
PHYSICAL REVIEW A VOLUME 36, NUMBER 2
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We have compared the impact of loss, pump, and frequency modulations on a single-mode
homogeneously broadened laser under varying detunings and modulation frequencies. In the case
of loss and gain modulations the impact on intensity shows a minimal behavior at the line center
for gain values more than twice the lasing threshold. The system relaxation time with respect to
any transient perturbation depends on the magnitude of detuning and is minimal at the line
center. In the case of frequency modulation, the impact on intensity vanishes at the line center
irrespective of the gain values. These results are based on linear analysis.

Frequency, gain, and loss modulations have been found
to be an effective way of destabilizing the emission of a
single-mode laser for which one of the variables is adia-
batically eliminated. ' Emission at the modulation fre-
quency, subharmonic bifurcation, quasiperiodic motion,
and chaotic emission have been observed in many of these
systems. Recently the critical dependence of the instabili-
ty phenomenon on the cavity detu ning for a gain-
modulated single-mode cw CO2 laser has been shown.
Here we present theoretical results, based on a perturba-
tion technique, showing the dependence of detuning on the
impact of such modulations on the system. In particular,
we find that the modulation will have more impact on the
detuned system than in the resonant case for gain more
than double the threshold. We also have compared the
effects of frequency, loss, and pump modulations under
varying detunings and varying modulation frequencies.
Similar studies for loss and gain have earlier been made
for a resonantly tuned system with modulation at close to
the relaxation oscillation frequency and for gain equal to
twice the threshold. These studies showed that to get in-
stability by gain modulation similar to that obtained by
loss modulation a very large ratio of the gain-to-loss
modulation depth would be required. It is also important
to note here that from linear analysis on intensity only,
one may have a comparative analysis of instability behav-
ior of a modulated single-mode cw laser.

Starting from the equation of motion of the density ma-
trix and electromagnetic radiation inside a unidirectional
ring-laser cavity, containing a collection of homogeneous-
ly broadened two-level atoms, we obtain the following
equations (in dimensionless form) after adiabatic elimina-
tion of the polarization:

rp is the center of the transition, and v is the slowly vary-
ing time-dependent active-mode frequency in the presence
of the frequency modulation. vo and v&0 are the corre-
sponding time-independent active- and passive-mode fre-
quencies in the absence of any modulation. ro, v, vp, v~p,

y~, y~~, and the cavity decay rate k(t) are all normalized
with respect to y[[ while t is normalized with respect to—

1
yll ~

While Eqs. (la) and (lb) are standard Maxwell-Bloch
equations, (lc) represents the amount of mode pulling. 'p

Equations (1a) and (lb) alone are insufficient to give rise
to chaotic motion; therefore, we introduce an extra degree
of freedom through sinusoidal modulation of the loss, the
pump, or the cavity-mode frequency, in the form

k(t) =kp[1+I sin(ro~t)]

Dz (r ) Dip[1 +g sin(roar ) ]

(2a)

(2b)

l and g are loss- and pump-modulation coefficients, re-
spectively. Similarly, from a sinusoidal modulation on top
of passive-mode frequency, it is easy to show that the
modulation of the detuning will have the following form:

1/L(vv, v) =1+[8p+fsin(rp(t)] (2c)

malized by p /6 y~e, where e is the dielectric constant of
the medium. [p /(hy~e)] ' is the population inversion
required to have a fractional mode pulling equal to half of
the Lorenzian line shape per unit-mode frequency per unit
detuning. This definition comes from Eq. (lc). L(ro, v) is
the Lorentzian line-shape function given by

1/[1+ [(ro —v)/y~] ],

I(t) = —k(t)I(t)+roD(t)I(t)L(ro, v), (la)

D(r ) = —[D (t ) —D„(r) ] I (r )D (r )L (ro, v)—, (1b)

vp vip[1 + 2 Dz [(rp v&p)/y~]L (rp, v&p)] (lc)

where l(t) is the slowly varying intensity inside the laser
cavity normalized by the saturation intensity p /h @~~ y~,
p the transition dipole-moment matrix element. D(t) is
the population inversion, D„(t)is the pump parameter,
and D, is the population inversion at steady state, all nor-

where bp (ro —vp)/y& is the detuning parameter (taking
mode pulling into account) and f is the modulation of the
detuning.

In order to find the impact of these modulations on the
system, we solve the stationary state of the coupled
Maxwell-Bloch equation by the perturbation technique
(up to first order) where the perturbing amplitude is very
small (—0). First we consider modulation only of the
cavity-mode frequency, i.e., D„(t)-D„pand k(t) -kp.
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Assume I(t) -g; of'I ' (t) and D(t) g, of'D(' (t), i
being the order of perturbation. From zeroth-order per-
turbation of Eqs. (la) and (lb) we get

Hence,

I ' (t)+(1+LI )i ' (t)+koLI I ' (t)

i "'(r) - —koI"'(t) +~D"'(t)r"'(t)I. (~, v, )

[henceforth, L(ro, vo) will be denoted by L only], and

D"'(t) = —[D(o'(t) —D„o]—I '(t)D"'(t)L. .

(3a)

(3b)

- —2k oLI( cia
o[ oric os( ocit) + si n( rdlt)] .

