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Random walk in a quasicontinuum
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A continuous-time random walk on a spatial lattice described by the Kramers-Moyal expansion
has a continuum limit described by a Fokker-Planck equation. It is often desirable to know
corrections to quantities computed in the continuum limit, but truncation of the Kramers-Moyal
expansion at any level other than the Fokker-Planck either breaks down or yields unphysical re-
sults. Here we introduce an alternative approximation to the Kramers-Moyal expansion which
circurnvents the problems of a naive truncation and correctly incorporates the first-order correc-
tions due to the discrete lattice.

I. INTRODUCTION

Continuous-time Markovian random walks in a discrete
state space have many applications in the physical sci-
ences, ' but they are often difficult to treat analytically and
numerically since the evolution of the probability distribu-
tion is given in terms of the Kramers-Moyal expansion
(KME)—a partial differential equation of infinite or-
der. ' A well-defined continuum limit can be formulated
by truncation of the KME at second order, yielding the
Markov diffusion approximation described by a Fokker-
Planck equation (FPE). This limit corresponds to taking
the lattice spacing to zero while some characteristic tran-
sition rate diverges as the inverse square of the lattice
spacing, and it gives a qualitatively correct picture only
for large times, and for distances of order Jt.

Much recent work has gone into determining the
corrections to quantities computed in the diff'usion ap-
proximation for diffusion across interfaces, and especial-
ly for first-passage times. " Formally the nth term in
the KME is of order h", where h is the lattice spacing, and
it seems sensible to work with a partial diA'erential equa-
tion of finite order by truncating the KME at some given
level, but there are two main problems with this approach.
First, truncation at alternate even orders results in a
"bad' equation yielding solutions which certainly blow
up, due to the "wrong" sign of the highest-order dif-
ferential operator. Of course, any such higher-order trun-
cation also necessitates the specification of more boundary
conditions. Second, truncation at any order greater than
the second will result in a transition density which takes
unphysical negative values, according to the theorem of
Pawula. ' This limitation is acceptable for some pur-
poses, but the region in which Pawula's theorem applies
with the most vengeance is exactly that region in which
the diffusion approximation is the weakest: at short times.

There is a diA'erent approach to this problem, however,
which was recently introduced in the context of a dense
nonlinearly vibrating lattice. ' ' In the present context
this simple approach, which we call the "quasicontinuum"
approximation (QCA), incorporates the lowest-order
corrections due to the discreteness of the lattice while cir-
cumventing the problems associated with a naive trunca-

tion of the KME outlined above. It results in a well-posed
mathematical problem and yields a positive, normalized
probability density as its solution which corrects in a
meaningful way the continuum Fokker-Planck descrip-
tion. The rest of this paper is organized as follows. In
Sec. II we develop the quasicontinuum approximation to
the KME in a general setting, most importantly proving
the positivity of the quasicontinuum probability density.
As an example of this approach, in Sec. III we consider
the exactly soluble free random walk on a lattice and com-
pare the exact solution, the diA'usion approximation (DA),
and the QCA. In Sec. IV we summarize our results and
point out some areas for future development.

II. THE QUASICONTINUUM APPROXIMATION

The probability distribution for a continuous-time Mar-
kov process, u(x, t), obeys the KME

D'"'(x) = lim r '(I/n!)
0

x ~' dx'(x' x) "P(x', t+ z
i x, t)—, (2)

with P(x ', t + r
~
x, t ) the transition density of the process

(the density at x' at t+ r given a b distribution at x at t).
For processes taking values on a discrete lattice with spac-
ing h (with meaningful initial conditions) the solution
u(x, t) is a sum of weighted b functions located at the
points x nh. For simplicity, in the following we restrict
ourselves to the isotropic case, where D " 0 for n odd,
and the case of uniformly bounded and nonvanishing
diff'usion, i.e., D " &0 for n even.

The diffusion approximation is obtained by truncating
the KME after the second term resulting in the FPE

a, u =a'D"'u (3)

u (x,O) =uo(x),
where we assume time homogeneity and Dt")(x) is the
KME coefficient defined by
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The solution of the FPE is a well-behaved analytic func-
tion (for t & 0). Truncation after the fourth term, naively
incorporating corrections to the solution of the FPE to or-
der h, yields the "unstable" equation

=(a'D")+e'D"') (4)

The positive fourth spatial derivative generally leads to a
blowup of the solution; consequently an initial-value prob-
lem for Eq. (4) is ill posed. The next higher truncations
lead to a better behaved equation, but Pawula's theorem
ensures that the approximate transition density is negative
somewhere.

