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The observation of no photons emitted by a fluorescing multilevel atom dramatically aA'ects its fu-

ture evolution. This collapse of the quantum state due to measurements with a null result is the
cause of intermittent atomic fluorescence even when the exciting field is arbitrarily coherent.

According to the basic principles of quantum mechan-
ics, there are two ways in which a quantum state

~
g)

changes in time. For a closed system the Hamiltonian H
determines the time development according to
Schrodinger's equation H

~
g) =iA'(t}/t}t) 1b), but when a

measurement is performed, the state collapses to an eigen-
state

~

i ) of the operator Q corresponding to the observed
eigenvalue q;: Q ~

i ) =q,
~

i ) . Prior to the measurement
the system is usually in a superposition of the various
states satisfying the eigenvalue equation, but immediately
after the measurement the system is found (with certainty)
in the state consistent with the particular value observed.

Here we describe the theory of a quantum system
where the collapse of

~

llj) is brought about by a succes-
sion of null observations. In particular the failure of a
switched-on photodetector to record outgoing photons
from a fluorescing atom will cause the atom's wave func-
tion to collapse towards an eigenstate of a forbidden level
and thus increase the probability of continued darkness.
We have in mind the experiments' on intermittent
fluorescence in a single trapped atom illuminated by lasers
tuned to strong

~

0)~
~

1) and weak
~

0)~ 2) transi-
tions with frequencies co~, co2 where

~

0) is the common
ground state. Dehmelt predicted that every now and
then the atomic electron would be shelved in

~

2) with
the result that the ffuorescence would turn off' [see Fig.
1(a)] for a time given roughly by the lifetime 1 /f32 of 2)
which is much greater than the lifetime 1//3~ of

~

1). Ex-
periments confirmed Dehmelt's intuition that the tele-
graph could be used to see each individual quantum jump

~

0)~
~

2). The first theory and experiment' used an in-
coherent light source. An assertion that the telegraph
should also appear for arbitrarily coherent illumination
was criticized on the basis of the principle of superposi-
tion applied to the atom. More recent theory ' and ex-
periment support the existence of a telegraph in the

coherent case.
By formulating this issue in terms of the projection of

the Fock space onto the state with no outgoing photons,
we will obtain equations for the time development of this
projection which are substantially simpler than the optical
Bloch equations yet contain all the statistical information
lost in the averaging procedure that yields the Bloch equa-
tions. We predict that during the dark period the electron
is not shelved in

~

2) but instead it is in a time-dependent
superposition which does not radiate. The critical time
for which the observation of no Auorescence implies the
beginning of a dark period is T, =(4/P~)ln(P~/Q2) where
1/P~ is the lifetime of the strong transition and Q2 is the
Rabi Aopping frequency of the weak transition. The slow
increase of T, as the log of the inverse of the (weak) tran-
sition amplitude raises the question of how isolated the
atom really is. Measurements on the time scale T, will
show that the "shelving" is not a jump but the limit of a
continuous process. We also calculate the large-power
dependence of the telegraph as well as the two-time corre-
lation for emission of co] and cu2 photons. The latter is
highly irreversible [as expected from Fig. 1(a)] even for

{b)

FIG. 1. Schematic of emission events vs time for (a) the tele-

graph and (b) the simplified superposition description of a three-
level atom. A straight line indicates many strong transition pho-
tons and a wiggly line indicates a single weak transition photon.
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coherent illumination.
The main surprise with the telegraph picture is that at

first sight it appears to be too classical. According to a
simple quantum-mechanical point of view, should not the
atom be in a superposition of

~

0),
~

1), and
~

2) prior to
the weak emission so that there is no precursor period of
darkness? According to the superposition idea one might
expect instead a sequence such as that shown in Fig. 1(b)
where there are no dark periods but every now and then a
weak emission sneaks in.

