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Elastic properties of a hard-sphere crystal
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Recent calculations for the elastic properties of the hard-sphere crystal gave quite peculiar re-
sults, including negative values for the Poisson s ratio. Here we claim that these results were due
to the density-functional expansion used in these calculations. We report the elastic constants
given in a diA'erent functional approach, which are in full disagreement with the previous calcula-
tions.

The density-functional formalism (DFF) has been ap-
plied during the last several years to the problem of cry-
stallization. ' ' The advantage of the DFF over other ap-
proaches rests on the fact that it provides a unified
description of the fluid and the crystal, so that the thermo-
dynamic potentials of both phases may be directly com-
pared and the phase transition localized. The study of
crystallization requires a very careful choice of the ap-
proximations used to evaluate the free-energy density
functional, F[p(r)]. So far, two types of approximations

have been successfully used in the description of crystal-
line solids within DFF. In both cases the ideal-gas contri-
bution is exactly evaluated, while the rest,

hF [p(r) l =F[p(r)] —F~q[p(r)],
is approximated in diff'erent ways.

The first DFF theory of crystallization was developed
by Ramakrishnan and Yussouff'2 (RY). It uses a func-
tional Taylor expansion of AF[p(r)] around a uniform
reference density, truncated at second order,

AF lp(r)] = AF [ppl +AItp„' dr[p(r) —ppl—
kgT „dr„dr'cp( ~

r —r'
~ )fp(r) —pp] [p(r') —pp], (2)

where h, po is the excess over ideal gas for the chemical po-
tential and cp( ~

r —r'~ ) is the direct correlation function,
both evaluated at the uniform reference system, so that
they may be obtained from standard methods in the
theory of liquids. '

Most of the correlation structure in a simple fluid may
be described in terms of a reference hard-sphere (HS)
system, so many efforts have been devoted to the study of
HS crystallization. In particular, the RY approach has
been used with several criteria for the description of
the density distribution in the solid and the choice of the
uniform reference density po.

The second DFF approach to the problem of crystalli-
zation takes

AF [p(r) l =g "dr p(r)A%" (p(r) ), (3)

where h@(p) is the excess over the ideal gas for the free
energy per particle in a homogeneous fluid of density p.
The "averaged density" p(r) is defined as

p(r) —=„dr'p(r')w(~ r —r'~, p(r)), (4)

with a normalized weight function w(r, p) which is fixed
to reproduce the linear response function, or the direct
correlation function of the bulk fluid. This kind of
density-functional model was first introduced in the study
of electronic systems, ' with the name of averaged-density
approximation (ADA) and later reinvented for classical
fluids. ' Several versions of the ADA have been applied

C„=(1/V) O' F/OA „OA „—,
C(2=—(1/V)(O F/OA, )OAz2 —OF/OA„),

C —= (1/V) O' F/OA»OA „,
(5)

where V is the volume of the unstrained crystal, and A;t.
are the elements of the strain tensor. The derivatives with
respect to A;J in (5)-(7) are evaluated at the unstrained
crystal, A;J =b;J, and they have to include the full relaxa-
tion of the particle distribution in the unit cell. This is
usually done by parametrizing the particle density in
terms of a set of free parameters b~j (p =1 to n), so that
for any value of the strain tensor, F is given by the
minimum of the resulting parametrized free energy with

I

to the problem of the crystallization of hard spheres, and
the more developed versions' ' show substantial agree-
ment with the results of computer simulations.

Having achieved a good description of the hard-sphere
solid from these density-functional models, a step forward
was given by Jones' and Jaric and Mohanty' with the
evaluation of the elastic constants of the HS crystal, in
both cases with the RY approach described above. The
DFF clearly constitutes a good approach to the evaluation
of the elastic constants, as they are defined in terms of the
second derivatives of the free energy with respect to the
crystal lattice. For the fcc lattice of the hard-sphere solid
there are only three independent elastic constants (in the
usual notation of cubic crystals):

979



980 E. VELASCO AND P. TARAZONA

respect to all these parameters. The second derivatives of F, including the relaxation of the parameters {X~],may be writ-
ten as

(azF/eA, ,aA„)„,=azF/aA, ,aA„g(—azF/aA, ,a~, )E;, ](a zF/a A„W.,), (8)

where the second derivatives in the right-hand side (rhs)
of this equation are taken independently with respect to
the strain tensor and the free parameters. The subscript
"rel" denotes a relaxed derivative, and E~~

' is the pq ele-
ment of the matrix inverse of

E„=azF/a~, a~, . (9)

All the derivatives in (8) and (9) should be evaluated at
the equilibrium unstrained crystal.

