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It is shown in the present paper that if operators of a boson Green’s function involve arbitrary ¢
numbers, then the corresponding correlation function obtained from the spectral theorem is indepen-
dent of the ¢ numbers, which is in contradiction with the definition of the said correlation function.
In order to solve this problem we have introduced an undetermined-constant method and applied it
to ferromagnetic and ferroelectric systems, respectively. It is pointed out that the introduction of the
undetermined constant is an intrinsic characteristic of the boson Green’s-function method and that
contradictory results can often be obtained if it is not introduced.

I. INTRODUCTION

Since Bogolubov and Tyablikov! (hereafter abbreviated
as BT) first applied the thermodynamic Green’s-function
method to study ferromagnetic systems in 1959, a lot of
work has been done by using Green’s-function methods in
researching various systems, such as ferromagnetic and
antiferromagnetic systems,?~* ferroelectric and antifer-
roelectric systems,”® etc., and some interesting results
have been obtained.

The main objective of BT’s method is to solve directly
the motion equation of the Green’s function. Since there
are two-particle Green’s functions in motion equations of
one-particle Green’s functions, and three- or more-particle
Green’s functions in two-particle equations, and so on, an
infinite chain of motion equations is obtained, which is in-
solvable. However, if the higher-order Green’s functions
are resolved into lower-order ones in a certain degree, the
chain will be decoupled to form a closed set of equations.
The above process is called a decoupling procedure. The
needed Green’s functions can be found from the solutions
of the above equation set and the corresponding correla-
tion functions from the spectral theorem, which makes
both kinds of functions related to each other. The re-
quired physical quantities can be finally obtained from
these correlation functions.

Green’s functions can be classified into boson and fer-
mion Green’s functions. It is not difficult to establish
from the definitions of Green’s functions that when arbi-
trary ¢ numbers are added to the operators of a boson
Green’s function, the Green’s function itself remains un-
changed. That causes the corresponding correlation func-
tion obtained from the spectral theorem to be also un-
changed. But as an assembly average of the product of
two operators it must change. Consequently the results,
obtained from the spectral theorem by using the boson
Green’s functions, may be contradictory. This problem
has been solved by means of an undetermined-constant
method in the present paper. There is no undetermined-
constant problem in the fermion Green’s-function
method.

Applications of the Green’s-function method to fer-
romagnetic and ferroelectric systems are discussed here,
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respectively. We have argued that if the undetermined
constants are not considered, the results are contradictory,
due to the very nature of the boson Green’s-function
method itself. In BT’s work' a coincidence between the
chosen operators and the chosen decoupling approxima-
tion made some, but not all, undetermined constants
equal to zero, so that this contradiction was not revealed.
Later authors also avoided this contradiction by various
means, but their results may be not right. For example,
the results of Ganguli et al.,® which should be those of a
molecular field approximation (MFA), are incorrect by a
multiple factor. The reason is that they did not consider
the undetermined constants.

II. GREEN’S FUNCTIONS AND CORRELATION
FUNCTIONS

The retarded and advanced Green’s functions of two
operators A and B are defined as!

€ A0,Bu) N =—i01—t'){[A(1),B(N],) , (la)

{A@),B(t)N=iO' —1){[A(1),B(1)],) , (1b)

where A (¢) and B(t') are operators in the Heisenberg pic-
ture, [4,B),= AB—nBA, n==%1, ( ) is the thermo-
dynamic assembly average, and ©(t) is the step function.

Customarily a Green’s function is called a boson
Green’s function if 7= +1 or a fermion Green’s function
if n=—1. The Fourier-transformed Green’s function
satisfies the motion equation

((A,B))w=i<[A,B],7)+<<[A,H],B))a,, )
where H is the Hamiltonian of the systems and
€ A,BM,= - [ €aw,Ba) Ve =dr . (3)
2T — o0
A correlation function is defined as an assembly aver-
age of the product of two operators. The relation between
the correlation function (BA) and the related Green’s

function {{ 4,B)) is given by the spectral theorem, i.e.,
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«4,BY . —«AB)
(Bt A(t)) =i f w+10; w—i0*
eP?—n
Xe—ia)(t—t')dw . (4)

Since there is no symbol to indicate whether 4 and B
are boson or fermion operators in the definition of the
Green’s function, and the above formulas are not restrict-
ed by the statistical characters, there are no inner links be-
tween boson or fermion Green’s functions and boson or
fermion statistics. In principle, the parameter 7 may be
arbitrarily chosen as + 1 or —1 as long as it is con-
venient. However, it is necessary to pay attention to the
fact that if the Green’s functions have zero-frequency
poles, the integral in Eq. (4) will be divergent if n=+1
because of the factor 1/(e””—1). The boson Green’s
function cannot be used under this circumstance.