The QCA introduced herein is obtained as follows.
Keeping in mind that D ( (x) is of order h when the
diA'usion limit is approached, Eq. (4) above is, to order h,
equivalent to

g 2D (2) [1 (1/D (2) )g 2D (4) ]
—( u (s)

where the inverse of the term in brackets is taken in the
operator sense. This is a nonlocal equation, like the origi-
nal KME, but the length scale of the nonlocality is limited
to order h. The most important point is that the QCA is
positivity preserving: When the initial condition is a posi-
tive probability distribution, then the solution remains a
positive probability distribution for all times. The proof of
this relies intimately on the maximum principle' for el-
liptic operators and requires that we restrict the magni-
tude of the len th scales implied in the variations of
D (~)(x) and D ( (x) with respect to the lattice spacing,
as is necessary to obtain a meaningful diff'usion limit.

To realize the scaling of D and D explicitly, we
write

8, u =[(r /h )+r"+2r'()„lnw]w . (io)

Since w & 0, it is sufhcient to show that the term in brack-
ets is positive, because then u increases at that point. To
establish the result, we must bound 8„1nw. In particular,

l~. (,t) I
—J d 'I~.«, ') ID"'( ') ( ', t),

where r(x) is bounded and bounded away from zero, and
its first and second derivatives are bounded, uniformly in h

as h 0. Introducing the Green's function K(x,x') satis-
fying

[r(x) —h 282]K(x,x') =8(x —x'),
and the function w(x, t ) defined by

w(x, t) =„dx'K(x,x')D"'(x')u(x', t),
the QCA evolution Eq. (S) may be rewritten

B,u = —(r D /h )u+ [(r /h )+r"+2«'B„lnw]w .

(9)
The maximum principle for elliptic operators ensures that
K(x, x') is a well-behaved positive function, and hence
when u ~ 0 (but not identically 0), w & 0. Assuming pos-
itive normalized initial data for u, at the first time t =t*,
at which u(x, t*)=0, its time derivative is

and the derivative of K(x,x') is bounded by K(x, x') as

I B„K(x,x')
I
~ (r,'t'/h)K(x, x'), (i 2)

where r, is the supremum of r(x). This result follows
simply from the defining equation for K and its known
regularity and positivity properties. Hence, 8„1nw is
bounded uniformly by (r,' /h), and the term brackets in

Eq. (10) satisfies

[(r /h )+r"+2r'()„ lnw]

III. THE FREE RANDOM WALK

As an example of the QCA we consider the free random
walk on a lattice with lattice spacing h, with an initial dis-
tribution concentrated at the origin. The initial condi-
tion for the KME, the DA, and the QCA is thus taken to
be u(x, 0) =8(x). (With this initial condition the solu-
tions are the Green's functions for the linear equations, in
terms of which the solutions for arbitrary initial condi-
tions may be expressed. ) The KME may be written

B,u(x, t) =2)u g (2n)! 'h'"()2"u(x, t),
n 1

(is)

where p is the transition rate of the walker to each of its
nearest-neighbor lattice sites. The exact solution is

u~(x, t) = g p„(t)8(x —nh),

p„(t) =e '"' g (pt)' +'"I/m!(m+ ln I )! .
m 0

The DA is

Bgu =DB u

where we have defined the diA'usion coe%cient D =ph,
and the solution is

uo(x, t) =(4trDt) '"exp( x'/4Dt) . —

The QCA is

6, u =DB„(1—e8„) 'u, e=h /12 .

The nature of the QCA density is best seen in terms of

where r; is the infimum of r(x) and
II

.
I

denotes the
supremum of the absolute value. As long as

h «'/[ll«'ll-r'"+(llr'll-'"+'I «" II-) '"] (14)

the term in brackets is bounded above 0 and the result is
established. Note that in the case of constant r(x) this
implies no restriction on the lattice spacing.

The fact that the QCA preserves the normalization of
u(x, t) is immediate from its form whenever the probabili-
ty current —B„D [I —(1/D )B„D ] 'u vanishes at
the boundaries of the state space.
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its Fourier transform

u~(k, t) =exp[ —k Dt/(I+ck )]
=exp( Dt/—c)+ [exp[(Dt/ c)/(1+ ck')] —1] .

