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Explicit solutions are obtained for evolution equations for explosively unstable situations. These
solutions include the effects of diffusion with linear or quadratic density dependence of the diffusion
coefficient. As a result of balance between the diffusion and nonlinear terms, explosive growth in
time can occur with a preservation in shape of certain spatial distributions. The solutions are gen-
eralized to cases of two interacting populations.

In physics as well as in various other branches of sci-
ence such as chemistry, biology, or ecology, the descrip-
tion of populations or densities by means of evolution
equations, which are generally nonlinear, plays an impor-
tant role. As far as physics is concerned, plasma physics,
with its applications to fusion and astrophysics, as well as
the fields of laser and semiconductor physics, exhibit a
variety of phenomena which are governed by such evolu-
tion equations.

Recently so-called reaction-diffusion equations have at-
tracted particular attention. ' It is the purpose of the
present report to consider such reaction-diffusion equa-
tions for situations which are explosively unstable, i.e.,
where instabilities tend to grow to infinite amplitudes in a
limited period of time. In spite of the fact that no general
solutions are so far available for such situations in the
presence of diffusion, we shall demonstrate that particular
solutions which are of practical significance can be ob-
tained. They can indeed be astonishingly simple consider-
ing the fact that they correspond to highly nonlinear situ-
ations.

Consider the equation

n (x, t) =(t, tY'—P(g),

g=x/(t, t )" . — (4)

li dP
p —1 dg

(6)

The cases where 6=p —1, e.g. , p =2, 6=1 and p =3,
6=2, offer possibilities of convenient integration since the
coefficient of the last term on the right-hand side of Eq.
(6) vanishes. In these cases we have v=0 in relations (4)
and (5), i.e., g=x.

The remaining two equations become

0' (p=~ &—=I l = —1)
dx dx

(7)

Introducing the expressions (3) and (4) into Eq. (2) and
matching powers of (to —t) yields

p= —I/(p —1), v= —,'( I+@&),

and the following ordinary difFerential equation for P:
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where n describes a population density and b and c are
constant coefficients, with c )0 for explosive cases, p a
positive quantity, p ) 1, and D the diffusion coefficient
which we assume takes the form D=an, where a is a
constant coefficient and 6 a positive quantity.

It is convenient to introduce new variables of space and
time; accordingly,

(c /a) ' "x x, ct

To begin with we consider b =0.
The remaining equation can then be written

Bn 0 ~ Bn

c3t Bx Bx

4' (P=3 &—=2, 1u= —
—,') .

Equations (7) and (8) can be integrated after multiplying
both sides of the equations by 1t(dp/dx) and p (dpldx),
respectively.

From Eq. (7) we then obtain

v'6 /de
J yo [y3 y3 3 (y4 y4)tl/2

where P, accounts for a constant of integration. Let us
here choose tt, =0 or P, = —', , which yield identical results.

From relation (9) we then have for xo =0, t()o= —', ,

Since we are looking for explosive-type solutions, we as-
sume the following similarity form of the solutions, name-
ly,

3/6 4 dt()

» [P(1——,'4)]'"
which can be integrated to yield

(10)
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P =—', [1+cos(x /3/2) ] .

From relation (3) and expression (11) it follows that
1/2

no cn= —, 1+ cos x
2 1 ——,'cnot 2Q

will not occur in a finite time since in the critical limit
b, =~ ' the time of explosion is at infinity.

As a further extension let us consider for the case 6= 1,
p =2 the set of coupled equations describing the evolution
of two interacting populations, namely,

(p=2, 5=1, p= —1),
where by n p we denote n (x =0, t =0).

From Eq. (8) we find correspondingly

x —xo=+ I PdP
[y4 y4 4 (y6 y6 )]1/2

(12)

(13)

c)n 2
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where we assume

dn] g Bn 1

D1 +c1n 1+g in]n 2,
Bt Bx Bx

(18)

(19)

Accordingly, by choosing P, =0, or alternatively

P, =3/3/2, we obtain

D, =D2 ——A (n, +n2) .

Looking for solutions of Eqs. (18) and (19) of the form

x =+—,
'

3/2 ( 1 4y2)1/2
3

from which follows

v'3
cos(x /&3)

2

(14) n1 ——a]n, n2 =Q2n

=a& n
&
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where n is a solution of the equation

(21)

(22)

and
1/2

and given by the expression (12), we introduce the rela-
tions (20) and (21) into Eqs. (18) and (19) which yields

no C

(1 ——', cn pt)
cos x C2 —gl C1 —g2

a1 —— C, Q2= C
C1C2 —g1g2 C1C2 —glg2

(23)

(p=3, 6=2, p= —
—,'), (16)

where x
~

&rt/2(3a/c)' . At this stage we can easily
extend the solutions (12) and (16) to account for linear
dissipation (or growth) as represented by the term —bn in

Eq. (1). For b~0 we therefore apply a well-known trans-
formation defining the quantities

N=n exp(bt), r=b '[1—exp( bt)] . —(17)

We then obtain an equation in the new variables N and ~
which is formally identical to Eq. (1) provided 6=p —1,
as is the case for 6=1, p =2 and 6=2, p =3, and we also
have solutions formally identical to expressions (12) and
(16) in terms of N and r, which define the new solutions
for b&0 as expressed in n and t by means of transforma-
tion (17). The time of explosion for b&0 becomes
t = —b ' ln(1 —br ), where by r„wedenote the corre-
sponding time in the absence of linear damping, i.e., for
the two cases ~ =—', no 'c ' and ~ = —,'no c ', respec-

tively, as seen from Eqs. (12) and (16). For b &r ' the
growth will be limited to such an extent that explosion

where in expression (12) and Eq. (22) we substitute a by
the quantity A (a, +a2). It should be noted that a further
extension of the solutions of the coupled system to include
linear damping (or growth) terms b1n, and ——b2n2 by a
transformation of the form (17) can be done only if
b 1

——b2 since by necessity the time transformation must be
unique for the two equations. Similar solutions and con-
siderations for coupled equations apply also to the case
6=2, p =3.

As has been described above, it is possible to construct
a class of solutions of the reaction-diffusion equation
which exhibits the property of explosive instability with
preservation of certain spatial distributions, and to extend
the solutions to particular cases of coupled variables. In
the example represented by the solution (12) either a cer-
tain single pulse or a repetitive standing wave structure in
space could grow explosively in time with preservation of
shape as governed by the balance between diffusion and
nonlinearity. The solutions here obtained may serve as
indications of possibilities of finding solutions of an even
more general nature.
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