(Sa)
Similarly, treating loss modulation alone [from (2a)], one
can find a similar relation, viz. ,

i "'(t)+ [1+LI"']i"'(t)+k~I"'I"'(t)
—koI co, cos(ro, t) —ko[1+LI ]I sin(ro, t),

(sb)
and, with gain modulation, it takes the following form:

Equations (3a) and (3b) represent the kinetics for con-
stant gain and loss. Asymptotic solutions reduce to the
steady state defined by

I"'-(D„./D"' —1)/L,

D"'=I,/~L,

(4a)

(4b)

and lasing bandwidth 2d(e —1), where c D„neo/ko is
the excitation rate normalized with respect to threshold.
It is noted that D, in Eq. (lc) is the same as ko/roL. From
first order of perturbation, we find

I ' (t) —2koIoLbosin( into)+ IroLD ' (t),
D (1)(t ) D (1)(t)(I +LI(0)) LD (0)I(l)(t )

+2L boI( D sin(colt) .

i"'(t)+ [I+LI"']i"'(t)+koLI"'I"'(t)
=OLD„ol sin(toit ) . (Sc)

Equations (5) describe conventional forced damped oscil-
latory motion of diFerent forcing modulations. The sys-
tem will relax to steady state with respect to any transient
perturbation with frequency

0 (koLI ) ' =[k (8L —1)] '

and with a damping rate La
The relaxation oscillation frequency and the damping

rate are symmetrically dependent on the detuning param-
eter Bo and their values are maximum at line center
(v=ro). Thus, the system takes a longer time to attain
the steady state with respect to any transient perturbation
the higher the detuning is. The asymptotic amplitude of

I&»(t)=Io&'1-2II ho[(ro + I)/[(Z — ) +L ~2ro2]]' 2 (for frequency modulation),

=(II /L)[(c02+&2L2)/[(II2 r02)2+L2&2ro2]] i/2 (for loss modlllation)

(0 e)/[(0 —c0~) +L e coi]'t (for gain modulation) .

(6a)

(6c)

The dependence of Io(') on detuning as well as frequency of modulation (for s 2) is illustrated three dimensionally in
Fig. 1 for the case of frequency modulation. Maximum values of Ioi') occur at modulation frequencies which are equal to
the respective relaxation oscillation frequencies for diFerent detunings. Qualitatively, this behavior is similar for all three
kinds of modulation. In Fig. 2 we have plotted this maximum value of Io( ) versus detuning for all types of modulation for
e 2. From this figure a relative measure of the impact of all three kinds of modulation can be made. It will be observed
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FIG. 1. Dependence of I)'i on detuning bo and r0~ in case of
frequency modulation. Excitation ration c 2 and ko 1.5
x 104.

FIG. 2. Dependence of Iot'i on detuning (passive cavity) ho~

(c01 0) for all three modulations. Excitation ratio a 2 and

ko 1.5&10 . (a) gain, (h) frequency, and (c) loss modula-

tions, respectively.
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FIG. 3. Dependence of Io~' on detuning 80~ (co~ =0) for vari-
ous values of s in case of loss modulation. ko 1.5 x 104 and (a)

1.5, (b) a 2.0, (c) a 3.0, and (d) a 4.0, respectively.
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FIG. 4. Dependence of Iot'~ on detuning 80~ (ro~ 0) for vari-
ous values of sin case of gain modulation. ko 1.5X10 and (a)

1.5, (b) e 2.0, (c) e 3.0, and (d) e 4.0, respectively.

that the impact of the loss modulation is always more than
that of gain modulation. From Fig. 2 it will also be seen
that frequency modulation {8'o~ [(s—I)/3]'~ ] will have
an impact of the same order as that of loss. We note here
that instabilities and chaos have been observed in CO2
lasers with frequency and loss modulations at close to
the relaxation oscillation frequency. The larger impact on
intensity for loss and frequency modulations than for gain
modulation could be well understood since the Maxwell-
Bloch equations, from which Eqs. (6) were derived, reveal
the fact that the laser intensity is susceptible to a change
in the pump parameter (D„)in the second order while
also susceptible to a similar change in loss in the first or-
der. On the other hand, population inversion is suscepti-
ble to a change in the pump parameter in the first order,
while open to a similar change in loss in the second order.
Frequency modulation will have first-order impact on
both intensity and population inversion. Thus, as long as
intensity is considered, eA'ect of frequency or loss modula-
tion will be dominant in comparison to gain modulation,
and for the same reason, frequency or loss modulation will
have similar impact on the intensity of the system. From
Eqs. (6) one obtains in the limit co~ = 0,
Io' 20 ho/Ls (for frequency modulation), (7a)

Q (I/O +1/L e )'~ (for loss modulation),
L

(7b)= 0/L (for gain modulation) .
(7c)

From Eqs. (7) we find that for gain up to twice the las-

ing threshold (s~ 2) the amplitude Io' is maximum only
at line center. But for gain more than twice the threshold
(s& 2) it will be seen that amplitude will have a dip at
line center with a maximum symmetrically spaced on ei-
ther side. " To illustrate this point graphically we have
plotted Ip vs Bp for a=1.5, 2, 3, and 4, and co~ =0 in
Figs. 3 and 4 for loss and gain modulations, respectively.
In the case of gain modulation and loss modulation the
absolute value of Bp at which maximum will occur is
(c/2 —I) '~ . The ratio of dip height to Io(') at line center
1S

(s'/4) —s+1
(for loss modulation),

1/2
[(s'/4) —s+1]

(for gain modulation),
e —1

both of which increase as e increases. The corresponding
values of Bp in the case of frequency modulation are
[(e—1)/3]'~, which is I/J3 times the lasing bandwidth
(half-width). It is notable here that Io' vanishes at line
center. Indeed, instabilities and chaos have been observed
in CO2 lasers with frequency modulation in the detuned
case. It will be interesting to investigate the effect of
gain and loss modulation with the use of detuning as a
control parameter when gain is more than double the las-
ing threshold.
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