Let us first motivate this simplified superposition ap-
proach by considering the time development of a closed
three-level system driven by an electric field
E=2Eicoscpit +2Eqcos(cp2+ b )t so that

~
p) = g c,exp( —imp, t)

~
j),

i fide, Idt =Hjkck,

where 02=@2
~

Ez
~

/A'&&I%i =pi
~
Ei

~

/A', j =0, 1,2, and
for the rotating-wave approximation Ho~ ——H~o ———A'Q[,

Hp2 =H2p = —iriII2exp(ib, t) (all other elements of H j van-
ish). The solution has the form cj ——g ajkexP(Ajkt) where

Ajk are determined by (1) and alk by the initial conditions.
For the closed system the XJq are pure imaginary and the
amplitude to be in

~

2) starting from
~

0) at t =0 is
(b, =Bi)

fI2t
C2 1 slil

2 2

02 O, pt+ cos — —exp( —2i fI i t)4A )
v'2

Now in the simple superposition approach one separates
the time development of the atom from the process of
emission (detection). The atom is then regarded as devel-
oping according to (1) with the probability per second of
emitting a strong or weak transition photon being
Pi

~

ci
~

or 132
~

c2 ~, respectively. The observation of a
photon then collapses

~

lil) ~
~
0) (Ref. 13) and resets the

time. Such a picture leads to Fig. 1(b). Furthermore, the
development of a significant overlap with

~

2) requires a
time 1/Aq as determined by the smallest AJk. Thus when

P»& f12,

the resets to
~

0) continuously interrupt (CI) the increase
of

~
c2

~

so that the percentage of emissions at cpi will be
down by a factor of (Qq/IIi) from the intensity of weak
emissions that would occur when only the weak 1evel is
driven (Ei ——0).

It was in the context of the atomic superposition picture
that doubts were raised regarding the existence of a
coherently driven telegraph. Since a telegraph in the pres-
ence of coherent radiation would be a very sensitive meter
for unexpected patterns of order and the presence of
"forbidden" processes, it is important to understand pre-
cisely what picture is provided by the orthodox quantum
mechanics.

The key statistic is the period of darkness. ' From
the simple superposition picture the wave function col-
lapses only upon the detection of an emitted photon so

Dp(t) = dWp Idt—,

where Wp(t) =g ~

c; p(t)
~

for cp p(0) = l.
The evolution of P

~

ql) (i.e., c; p) is given by Eq. (6)
below. To derive this result, consider the eff'ective Green
function of the system PG (t)P where G (t) is the retarded
Green function:

G (t) = J 6 (E)exp( —iEt)dE /2m, (4)

where G(E) =(E +is H) ' and —H is the sum of a free
Hamiltonian Hp([Hp, P]=0) plus an interaction term Ht.
For the case of an N-level atom

Hp= —,
' I [epE +(I/pp)B ]d r+ gfico;A;;,

Ht = i g (cp; —cp, )pj—. A(0, t)A,&,

where i =0, . . . , N —1, Ace; is the energy of the ith level
of the atom (located at r =0), and p;j are the various
transition amplitudes. The A;~ are defined by
A;j =

~

i ) (j ~

I on & and generate the algebra of U(N):

[Aij ~ Akl ]=~j k Ail fiil Aj k

From (4) it is easy to show that PG (E)P
= [E PHP PHt QG(E)QHtP—] ' whe—re G(E)= (E
+i@ QHQ) ' —and Q =I P. The evolution of P

~

qi) i—s
then described by the eff'ective, non-Hermitian Hamiltoni-
an

that the probability of a period of darkness of length I/Pi
(starting out from

~

0)) is exp( f3—i/13i), which is abso-
lutely infinitesimal. The fundamental fact needed to
resolve the paradox is that even the observation of no
photons produces a reduction of the wave function of the
atomic system.

In our case a state of the atom plus E.M. (electromag-
netic) field is described by the vector

~% ) —g C;(k) ~l, nk, , ilk, . . . )
i, IkI

where i =0, 1,2 labels the atomic states and nk is the
number of outgoing photons scattered (in directions
different from the laser beam) with momentum k.