The outcome of the DFF calculations of the elastic con-
stants of the hard-sphere solid was very surprising. Both
calculations gave negative values for the Ci2 constant,
which is reflected in very low values of the bulk modulus
and negative Poisson's ratio. The question arises whether
these unusual results are a defect of the theoretical model
or respond to a real feature of the hard-sphere system,
which may be associated to the strong discontinuity in the
interatomic potential. Some speculations were also done
on the possible relation of the peculiar elastic properties
and crystal instabilities which may lead to quasicrystalline
structures.

In order to explore this problem we have performed the
calculation of the elastic constants of the hard-sphere
solid using the ADA instead of the density-expansion ap-
proach. We use a Gaussian parametrization for the densi-
ty distribution, which in a deformed state with strain ten-
sor 2 is taken as

I

use the prescription for the weight function given in Refs.
10 and 18. The parameters of the liquid-solid transition
are given in Table I, in units of the hard-sphere diameter
CF.

By symmetry, the diagonal elements of the strain tensor
are only coupled [through the cross derivatives in (8)] to
the diagonal elements of a, so that the evaluation of the
elastic constants C]] and C]z (5) and (6) only requires
three free parameters to represent the diagonal terms a;;,
i = 1,2, 3. The elastic coefficient C44 measures the
response of the system to shear stress, say in the x =y
direction, and the particle distribution will tend to deform
itself in the same direction when this stress is applied, giv-
ing nonzero off-diagonal elements of a. Hence, our results
for C44 may only be considered as an upper bound, within
the Gaussian parametrization (10), as pointed out by
3ones. ' Anyway, the elastic constant C44 seems not to be
associated to the peculiar behavior observed in the RY
calculations.

The derivatives of F with respect to A; and ak] were
evaluated directly from Eqs. (3) and (4 for the free-
energy functional. We have checked several sum rules,
which relate the derivatives with respect to A;; and a~i of
the general expression for the free energy of the strained
crystal, and the derivatives with respect to the density and
the scalar Gaussian decay parameter ao in the relaxed
crystal. Namely,

p(r) fdet(a)/x ] '

x +exp[ —(r; A;],Rk) a;i(ri A—itR()]—
4pdF/Bp+3p 8 F/'dp =8 F/BA, , +28 F/riA„rlA

(io) a'F/aaoa =p-( /1p)(a'F a/A aa +2a'F/aA aa.),
F/6Qr] =38 F/BQ] ] + 66 F/dQ] ] 8Qzz (i2)

where R=(R],Rz, R3) runs over the vectors of the origi-
nal undeformed fcc lattice, a;~ are the elements of a sym-
metric matrix which are used as free parameters and sum
over repeated indices is assumed. This particle density is
normalized to have one particle per unit cell.

For the unstrained crystal 2;i =8;~, and by symmetry
the matrix parameter a has to reduce to a;z =ao6;i with a
single Gaussian decay constant, ao, to be used as parame-
ter. Then (9) reduces to the form

p(r) =(a/rr) i +exp[ —ao(r —R) ]
R

which was used in the evaluation of the liquid-crystal
coexistence in previous ADA calculations. ' Here we

v =C]z/(C]]+ C]z) (i4)

are given in Table II, for several values of the solid densi-
ty. The liquid and the solid coexist at the first density,
while the solid is more stable at the rest of the densities.
As can be seen from the table, Ci2 is always positive and
the value of Poisson's ratio is very close to the experimen-
tal results for fcc crystals. ' The bulk modulus also gives
sensible results, comparable to the dense fluid. All these
results are to be contrasted with the previous DFF calcu-

The results for the elastic constants, the bulk modulus,

8 =(C]]+2C]z)/3, (i3)
and Poisson's ratio,

TABLE I. Coexistence data for liquid-solid transition in units
of the hard-sphere diameter (o i). The results given in Ref.
10 have been numerically improved in the present work. ao C]2

TABLE II. Elastic constants of the hard-sphere solid in units
of o kgT 1.

