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Residue decompositions of the propagator for time-independent Hamiltonian operators
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The formal equivalence and algorithmic differences between the Leverrier-Bateman resolvent
method and the recursive residue generation method for constructing the evolution operator of
time-independent Hamiltonian operators are discussed.
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in terms of its complete set of orthonormal energy (cok, as-
sumed nondegenerate) eigenstates I cok) which satisfy the
closure relation

The author has promoted the usage of the Leverrier-
Bateman resolvent method (LBRM) for evaluating the
evolution operator U(t) of a multilevel system inter-
acting with a constant-intensity ' ' ' or a time-var-
ying- intensity ' '~' t' laser field. For fixed-amplitude
fields, Nauts and Wyatt and co-workers have advanced
the application of the recursive residue generation method
(RRGM) in calculating U(t). Both methods address the
problem of exponentiating a time-independent Hamiltoni-
an operator H to yield U(t ) =exp( —iHt ). While one can
often accomplish this through a complete spectral decom-
position of H in a finite basis, a strategy that is clearly
costly in computational and storage resources, both the
LBRM and the RRGM require only the eigenvalues of H
and obviate the need for the corresponding eigenvectors.
This common feature of the LBRM and RRGM suggests
that the two schemes are somehow related, and it is the
exposure of this linkage that is the object of this Rapid
Communication. In brief, I show that the methods are
formally equivalent but diA'er in their algorithmic genera-
tion of the residues of the Laplace-weighted resolvent of H
at its poles in the complex plane.

Consider a quantized system whose time-independent
Hamiltonian operator H has the discrete spectral resolu-
tion
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and have the projection

NkN(=0 if k~I,
and idempotent

Nk =Nk for I =1,2, . . .

properties, by virtue of Eq. (I), and obey the sum rule
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as follows from Eq. (2b).
In the field-free finite (N, say) complete orthonormal

basis I p), the transition amplitude between the states I p, )
and

I p, ) is given by

U„,(t) =+exp( —itokt)Nk „, ,
k

where
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where the time-independent operator Nk, when weighted
by the phase factor exp( —

icok t ), is the residue of the in-
tegrand in Eq. (2a) at the pole s =tok. However, taking
the Maclaurin expansion of U(t) and using Eq. (I) as
necessary gives as an alternative to Eq. (2b),

U(t) =+exp( t~—kt) I yk)(pk I . (2c)
k

Consequently, from Eqs. (2b) and (2c), the Nk operators
are given by

Q I yk)&xk I
=I, (lb)

I being the identity operator. The propagator U(t)
exp( —iHt) is the inverse Laplace transform of the

resolvent of H, i.e.,
~ g y

—OO

U(t ) = . ds exp( ist ) (sI H) '—
, (2a)—
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where y is an arbitrary real number to be chosen so that
all singularities of the integrand lie below s y and the in-
tegration is to be performed along the straight line
Im(s) y parallel to the real axis. Evaluating Eq. (2a) by
use of the residue theorem gives

U(t ) -g exp( —icok t )Nk,
k

(2b)

and U„,(t ) are general entries in U(t) and Nk, respective-
ly, the matrix representations of the operators in the I p)
basis. Equation (4a) is the point of formal equivalence of
the LBRM and the RRGM. At this stage no progress has
been made as a result of the Nk's dependence of the un-
known I yk) through Eq. (4b), save for the realization
that no matter how they are obtained they continue to
satisfy the relations given in Eqs. (3b)-(3d) in the
basis. Both the LBRM and the RRGM schemes circum-
vent direct use of I iA) through different algorithmic con-
structions of the Nk's.

The Nk's are computed in the LBRM approach' ' '
by first determining the eigenvalues cok using the EISPAK
library, or an equivalent package, followed by the recur-
sive generation of the NXN auxiliary matrices Zk via

989 1987 The American Physical Society



990 GERALD F. THOMAS

Faddeev's and Sominskii's modified Leverrier algo-
rithm Zi, = —iHZI, —~+Hg —~I for k =2, . . . , N starting
with Z~ I, where 81, =iTr(HZq)/k for k=1,2, . . . ,N
and H and I are matrix representations in the

~ p) basis of
the corresponding operators. The Nq's can be evaluated
concurrently by parallel array processors as

II (rok ro/)Ng =g cop 'ZI
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—
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(ni, —1)!Ng =gZ(, s '/+ (s —a)I)"'
ds S COI

Implementation of the LBRM on any of the emerging
multiprocessor machines will depend on the specifics of
the parallel architecture, in particular on whether core
memory is shared or distributed, the interprecessor con-
nectivity and communication links, and the disk storage
available per processor, with the degree of parallelism be-
ing such as to minimize the synchronization and commun-
ication overheads.

