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The covariant coupled equations for plasma dynamics and the Maxwell field are expressed as a
phase-space-Lagrangian action principle. The linear interaction is transformed to the bilinear
beat Hamiltonian by a gauge-invariant Lagrangian Lie transform. The result yields the general-
ized linear susceptibility directly.

The fundamental relation between nonlinear pondero-
motive efI'ects and linear plasma response has come to be
known as the K-X theorem. Ponderomotive efects are em-
bodied in the oscillation-center Hamiltonian K(z), intro-
duced by Dewar. ' It describes the (oscillation-averaged)
orbit of a single particle in an oscillatory field, with the
dominant effects quadratic in the wave amplitude. On the
other hand, the linear susceptibility Z, a functional of the
unperturbed particle distribution, describes the oscillatory
current density linear in the wave amplitude.

This surprising relation between the quadratic Hamil-
tonian K2 and the susceptibility I, for the case of a single
wave, was observed some years ago, and then proved by
Johnston and Kaufman and by Cary and Kaufman.
The underlying reason for the relation, however, became
clear only with the recent development of phase-
space-Lagrangian action principles, and the realization
that the plasma action term quadratic in the wave ampli-
tude [ —ff(z)Kz(z)] was simultaneously both the oscil-
lation-center energy and the plasma part of the wave La-
grangian. (To be sure, this fact was at least implicit in the
earlier work of Dewar' and of Johnston and Kaufman. )
The importance of this realization, with its embodiment in
the action principle, is best exemplified in the recent
study, by Similon and co-workers, of self-consistency in
the stabilization of a confined plasma by the ponderomo-
tive eff'ects of an electromagnetic wave.

The ponderomotive beat Hamiltonian, introduced by
Johnston for the scattering of two waves, and now of
especial use for the theory of free-electron lasers and
beat-wave accelerators, is a conceptually simple extension
of oscillation-center ideas to particles that resonate with
the beat of two primary waves. Its utility led Grebogi to
the conjecture that it too is related to the linear suscepti-
bility. This Rapid Communication presents a simple
proof of that desired relation, and then illustrates it by an
explicit calculation.

That calculation, in turn, is based on the use of a power-
ful new perturbation technique, invented by Littlejohn
for a system governed by a phase-space Lagrangian.
Whereas the standard Hamiltonian perturbation theories
(such as the Hamiltonian Lie transform' ) preserve the
Poisson structure, the new method enables one to perform
the desired averaging directly on the Poisson (or symplec-
tic) structure. As a result, the generator of the transform
can be made gauge invariant and physically meaningful.

The calculation is outlined here for a field-free back-
ground. The extension to the case of a strong background
field is conceptually easy, but of course algebraically com-
plex, and will be published later. We begin with the
definition of the two-point linear susceptibility tensor, "
as a functional derivative:

Z~ "(x,,x, ) =aj~(x, )/SW„(x, ) . (la)

It is convenient to use covariant notation, with metric
(1,1,1,—1) and c =1. Thus x =(x, t), j"=(j,p), and
A„=(A, —p). In terms of the Fourier transforms [e.g. ,j"(k) =Jd xj "(x)exp( —ik x), k„=(k, —co)], the sus-
ceptibility reads

&""(k),k2) = &j"(k i)/b&, (k2) (lb)

In Eq. (1),j is the linear current response to a perturbing
electromagnetic potential A. Since j must be invariant
under gauge transformations of A, the susceptibility must
satisfy X""(k,k')k„'=0. In addition, charge conservation
(Bj"/Bx" =0) implies that k„Z""(k,k') =0. Because each
particle responds to the perturbing field independently,
the current density is additive in the particles; hence the
susceptibility is a linear functional of the unperturbed dis-
tribution.

The ponderomotive Hamiltonian Kz(z) is (by def-
inition) that term of the oscillaton-center Hamiltonian
K(z) which is quadratic in the perturbing potential. Its
most general form is, thus,

K2(z) =—
z~ d x~) d xzA„(x~)A„(xz)K""(z;xi,x2)

(2a)

=—
&

d k~z' d kzA„*(ki)&,(k2)K"'(z;ki, k2) .

(2b)

[We absorb (2tr) into the element d k. ]
We may interpret the integrand of (2b) as the contribu-

tion to the oscillation-center Hamiltonian of the nonlinear
beat between two plane waves with wave vectors k i and
k2. The relation we wish to prove, the "generalized K-Z
theorem, " is

K""(z k~, k ) 2—bg""(k~,k2)/bf(z) .

That this relation has not heretofore been observed is
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probably due to the fact that almost all calculations of X
make specific assumptions on the form of f. However, the
functional derivative in (3) requires the susceptibility for
completely general f.

One restriction which we do make is that f includes
only those particles which are nonresonant with the pri-
mary ~aves k ~, k2. Hence, X is Hermitian and K2 is real.
The proper treatment of primary resonances is a large
subject in itself, with important contributions, especially
by Dewar and co-workers. '

The system action S is a functional of the potential field
A(x) and the particle orbits in eight-dimensional phase
space, denoted z'(z) =—(r" (r),n„(z)), with n„=(n, —h)
the kinetic 4-momentum, h the kinetic energy, and r an
arbitrary orbit parameter. The single-particle action is
S~ =f[n" dr+eh(r) dr]. We demand that b'Si-0 for
variation of orbits constrained to the seven-dimensional
mass surface 0 =H(z) =(n +m )/2m. With a Lagrang-
ian multiplier X(z), we have

0=b J [n dr+eh(r). dr —X(z)drH(z)] . (4)

Variation with respect to r(r) yields dn„=eF„+r", where
F„„=a„A„—a„A„, while variation with respect to n(r)
yields dr" A. (r)dzn"/m. The mass constraint determines
k (r) —[dr(r)/dz]; if one wishes dz to represent the
particle's proper-time interval, then X = l.

