z is the ionic charge, Vk 4n/k is——the Coulomb
potential, and X (kto) is the free-particle response func-
tion for the classical ions, such that

2—kD
ImX (kto) = exp

4k

In Eq. (4) k =k/kih, where the thermal momentum kih
is given by k,h

——2M/P, co=coP, M is the ion mass, and
kD is the Debye momentum such that kD ——4mZ pP,
with p the ion density. Equation (4) is sufficient to define
the full X (kt0) since the real part is given from (4) by a
Kramers-Kronig relation. Note that the dynamic corre-
lations in the local Seld are neglected and a static form,
viz. , Gk, is used in (3).

The static correlations in the proton-electron two-
component system have been rigorously treated in the
LDA-DFT calculation. Hence, the static local field Gk
occurring in (3) is chosen to reproduce the static struc-
ture factor S(k) obtained from the DFT calculation.
Thus

5 khan dCO=pS k OFT,

k
Gk ——1+ 2 [1—1/S(k)DFT] .

kD

Equation (3) uses a static local field Gk. The extent of
the validity of such models for these plasmas is un-
known. Indeed one of the objectiues of this study is to
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FIG. 3. As in Fig. 2 but for r, =2, I =2.17 and k =0.31

and 0.62 a.u. in (a) and (b), respectively.

FIG. 2. (a) and (b) are for r, =1, I'= 10 at k =0.62 and 1.07
a.u. , respectively; {c)and (d) are for the I"=2 case. The trian-
gles are from MD. The solid line is the hydrodynamic fit,
vrhile the dashed line gives the local-6eld model.

test them against the MD results for S(ken).
A hydrogen plasma is a charge-compensated real Quid

(rather than an OCP} where the ion-plasma frequency
gets (screened and) converted to an acoustic mode.
Hence, much of the physics should be recoverable by a
hydrodynamic model' ' of S(kco) for co&co~ and for
small k. In the hydrodynamic model (HDM) of S(kco)
we write

pS(k) 2(y —1) bIt

y co +(bR)

1 58+-
)' (co —~s)'+&&' (7)

where AR and 58 are the half widths of the Rayleigh
and Brillouin peaks, respectively. The BriHouin frequen-
cy uz is simply the screened ion-plasma frequency
(sound mode). In the hydrodynamic regime we have the
dispersion relations of the form

m&
——c,k, hA =D&k, 48 =y, k

where the thermal difFusivity D& is related to the sound
attenuation coeScient y, and the viscosity b by the rela-
tion y, =0.5(7'Drk +b). The model may be exPected
to be valid in a more general sense' if the simple disper-
sion relations are not invoked. Then we have four ad-
justable parameters y, AR, co&, and b with the con-
straints y~ 1, 6 ~0.

TABLE I. The isentropic exponent y, thermal diffusivity

D&, and the sound velocity e, as obtained from the hydro-
dynamic model 6ts at the lowest momentum (k) studied. The
viscosity b =10 in all cases. Atomic units are used. Thus

e, =0.0174 a.u. is 1.46' 10 cm/sec.

10c,

10.0
2.0
2.17

0,62
0.62
0.31

1.31
1.45
1.27

0.103
0.202
0.136

0.174
0.271
0.121

The results for S(ken) for r, =1, I =10, and k =0.62
and 1.07 a.u. are shown in Figs. 2(a) and 2(b), respective-
ly. The agreement between MD (triangles) and LFM
(dashed line) for k =0.62 is surprisingly good consider-
ing that LFM is a theory without adjustable parameters.
This agreement is destroyed at k =1.07. Figures 2(c)
and 2(d) show the results for I =2, and k =0.62 and
1.07 a.u. , respectively. Here it is rather surprising to
note that the collective mode is more damped in the
LFM where there is no contribution to the damping
from the (static) local field. The rapid decay of S(k~)
for large u is well described by LFM and, as expected,
rather poorly by the co dependence found in HDM
(solid curve).

Figures 3(a) and 3(b} present results for the lower den-
sity lower degeneracy case r, =2, I =2. 17 (T=0.5) for
k =0.31 and 0.62 a.u. , respectively. The MD data (tri-
angles) show much more structure than the theoretical
model calculations. The LFM provides a good average
representation to the data. The physical constants ob-
tained from the hydrodynamic fits at k =0.62 a.u. for
the three plasmas are given in Table I, assuming the sirn-
ple dispersion relations given by Eq. (8). A more reliable
extraction of the physical constants and dispersion rela-
tions will require more elaborate modeling or the con-
struction of microscopic theories superior to the HDM
and LFM discussed here. A more detailed discussion
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will be taken up elsewhere.
In conclusion, we have shown how essentially any ar-

bitrary fIuid with electrons and nuclei can be described
by an e6'ective ion-ion interaction defining an effective
classical fluid for ugcoz, taking electron degeneracy
effects, strong electron-ion, electron-electron interactions
into account with only the LDA as the essentia1 approxi-
mation in a DFT calculation. In this approach it is not
necessary to explicitly construct pseudopotentials or
screening. The static and dynamic properties of such
systems can then be calculated by straightforward
methods valid for simple fluids, as illustrated by our re-
sults for S(kco). Results for S(kco) are immediately use-

ful for understanding plasma bremsstrahlung, '" transport
coeScients, lifetime e8'ects, etc. Also, the methods
presented here will have implications in the theory of
ion-ion interactions' in liquid transition metals and in
the study of fast processes in electron-hole plasmas in
semiconductors.
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