In the RRGM approach, t ~ the N~ „,'s are computed
as contributions from two or four residues of diagonal
Green's functions according as

~ p, ), ~ p, &, and H are real

However, when N is large the storage requirements of the
LBRM become a matter of concern, since even if H is
sparse, the Zp's and NI, 's are generally dense. Following
Nauts and Wyatt and co-workers in their implementa-
tion of the RRGM, one can conserve core resources by
first tridiagonalizing H via the Lanczos recursion
method, after which its eigenvalues are calculated and
transferred to disk until required. One then proceeds to
serially construct each of a total of N ¹ ectors of ZI, „'s
from the core-resident H and the N-vector of Zl, ~

„'s,
while capitalizing on the Jocobi structure of H to mini-
mize the number of Boating-point operators to evaluate
the ZI, „'s and Og, following which the ¹ ector of
Zp ~

„'s is transferred to disk. This strategy demands
core and disk capacities of 5N and O(N ), respectively.
With both H and its ¹ ector of eigenvalues core
resident, an ¹ ector of Ng „'s can be computed from
each N-vector of Zl „'s in core, the entire calculation re-
quiring a core capacity of 5N and involving N transfers
of N-vectors of NI, „'s to disk and N retrievals of N-
vectors of Zl „'s from disk. If, for fixed r and s,

~ NI, „~ ( s for some k, where s is arbitrarily small, then
these components make negligible contributions to U„,(t)
through Eq. (4a) and their omission assures continued
fulfillment of the relations in Eqs. (3b)-(3d) to within ac-
ceptable tolerance(s). Physically one may interpret this
numerical artifice as implying that not all of the dressed
states

~ y~) play significant roles in mediating the r s
transition. If H has degenerate eigenvalues, the summa-
tion in Eq. (4a) is over the n distinct eigenvalues with cor-
responding multiplicities nI, so that g&ni, N, and, for
U(t) to be always bounded, the Bateman matrices Nq are
generalized ' to

or general complex, respectively. These residues are prod-
ucts of N —1 quotients of eigenvalue diA'erences requiring
determination of the coI, 's in addition to the eigenvalues of
from two to four (N —1)x (N —1) reduced Hamiltonian
matrices in an orthonormal transition vector basis
comprised of symmetric and antisymmetric linear com-
binations of

~ p, ) and
~ p, &. The diagonalizations via

EISpACK are preceded by use of Paige's reform-
ulated ' Lanczos recursion method ' to transform
H and the reduced Hamiltonian matrices from the

~ p)
basis to tridiagonal form in a so-called recursion basis. By
exploiting the structural sparsity of the tridiagonalized
form of a generic laser-molecule Hamiltonian operator,
Castillo and Wyatt tsar succeeded in reducing storage re-
quirements to the extent that calculations on systems with
N~ 10 were feasible; furthermore, by representing a
multidimensional potential in a direct product of one-
dimensional potentials, significan reductions in computa-
tion time were achieved " in an implementation of the
RRGM on a vector processor. The LBRM should also
benefit from use of these features of the Hamiltonian
operator describing the interaction of a polyatomic mole-
cule with a classical laser field of fixed or time-varying in-
tensity. Nauts ' and Nauts and Chapuisat have dis-
cussed the extension of the RRGM to the case where H
has a degenerate spectrum by noting that through the re-
striction of the Hamiltonian operator to the subspace of
the total space of state vectors spanned by the recursion
basis, its nondegenerate eigenvalues are the only ones
needed for the computation of the residues.

Development' of the LBRM was prompted by investi-
gations' of the evolution of radionuclide inventories in
open systems —hence the Bateman" appellation for the
NI, 's—and in a related context the method has been ap-
plied' to the point nuclide kinetics of H, H, and 3He in

the thermal-neutron Aux prevailing within the heavy-
water moderator of a CANDU (Canada Deuterium
Uranium) commercial power reactor. The LBRM is
currently being used to gauge the photon economics dur-
ing the initial stages of multiphoton excitation of polya-
tomic molecules by continuous-wave' and pulsed' '
high-intensity lasers for isotope-separation applications.
Development of the RRGM was inspired by use ' of simi-
lar techniques in calculations of the local density of elec-
tronic states about a site in a disordered solid and, in addi-
tion to its use in the laser-molecule context, it has been
applied' to the evaluation of thermal and temporal prop-
agators arising in approximations to quantum statistical
averages.

Finally, it is interesting to note that even if N is
sufficiently small as to render a complete spectral decom-
position of H competitive with the LBRM and RRGM
approaches to the calculation of U(t), there is no as-
surance' that a similarity transformation for diagonaliz-
ing H can be determined if H is not Hermitian, such as
when its eigenvalues have finite radiative widths.

I thank Duncan Barber for useful discussions.
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