It is very easy to show from the definition of the
Green’s function that if there are arbitrary ¢ numbers in
the operators forming a Green’s function, the following
relations hold:

" #(4,B)) ifn=—1
CA+v. By D |_aBY ifn=+1, ®
where ¥ and ¥’ are ¢ numbers. Since a correlation func-
tion is an assembly average of the product of two opera-
tors, it follows that

((B+y')NA+7))=(BA)+y(BY+y'{A)+yY’

#{(BA) . (6)

But from (4) and (5) one calculates
((B+y')NA+7y))=(BA) ifn=+1.

This is obviously incorrect. This problem has been solved
by using an undetermined-constant method in this paper,
i.e., the y’s are introduced as undetermined constants.
They (together with the required physical quantities) are
determined by solving the equations of correlation func-
tions.

@)

III. GREEN’S-FUNCTION METHOD
IN THE FERROMAGNETIC SYSTEM
WITH SPIN 1

In zero external field the Heisenberg Hamiltonian of a
ferromagnetic system is
J

@ (S )&k —(S)ék
2<S+>§K w—Z(Sz)é‘K 0 ®
—2(SVéx 0 0+2(S?)Ex

O O ==
S = O
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H:~JES[‘S[+G

ia

=—J 2 [(S[+Si1a +St"Si++a )/2+SiZSiz+a] ’

ia

(8)

where S;5=S7+iS?, J is an exchange integral, / is the lat-
tice site position vector, and i/ +a that of the nearest
neighbor of site i.

The spin operators S; =(S7,57,S7) satisfy the commuta-
tion rules of ordinary angular momentum operators, i.e.,

S; XS;=i8;8;, [S75,S/]=F57%;,
[S7,S71=2576;, $;'S;=S(S+1), ©)
[S7,871=[S,S; 1=[S%S/]=0 .
Using Egs. (8) and (9), we find
[SHHl1=—J 3 (5785, —SH.87),
’ (10)

[STH]=F2J 3 (SFSE ,—S7 .57 .

Let us now choose operators A4,B =S?,S/" to construct
boson Green’s functions. By substituting Eq. (10) into the
motion equation (2) we obtain

m((Sf,S,—"))zM —J 3 (LS S57%0S")
—(S% S5,

—(S7 . S5SMM)

where n=z,+,—. Using the symmetric decoupling ap-
proximation (12) and the lattice Fourier transformation
(13),

« S,'mS,‘"n’,Sjn » = (S,’"nl ) « S,'m,Sjn » + (S,’m>«S,"'n’,Sjn » 5
(12)

«Sim,sjn»:% ZGIr(nneiK-(iAj) , (13)
K

we obtain the equations satisfied by the Green’s functions,
i.e.,

GZ .
.
ok _(s+)
Cx* ()
Gi* (s+)
G :,21; 0 : (14)
GK‘+ 2(52)
Gi- —(s7)
Gi - 2(S?)
0
Gg ™




36 UNDETERMINED-CONSTANT METHOD IN THE BOSON . . . 917

where &x =J(0)—J(K), J(K)=J3,e®? and K is the

wave vector.

Solving Eq. (14), we obtain the energy spectrum

0k =4((ST)Y(S7)+(S?)2)EL
=4((S*)24+(S")2+(S7)2)ELx =4(S) &)

(15)
and the Green’s functions are
zz 2<S+><S_> §K
G¥= ,
2 a)z——w%
Giie— (S*) w+2(S*)Ex
27 a)z—-w}( ’
e (87) =28k
K7 or wz—wf( ’
+) 0—2(S%)
Glz(+: (S > w §K ,
2w a)z——w%
2(S+)? &k
== , 16
Gy 27 ook (16)
2 (5-) o+2(8%)ék
G~ =— ,
2 a)z——w%
__ 2(s)* bk
GK = — ,
2 wz—wi
Gt — 2 ($Ho—(2(ST)2+(ST)(57 Nék
£ o o’ -0k ’
G+A_L<Sz>w+(2<Sz>2+(S+)(S*))g,(
Y o’ — ok )