The total action is S;S;+S,where S; is the action
of particle i and S =fd xF„„F""/16nis the Maxwell ac-
tion. The interaction part of S can be expressed as
fd x j"(x)A„(x),with (u" =dr"/dr n"/m),

j"(x) =pe dzu"(z)84(x —r(r))

=e d'z f(z)u "b (x —r) .

We have introduced the particle phase-space density (for
each species),

f(z) =ggr dz; b'(r r; (r;))b'(n n;—(r;)) . (5)—

[gi,g2] =(agi/a. ). (ag2/an) (ag, /an—) (ag,/a. ).

+e(ag)/an). F(r) (ag, /an) . (6)

For a wave field F„„(x),oscillations occur in the PB (6)
for nonresonant particles. Our aim is to transform away
this term, linear in F, by a change of variables from parti-
cle coordinates z' to oscillation-center (OC) coordinates
z (z;F). The linear oscillation induced by F is denoted
z=z —z. We see that z (z) is a physically meaningful

Variation of S with respect to A(x) yields the Maxwell
equation a„F""(x) = —

4n j "(x) .
The distribution f satisfies the Vlasov equation lf, H]

=0, in terms of the noncanonical Poisson bracket (PB),

[gi,g2I J'~(z) (ag, /az') (ag2/az~) .

The Poisson tensor J(z) is the reciprocal of the Lagrange
tensor (or symplectic two form), ro„eF(r),
co,„=—ro„ I, and co„=0. Thus, J""=0, J"= J'"=I, —
J' eF(r), and the PB is expressed in the physical vari-
ablesr, x, F:

vector field; it is the generator of the Lagrangian Lie
transform.

In terms of the Fourier transform F„„(k),the linearized
particle equations yield the oscillation

n(z;F) =eq d'k F(k) u (ik u) 'exp(ik. r),

[gf g2] = (ag, /ar) (ag2/an) —(ag, /an). (ag /ar)

Space limitations permit us only to quote the result of us-
ing the Lagrangian Lie transform, which is based on
differential-geometric methods. ' We obtain the OC
Hamiltonian K(z) =H(z)+K2(z) with the ponderomo-
tive term given by the virial'

K2(z;F) —
2 r(z;F) [eF(r) u]

The canonical Hamiltonian equations then yield

dn/dr —aK/ar = —aK2/ar,

for the ponderomotive force, and

(10a)

dF/dr =aK/an -n/m+ aK /an, (lob)

a gauge-invariant expression for the canonical OC
momentum n, in terms to the OC velocity dr/dr and the
quadratic term (related to wave momentum). [The mass
constraint now reads O=H(z) =K(z), i.e., the Hamil-
tonian transforms as a scalar under the coordinate
change. ]

The one-particle action is now, in the OC representa-
tion, including the Hamiltonian constraint,

S~ =Jr [Z dF K(z;F)dr] . —

The terms of g, S; quadratic in F are, thus,

S = —g dr; K (z2;(r;);F) = —J d zf(z)K2(z;F) .

(12)

Noting from (9) and (7) that K2 and z are manifestly
gauge invariant, we proceed to express K2 in the desired
form (2b), using F„„(k)=i (k„A, k„A„);we—obtain

K""(z;k,k ) =(e'/m) [(k u) '+(k u) ']
X%'""(u;k ~, k2)exp[i(kz —k i).r]

(13)
with

W""(u;ki, kz) =k
~ u kgu "+kq. u u "k[

—k) k2u"u" —k). uk2 ug"' .

r(z;F) = —(e/m)J d kF(k) u (k. u) exp(ik. r),
as a vector field on OC phase space. In order that (7) be
well defined, we consider only that portion of phase space
which has no primary resonances; i.e., k. u&0 for all k,
such that F(k ) AO.

Our aim is to make the PB canonical when expressed in
OC variables:
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On substituting (2b) into (12), we obtain

g t ) = —
J d z f(z) —

~ d k( ld k2A„*(k))

x A, (k2) K""(z;k~, k2) .

(i4)

Recalling that j"(x) =8+,. S;/6A„(x), we see from (la)
that

Z"(x, ,x, ) =S'S/S~„(x, )a~.(x,),
or

I""(ki,k2) =6 5/&l„*(ki)6A, (k2) .

Applying this to (14), we obtain

Z"'(k~, k )2= —
&

d z f(z)K""(z;k~,k2), (16)

which is equivalent to the desired theorem (3).
If we set k2 =k~ in (13) and (16), we obtain the covari-

ant form of the single-wave K-X theorem. '
In summary, we have indicated that a phase-space

transformation from particle to oscillation-center coordi-
nates, using the oscillation vector field as the generator of
a Lagrangian Lie transform, converts the Poisson bracket
to canonical but gauge-invariant form, and converts the
linear interaction to a bilinear form, which simultaneously
is the beat Hamiltonian, and expresses the generalized
linear susceptibility.
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