The Hilbert space of the system is then
K3I&, (&, is the Fock space of the E.M.

field). In the limit of perfect quantum efficiency the obser-
vation of no photons is described by the operator
P =g, ~i, IO} )([0},i

~

which is the projector over the
Fock vacuum for the scattered photons. Starting from
t =0 the probability of a dark period of length T'& T is
obviously the probability of having no scattered photons
at time T, which is' (4

~

P
~

'll) =g,
,
c; p(T) where

c; o =c;
I p I

. After such an observation the system is pro-
jected in the state

~

0") =P
~

'll ) I('I'
~

P
~

0'). More gen-
erally, if the initial density matrix of the system is p, after
observation it becomes Pp/trpP. '

From the
~
c;p

~

one can calculate the key statistics of
the system. For instance the probability density Dp(t) for
the time between emissions is
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H,it= gE
~

E )R(E

The E are the zeros of the determinant:
det[E PH—P PH—tQC(E)QHtP] and the subscripts R,L
are used to denote the corresponding right and left eigen-
vectors. The system described by the Hamiltonian (5) can
be solved exactly as will be shown in detail in a forthcom-
ing paper. The operators A;, (t)—:

~

i ) (j ~

SP are related
to the c; p(t) through

(%/(0)
(
A; (t)

)

%'(0) ) = (i
(
P

(
%(t)) (0 (t)

)

P
( j)

=c;p(t)c,*p(t) .

And the equation of motion for (iI/
~

A,z ~

q/) are linear
and of the form

(ip
~
AJ(t)

~

4') =iu, / (iI/ .
~

A/J
~

iI/) —i( Ii/~A;p
~

iI/)H gj .

We can now interpret H;~ as (i
~
H,~

~
j) so that we final-

ly have for the equations of motion for the c; 0

lir/dc; p/dt =8/)ci o (6)

where H;, =HJ +H;J. , H ii = if&Pi, H—q2 = ifiPq, —and
the other elements of H' vanish. The Pi and Pq turn out
to be, quite naturally, the Einstein coefficients for the
spontaneous decay (to all orders of perturbation theory).
We now show that Wo(t) has a slowly decaying part, so
that the probability of observing a dark period T» I//3/
can be nonvanishing.

The irreversibility exhibited by the effective Hamiltoni-
an H of the projected state P

~

%/) is not due to an ensem-
ble average but rather has its source in the retarded solu-
tion to Maxwell's equations and the large density of states
for outgoing photons. Relaxation of these conditions (as
well as the rotating-wave approximation) could lead to
long-time quasiperiodicity ' and chaos. ' The decay of
ci p and c2 p as given by (6) is due to the buildup of the
amplitude to be in the states

~

i, ni, , , . . . ), ( [n ] ~0) at a
rate determined by the spontaneous decay coefficients
/3i, /32.

Equation (6) like Eq. (1) has solutions of the form
c~ p=g aj/ expAJ/, t, where now the k~q have nonzero real
parts. Taking b, =Bi and setting

~

q/) =
~

0,0) at t =0
leads to

cq p =2i ( II2//3i )[exp( —
y t) —exp( Pit /4)], —

tinuous observation of null emission increases only loga-
rithmically. In contrast with other models of null mea-
surement' successive measurements on the shelvable
atom continuously modify

~

'p) as in Fig. 2.
Placing the c; p(t) into (3) yields the complete emission

statistics of a single atom. The emission statistics of a
dark period is obtained from setting

~

p) =
~
2; 0) at

t =0. In this case cpp(t)=c2p(t)=exp( yt) s—o that the
probability of the dark period ending between t and t +dt
(due to an emission) is D2(t)dt where
D2(t) = —(d

~
cz, o

~

Idt) =2y exp( 2yt)—. The lifetime 7D
for the Poisson distribution of dark periods (as well as the
average lifetime) is rD = 1/2y. The potentially strong
modification of the length of the periods of darkness due
to the laser power near co2 agrees with Refs. 9 and 10, and
differs with Ref. 8, which used the full Bloch equations.
This effect can be checked experimentally and should also
be a diagnostic for a coherently driven telegraph. For

~

Ei
~

=
~

E2 ~, 02/li-Ilip2, rD is diminished f«m I/p2
by the factor Pi/2Qi which effect should be easily ob-
served.

Although
~
c2 p(T, )

~

determined by (7) is much small-
er than unity, it is huge compared to exp( —/3i/Pq). The
average time of darkness P2 that the atom spends in

~

2)
is estimated by the probability of a period of darkness
(Q2//Pi) multiplied by the number of resets per second
/3/Pi, and the average time of a dark period rD. As
Pi —1 we find P2 —A2/[II2+(/3//12)/4] which is typically
of order unity. If 6=0 as opposed to Q ~, the probability
of weak transitions is diminished by a factor (Pi/Qi) .