Liquid density at coexistence
Solid density at coexistence
Gaussian decay parameter for solid

0.9412
1.0563

161.65

1.0563
1.0663
1.0763

161.65
175.25
207.28

71.1

76.9
89.8

34.4
36.7
41.5

61.5
66.3
77.7

46.6
50.1

57.6

0.33
0.32
0.32
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lations in the RY approach. We have been informed of a
very recent computer simulation to evaluate the same
elastic constants which is in sharp disagreement with the
earlier DFF attempts.

Thus it seems clear now that the truncated density ex-
pansion used in the RY approach to crystallization may
give a good description of the unstrained solid but fails
dramatically in the evaluation of the elastic constants.
%e may think of two explanations for this effect. The
derivatives of the free energy with respect to the strain
tensor elements may be regarded as the changes of F asso-
ciated to a particular change in the density distribution, so
that they are the projection of the second functional
derivative of F[p(r)] on the derivatives of p(r) with
respect to the strain tensor

tJ F/rJA;~rJAkt J dr~I dr'[b' F/bp(r)bp(r')]

&& [dp(r)/dA;, l [dp(r')/dAk(],

(IS)

where the derivatives have to be evaluate at the unstrained
solid, and include the full relaxation of the free parame-
ters.

The second functional derivative of F[p] may be writ-
ten" as

(I/ktt T) [b F/bp(r)bp(r')]

=b(r —r')/p(r) —c(r,r'), (16)

where c(r,r') is the direct correlation function of the crys-
tal, which is in general a function of r and r' independent-
ly. However, in the RY approach, F[p] is expanded from
the reference uniform system, up to second order, so that
it is equivalent to approximate c(r, r') by the reference-
fluid direct correlation function, co( ~

r —r'
( ), which is iso-

tropic. Therefore, letting aside the ideal-gas contribution,
which gives the purely local first term in the rhs of (16),
the RY approach uses a fully isotropic and homogeneous
response function for the crystal. It is not too surprising
then that the elastic coeflicient Ct2, which measures the
anisotropy of the crystal response function, may not be
well reproduced, and unphysical estimates may be ob-

tained. This problem could be corrected, at least partial-
ly, if the functional expansion in (1) is extended up to
third order. This would already give some anisotropic
dependence to c(r,r') evaluated at the crystal. The main
problem for this extension of the theory is the lack of in-
formation for the three-particle correlations in bulk

uids
The second problem which may present the calculation

in the RY approach is the lack of full thermodynamic con-
sistence in the evaluation of the strained crystal free ener-
gy. The reference density po at which F[p] is expanded in
(1) is fixed for the equilibrium, unstrained solid, but it will
depend on its density. In fact, the criterion to fix the
reference density is one of the crucial points in that ap-
proach to crystallization. In the evaluation of the elastic
constants, the reference system is considered fixed, but as
the sum rule (12) expresses, a suitable combination of
variations with respect to the diagonal terms of the strain
tensor should be equivalent to changes with respect to the
density in the fully relaxed crystal. It is clear that in the
RY approach this is not obtained, because po is considered
as fixed when evaluating the derivatives with respect to
the strain tensor, while it has to be allowed to change in
the evaluation of the unstrained crystal free energy as a
function of the solid density. The failure in reproducing
the sum rule (12) is therefore a serious thermodynamic
inconsistency of this approach.

To summarize, the peculiar values of the elastic con-
stants obtained for the HS crystal seem to be a result of
the pathological behavior of the density expansion used in
their evaluation. The alternative method which has been
used in the study of the hard-sphere crystallization
(ADA) seems, however, to be able to correctly reproduce
the elastic properties of the system. This is probably be-
cause the latter approach has full thermodynamic con-
sistency, reflected in the sum rules (12), and at the same
time reproduces the anisotropy of the crystal response
function.
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