Introducing undetermined constants ¥, ¥,, and ¥;

through

ST~St+4y,, ST~8S"+v,; S'~S'+y;,
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the correlation functions are found by using Egs. (16),

(17), and (4) in the form

((S7+y3)(S7+73)) ={(S7)?) +2y3(S?) +73
=(§*)(s7)D,

US4y STy ) =(S2SF) +75(5F)
+71(SH) +717;3
+
{82 _(s+)(sp
(SZ+y3)0(S ™ +72)) =(SZS 7 ) +73(S ™)
+72(8%) +v2v;3
_(s7)
2

—(§7)(s*)D,

(18a)

(18b)

(18¢)

(STHy ST +y3)) =(STS) +73(5T)
+71(S*) +v173

+
=—%—<S+)<SZ)D, (18d)
ST+ ST+ ) =S T)?)+2y,(ST) +47
=—(S*)D, (18e)

(SF+y ST~ +y)) =(STS ) +y(57)
+72{ST) +71172
=(S?) +(2(S*)* 4+ (ST )(S™))D ,
(180
(S~ +y)(S7+y3))=(S S +72({SH) +y:(S ™) + 7273
()

5 —($7)(s*)D, (18g)
(ST+y)ST+y ) =(S S T)+7,(S)
+7 (S ) +v1712
=—(§7)+(2(8%)?
+{(STXMS)D,
(18h)
((ST+y)S ™ +y) =S ) +2y,({S ) +73
=—(S7)D, (18i)
where
D:%%%c h B“z”‘
When spin S= 1, we have
(§7)=1, (ST)?=(S")=0,
(19)
STST4+S7St=1, §’=Sts —l=1_g-§+,
so that
(S38+)=—(S*87)=(S*)/2,
(S8 7 )=—(SS)=—(S")/2, -0
(§*S7)=(8)+1, (S S+)=1_(s7%) .
Substituting Egs. (20) to Egs. (18), we get
142y (S +yi=(S* (s )D, (21a)
Yi{S T +y (ST +71v3=—(ST)(S*)D , (21b)
Y3{ST)+7 (S +y,y3=—(SI(SH)D, (21c)
2y (ST +yi=—(S*)D, 21d)
T+ i(S T +r ST +yi7,
=(2(S* M +(STWS D, (le)
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2y,(ST)+y3=—(S")D . 210

The following quantities are obtained by solving Egs. (21):

yi=—(S+) [1+ 1-#5)2 - , (22a)

ya=—(S7) 1% 1—4<;)2 1/2}, (22b)

yi=—(8%) |1+ {1_2—(:;—)»2]1/2], (220)
and

(S)= %%coth E‘;K B 23)

It is very obvious that when (S*)=(S”)=0, or
(S§*)=(S7)=0, BT’s result is obtained immediately
from Eq. (23).

If the undetermined constants are not considered, i.e.,
¥1,2,3=0, we find that

(§T)(Ss~)D=1 (24a)
by Eq. (21a);
(STISHD=(S)(S)D=(S+)’D=(S")D=0
(24b)
by Egs. (21b)-(21d) and Eq. (21f); and
(2(8*)24+(S*T)(S™ D=1 (24c)
J
G*w)
G w)
G*w)
1) —iJo{S?) 0 1 0 0] 67w
iJo{S?) ) —iQ|® [0 1 0| |G”w)
0 iQ 13} 0 0 1]|G%w)
G w)
G¥(w)
G*w)
where
G™M(@)=(S™S" N, (m,n=x,p,z),
JO:EJU .
j
The solutions of Eq. (27) are
wp=024J3(S%)? (28)

and
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by Eq. (21e).

Since D50, Eq. (24b) requires (S*)=(S~) =0, and
is evidently in contradiction with Eq. (24a), so that at
least one of the y’s is not equal to zero.

By comparing the asymmetric decoupling approxima-
tion (12) with that of BT,' i.e.,

«SESi 0PN = (S USHaSIN

25)
USE,aSE,SIN =S Y(SESY

it is not difficult to establish that Egs. (25) are special
cases of Eq. (12) when (S*)=(S~)=0. Since BT only
discussed the uniaxial ferromagnet, the above conditions
evidently exist and under these conditions, y, and ¥, hap-
pen to be zero, but y¥3;5£0. Since BT only chose the opera-
tors ST to construct Green’s functions, but not S?, they
could also obtain the correct results, which concealed the
contradiction in Eq. (24).