The detuning width
~

6—Ai
~

for effectively exciting the
telegraph is /3i (not /32); thus as first emphasized by Arec-
chi et al. ,

' the CW driven atom will not be useful as a
time standard.

From the exact solution for the system described by (5)
it is in principle possible to evaluate the multitime correla-
tions:

(A;. ..(ti ) . A; J (t„)A, ; (t„) A. .., (ti ))

which in view of the relation between A/i and E (Ref. 2)
yields the correlation functions for the intensity of scat-

10

where y=/32/2+2112/Pi. After the emission of a photon
the probability that there will be a dark period longer
than where t »4//3i is

l
c 2,0(t)

l

'~4(»/» )'exp( —yt) .

CV

CV

10

+
)0

i

2.0

Appearance of the slow-time-scale y requires imposing (2)
which is the key telegraph inequality. In the absence of
emission the long-time probability to be in

~

1) is down
by a factor of 4(02/Pi) from the probabihty to be in

~

2). Figure 2 shows the probability to be in
~

2) divided
by the sum of probabilities to be in

~

0) or
~

1) as a func-
tion of time of darkness. The key time scale or collapse
time T, = (4/Pi )ln(Pi IQi ) is determined by

~
ci,o

~

=
~
c2,o

~

Note that as the coupling to
~

2) goes
to zero the time for purification of level

~

2) through con-

)0

io '-

FICx. 2. Probability for the atom to be in the weak level
~

2)
divided by the probability that it is not in 2) as a function of
the observed time of darkness (/3~/Pi= 10, 02/Pl —10 ').
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tered radiation from the transition i ~j. More details are
to be given elsewhere but here we notice that as for the
two level system' the correlations factorize; for instance,

A,&(t) =X,&g/(t)Ag/(t) (8)

where L;~kI are c numbers when the system is projected
on a subspace, corresponding to the EM field in a
coherent state: At+„(t)p=V(t)p with V(t) a c number.
This condition is invariant under temporal evolution.
As a consequence, the averages F~/, /(t r)
=(A~(t)A//(r)A/;(t)) obey

dFq/, /(t
~

r)/d&=Xk/~„(r)F& „(t,r)

with initial condition Fjk/(t, t) = (A;;(t))6/~6/J giving the
result (for r & t)

(9)

This result holds without any assumption of Markovian
response, in parallel with the two-level system. ' If
I,(t),I (t) are the intensities of strong, weak radiation,
then (9) yields

(A J(t)Ak/(t')A//, (t')AJ, (t) ) = ( A;; (t) ) ( A//, (t' —t) ), ,

where ( )~ means average on a state with the atom in the
jth eigenstate and the E.M. field in a coherent state of the
laser field. Proof of the factorization starts from the
Heisenberg equation

where f= 1 —exp[(t' —t)/rd] for t' —t »1///3~ and f=1
for t —t'»1/P/ and describes the irreversibility charac-
teristic to the telegraph [Fig. 1(a)].

The Bloch equations follow from the average of (8). As
such they involve eight eigenvalues instead of three and
since all photon occupations are mixed together for each

i ) they do not describe the emission statistics deter-
mined by the c;o.

When no photons are recorded, one might expect that
the atom is indeed a closed system developing according
to a unitary transformation (1). To the contrary we see
that the fact that one could have recorded a photon had
one been emitted converts the atom into a uniquely open
system and aA'ects predictions based upon quantum
mechanics. The coherently driven telegraph is a conse-
quence of this phenomenon. For fields so strong that
II2 &/t3/ there are no slow time scales and the response ap-
proaches the simplified superposition picture [Fig. 1(b)]
characteristic to (1).

One of use (S.P.) wishes to acknowledge a discussion
with A. J. Leggett who emphasized the role of continuous
observation. Special thanks are due to T. Erber for bring-
ing many issues (especially the CI phenomenon) to the at-
tention of S.P. and for numerous valuable insights and
references.
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