(20)

Since the second term above decays as k as k ~, it is
an integrable function of k and its inverse Fourier trans-
form is a continuous function of x by the Riemann-
Lebesgue lemma. Thus the QCA density is the sum of a 6
function at the origin weighted by exp( —Dt/c) and a con-
tinuous function of x and t (for t & 0). This makes sense
from a physical point of view since the random walker will
have some probability of being at the origin at all times,
and from a mathematical point of view since the exact
density which is being approximated is a sum of 6 func-
tions. This decomposition of the density also shows that
the QCA is not merely the replacement of one random
walk on the lattice with another, as might be inferred
from the nonlocal nature of the problem. An explicit ex-
pression for the QCA density is obtained from Eq. (20)
via the inverse Fourier transform
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FIG. 1. Probability of finding the random walker at the origin
vs dimensionless time for the exact process (E), the diffusion ap-
proximation (D), and the quasicontinuum approximation (g).

u&(x, t) =exp( Dt/c)6(x—)+(Dt/c) exp( Dt/c)(2c' —) 'exp( —lx ~l/c' )

x g (Dt
l
x l/c ) "(2"n!) ' g (Dt/4c) (2m+n+1)!/[(m+n+1)!(m+n)!m!]

n 0 m=0
(21)
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To compare these densities we consider short times on
the dimensionless time scale pt, and in Fig. 1 plot the
probability, po(t ), that the walker is at the origin (i.e. , be-
tween —h/2 and h/2) as a function of time. As is evident
from the figure, the QCA probability is a far better ap-

I

proximation to the true probability for short times. In
fact, while po(t) is analytic in t as t 0 for the exact and
QCA densities, it is nonanalytic in the DA. To compare
the long-distance behavior of the densities at short times,
we consider various moments. All three densities have the
same time-dependent second moment ((x ) =(x ) &

=(x ) =2Dt) and the QCA density gives the exact
fourth moment [(x ) =(x )~=3(2Dt) +12c(2Dt)
while (x ) =3(2Dt) ]. The QCA moments are always
correct to O(c ), while the DA is only good to O(c). At
short times this is especially apparent, as shown in Fig. 2
where we plot the sixth moment for the three densities.
This shows that at short times the wings of the DA density
are much smaller than those for the exact density, while
the QCA density has slightly more weight in the wings
than the exact density. As t ~, both the DA and the
QCA asymptotically approach the exact result, at both
short and long distances.

IV. SUMMARY AND DISCUSSION
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FiG. 2. Time-dependent sixth moment vs Dt for the case
a=0. 1 for the exact process (E), the diAusion approximation
(D), and the quasicontinuum approximation (Q).

The quasicontinuum approximation to the KME
presented in this Communication offers a new and mean-
ingful technique for dealing with corrections to the
diffusion equation in close-to-continuum conditions. The
example above shows that it effectively incorporates
corrections due to the presence of the lattice in the short-
time regime where the diffusion approximation is especial-
ly suspect. Its usefulness is apparent in this regime where
no other approximation (known to us) that incorporates
only the information in D is valid.

Although the QCA is nonlocal, it can be cast into a lo-
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cal form by considering the new variable

v(x, t) - dx'[1 —(I/D"')r)2D(4'] '(x, x')u(x', t),
(22)

has the strictly positive QCA (written in local form)

r)iu = f8„—(I + cr)„)u+D&„u+ cr), r)„u, (26)

which satisfies the equation

t), v(x, t) =t)„'D (2'(x)v(x, t)
+[1/D"'( )]a,a„'D"'( )»(, t) . (23)

t), u(x, t) =2p g (2n)! 'h'"r)„'"u(x, t)
n 1

—v g (2n+1)! 'h "+'tl "+'u(x, t)
n 0

(25)

If working with local equations is desired, Eq. (23) may
be utilized and the QCA recovered (locally) by way of

u (x, t ) = [1 (1/D ' )a'D "']v(x, t ) (24)

The approach presented here can be generalized in
several directions, two of which will be mentioned here:
(a) random walks on multidimensional lattices, and (b)
random walks with drifts. For example, in the case of
constant drift and diffusion coe%cients it is easy to show
that the KME

where D=ph, c=h /12, and f=vh, if and only if
h (3't D/~ f ~. Finally, it should be noted that the QCA
developed here defines a Markov stochastic process in its
own right. The sample paths for the exact process are
well understood (piecewise-constant functions with isolat-
ed discontinuities) as are those of the diff'usion process
(Brownian paths —continuous but nowhere diA'erenti-
able). It would be quite interesting to know more detail
about the quasicontinuum sample paths characterizing
the low-order lattice eAects neglected in the Brownian
paths.
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