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Statistics of correlation functions from molecular dynamics
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The statistical uncertainty in the calculation of velocity autocorrelation functions and self-dift'usion

coefficients from molecular dynamics is empirically determined from the spread of the molecular-
dynamics results for an ensemble of macroscopically identical systems. The "experimental" uncer-
tainties of the velocity-autocorrelation-function values at equilibrium and in the presence of flow

agree well with theoretical predictions. The uncertainty of the self-diffusion coefficient is found to de-
crease as the inverse square root of the averaging time.

The calculation of transport coefticients from molecular
dynamics (MD) simulations typically employs the formu-
las of linear-response theory' that relate these quantities
to the time integrals of the corresponding current correla-
tion functions, the so-called Green-Kubo relations. It is,
therefore, essential to know how accurately the correlation
functions can be determined from a simulation of specified
duration. The time correlation function of a dynamical
quantity A (t) is defined as

C„(r)= ( A (t) A(t+r)) .

The average denoted by ( ) is an ensemble average over
an equilibrium distribution. For ergodic systems the en-
semble average is equal to an infinite time average of a
single system, namely,

Ry. (r) =CT(r)/CT(0) . (6)

Zwanzig and Ailawadi's estimate for the standard devia-
tion of this random variable [uncertainty of RT(r)] is

moments of A (t) in terms of second-order moments. By
defining a relaxation time for C (r),

t„=2 f "dr[C„(r)/C„(0)]', (4)
0

they arrived at the result

( 6(ri )A(72) ) = (2t„/T)[C „(0)]'
where b.(r)=CT(r) —C„(r). Frequently in MD simula-
tions one calculates

(2) og =(2t„/T)'r [l —R „(r)], (7)

where

C ( T)r=T ' f dt A(t)A(t+r) .

In the language of stochastic processes the function
P(r)=A(t)A(t+r) is a sample function of a stochastic
process P(r) and has an implicit dependence on the initial
point in the phase space. For stationary processes P(r) is
independent of t We see, therefore. , that Cz.(r) and
C (r) are not actually numbers but random variables.
The ergodic character (ergodicity in the mean) essentially
states that the variance of the random variable C (r) van-
ishes.

What one calculates in MD, however, is Cr(r) rather
than C (r) and the question is how good an estimate of
C (r) is the finite time average CT(r). The answer to
this question requires the calculation of the variance of
CT(r) which, unlike C„(r), does not vanish even for er-
godic processes. This calculation in general involves the
fourth-order moments of the dynamical variable A (t)
about which almost no information can be extracted from
the simulation itself.

The first and most useful study of this question was
presented by Zwanzig and Ailawadi ~ Using the assump-
tion that A (t) is a Gaussian random variable (which is
often but not always true), they expressed the fourth-order

where R„(r)=C„(r)/C (0).
A more general analysis that does not employ the

Gaussian assumption for A (t) was presented by Picin-
bono. Similar estimates of the uncertainty o.~ have been
worked out for the correlation functions of dynamical
variables that are Poisson processes and for orientational
correlation functions.

Since its publication Eq. (7) has been used by many au-
thors to estimate the uncertainty of the time correlation
functions calculated from MD simulations. Surprisingly,
however, no detailed comparison of the predictions of Eq.
(7) with simulation data has appeared up to date, except
from an early, rather limited one.

The purpose of this communication is to present such a
detailed comparison. The data from an equilibrium MD
simulation of saturated liquid Ar at 120 K have been used
for this purpose. The simulation, which was performed in
another context, covered a real time interval of 0.6 nsec
(60000 time steps). The trajectory was divided into six
parts of duration 0.1 nsec each and the autocorrelation
functions of the x and y components of the velocity were
calculated for the last five subintervals. In this way ten
velocity autocorrelation functions (VACF's) were avail-
able. From the sample of ten values CT;(r) an empirical
standard deviation was determined,
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N 1/2

g [RT;(r) R—z.(r)]
i =1

RT(r)= —g RT, (r), N =10 .
N

N, .

(8)

CT(~) =—g Cr;(r),
i=1

which is determined from simulation data. In this way
we calculated the theoretical curve (solid line) in Fig. 1.
Normally, however, only one sample curve is available
and the usefulness of the theoretical prediction consists in
the fact that it remains a good estimate of the actual un-
certainty even if one of the CT;(r), instead of the average

The empirical standard deviation o.~ must be compared
with o.g in ' [see Eq. (7)], where n is the number of par-
ticles in the simulation (n =108 in our case). This is so
because the VACF's of the system are the averages of the
VACF's of the individual particles. As we can see from
Fig. 1 the theoretical prediction (solid line) is a good
order-of-magnitude estimate of the actual uncertainties,
especially if one allows for the poor statistics of the exper-
imental uncertainty estimate. The statistical error of the
experimental uncertainties was tentatively determined
from the difference between the experimental uncertainties
that result if we use only the x or only the y VACF's in
Eqs. (8). The dotted lines in Fig. 1 show the error limits.
The theoretical uncertainty lies almost everywhere be-
tween these limits. In particular, the agreement is very
good for short times. For w~ 1.2 psec the magnitude of
the VACF itself is similar or smaller than the uncertainty.
Therefore, a 0.1 nsec simulation is unable to provide any
quantitative information for the long-time decay of the
VACF's.