If fermion Green’s functions are used to investigate the
similar system, identical results can be obtained.

IV. THE APPLICATION OF GREEN’S-FUNCTION
METHOD

TO THE FERROELECTRIC SYSTEM
WITH PSEUDOSPIN MODEL
The Hamiltonian of the pseudospin system is
H=-Q3% 8—33J;SS} . (26)
i ij
Choosing the operators 4,B =S},S?,S? to constitute bo-
son Green’s functions and using the Tyablikov decoupling
approximation® {(S”) =0, we get
0
—(8%)
0
] (8%
i
— 0 , 27
2
—(8%)
0
($*)
0
T
J, ( SZ) z . z
G () =2 (S (o)=L @48
2T wz—a)f, 2 a)z—w,z,
z Jo(S*)(S?)
GZ"(w)—-L Q¢S , G )——-LO—-— ,
27 0’ —w} 2m o'—o0)
(29)
)= @) Gy (ST
21 wz_w; T wz_w;
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We introduce the undetermined constants as follows:
Six’”Six"f_’Vl’ va"sxy-i*?’z, Sz'z~St'z‘+_7/3 . (30)

By constituting Eq. (30) and Egs. (29) into the spectral
theorem (4), we find that

L2y (S +yi=Jo(S*)E , (31a)
1 42y3(87) +yi=(SME, (31b)
Y8 +v3{(S) +v,73=—(SHE , (31¢)
Y18 +73(S*) +v173=—Jo{S*I(SHE, (31d)
72({(S*) +y,)=0, (3le)
y,({(S?) +y3)=0, (316
where
E= 2:),, coth /3(;,,
The y’s are determined from Egs. (31), i.e.,
1 172
=S = e sy ’ ] ’
(32a)
72=0, (32b)
1/2
e e ] ] S

It can also be seen from Egs. (31) that for (i) the paraelec-
tric phase

(57)=0, (57 =lranh B2 ] (33)
and (ii) the ferroelectric phase
J w
(§*)=Q/Jy, ——tanh Boy 1_y . (34)
20, 2

The results of (33) and (34) are just those of the
MFA."® That is as expected since it is easy to prove that
the Tyablikov decoupling approximation is that of MFA.
Incidentally the Green’s functions with B=S” only pro-
duce three identical equations and all the independent
equations can be obtained through the Green’s functions
with B=S*S%

If the undetermined constants are not introduced (i.e.,
¥1,2,3 are set equal to zero), Egs. (31) give

1=Jy(S*)’E=Q(S*)E , (352)

0=(SHE=Jo{(S*)(SHE , (35b)
and these are obviously contradictory.

Without considering the undetermined constants,

Ganguli et al.® used only some of the Green’s functions
G™" (m =x,y,z) to find the correlation functions. In this
manner they avoided any obvious contradiction, because
only one equation like (35a) may not of itself be contradic-
tory. Considering both the correlation functions to be
finite and

USHP) + (S +((STP)=S(S+1), (36)
they obtained the (i) paraelectric phase
(87)=0, (S*)=2tanh BQ 37
and (ii) the ferroelectric phase
3J W
(S =070, 2% anh | P22 |y (38)
4o, 2

By comparing (37) with (33) and (38) with (34), it is
found that the results of Ganguli e al. are incorrect by a
2 factor. If the undetermined constants obtained above
are introduced to find the correlation functions with Eq.
(36), the results of (33) and (34) are obtained immediately.

The application of the Green’s-function method to the
pseudospin problem is discussed here only in the Tyabli-
kov decoupling approximation. It can also be discussed
in the symmetric decoupling approximation (12) with the
similar pattern. Results are also very similar in appear-
ance.

V. CONCLUSION

It is shown that when arbitrary ¢ numbers are added to
the operators of a boson Green’s function, the Green’s
function itself is unchanged, so that the corresponding
correlation function obtained from the spectral theorem is
also unchanged. This is in contradiction with the
definition of the correlation function, so that the final re-
sults may also be contradictory. This difficulty can be
overcome by an undetermined-constant method. It can
also be shown that the problem of the undetermined con-
stant is an intrinsic attribute of the boson Green’s-
function method. Specific expressions for the undeter-
mined constants can be determined for specific systems
and decoupling approximations.
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