As it is customary in error analysis we replaced C (r)
in Eqs. (4) and (7) by

D = ™C(r)dr, x;=x or yt p
(10)

the predictions of Refs. 3 and 4 are not directly applic-

Cz(r), is used as an input in Eqs. (4) and (7). To demon-
strate this point the theoretical curve that results from
Eqs. (4) and (7) if we use as input the sample
function CT~(r) that deviates the most from the average
VACF CT(r) was also calculated. This curve is not
shown in Fig. 1 since it is practically identical with the
theoretical curve (solid line) which results if CT(r) is used
in Eqs. (4) and (7).

In Fig. 2 a similar comparison is presented for the same
system. The system now is not at thermodynamic equi-
librium but undergoes Couette fiow in the x direction,
which destroys the symmetry on the x,y plane. As shown
in Ref. 8, however, for the shear rate of the simulation no
systematic difference between the x and y VACF's was
found. For this reason we consider the x and y VACF's
to be identical. The x component of the velocity is of
course the peculiar velocity in the x direction, i.e., the
difference of the actual particle velocity from the Bow ve-
locity at the location of the particle. The data from the 12
subintervals of a 1.2 nsec trajectory were used in Eqs. (4),
(7), and (8) in order to calculate the theoretical and exper-
imental uncertainties of the x and y VACF's. Thus 24
sample VACF's were available in this case. For this
nonequilibrium system the distribution of the x and y ve-
locities is no longer Gaussian, although the velocity rela-
tive to the mean-Aow velocity does not deviate much from
the Gaussian form. We see from Fig. 2 that the agree-
ment is as good as in the equilibrium case which suggests
that the success of the theory is not overly sensitive to the
Gaussian assumption.

We finally report the observed dependence of the uncer-
tainty of the diffusivity on the averaging time T. Since the
diffusivity in the x or y direction is related to the VACF's
via'
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FIG. 1. Theoretical and experimental uncertainties of the
VACF's for the equilibrium system.
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FIG. 2. Theoretical and experimental uncertainties of the
VACF's for the Couette-flow system.
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FIG. 3. Diffusivity uncertainty for the equilibrium system. FIG. 4. Diffusivity uncertainty for the Couette-How system.

R T —1/2 (12)

Although Eq. (12) was initially expected to be valid for
Gaussian dynamical variables its validity was proven for
other classes of dynamical variables also. ' The findings
in Refs. 3—6 suggest that Eq. (11) might be true for deter-
ministic systems as well, although exceptions are known
to exist (e.g. , for hard disks or hard square systems' ' ).
To test Eq. (11) the dift'usivities from the five subintervals
of the equilibrium simulation and the twelve subintervals
of the Couette-flow simulation were calculated using six
different averaging times TI. These times were T1 ——5
psec, T2 ——10 psec, T3 ——25 psec, T4 ——50 psec, T5 ——75
psec, T6 ——100 psec. For each TI, 10 equilibrium
diffusivities and 24 flow diffusivities were available. An
experimental standard deviation was determined for each
Tl

1/2

N —1, 1

g (D; i DI)—
(13)

Di= —g D;i,
i =1

able. A rigorous prediction is available for systems of
particles that undergo Brownian (diffusive) motion instead
of deterministic (classical) motion. According to Ref. 6
the uncertainty of the translational diffusivity o.D goes as

OD T —1/2

In Refs. 3, 4, and 5 a similar result was found for the un-
certainty of the normalized VACF's, namely,

where N = 10 for the equilibrium system and N =24 for
the system undergoing Couette flow and i refers to the
subinterval of the simulation trajectory. Consequently the
six data points o.

D, versus TI ' were fitted to a straight
line. The result is shown in Fig. 3 for the equilibrium
system and in Fig. 4 for the system undergoing flow. The
data follow Eq. (11) reasonably closely (the correlation
coefficients of the linear fits are 0.985 and 0.984, respec-
tively). The error limits were again determined from the
difference between the uncertainty values that result if
only the x or only the y diffusivities are used in Eq. (13).

A direct test of Eq. (12) was also made. Although we
do not present the detailed results here we mention that
the data fit closer a straight line for most of the 80
different ~ examined than the data for the diffusivities do.

From the comparisons we presented we conclude that
the theory of Zwanzig and Ailawadi offers a very good
order-of-magnitude estimate of the correlation functions
uncertainty when these are calculated via the finite time-
averaging procedure employed in MD simulations. This
is true for both systems having a Gaussian velocity distri-
bution and a slightly different non-Gaussian velocity dis-
tribution. Furthermore, our results provide strong evi-
dence that the uncertainty of the diffusivity reduces as the
inverse square root of the averaging time in these simula-
tions.
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