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We consider the Markovian evolution in phase space of a distribution of particles subject both to a
regular external field and to stochastic forces whose transition probabilities are Lévy stable densities.
An integro-differential equation is derived which naturally generalizes the Fokker-Planck equation
much as the stable densities generalize the normal. Its compact expression employs a new notation
of vector fractional derivatives. Solutions are obtained for equilibrium conditions as well as for field-
free and harmonically bound particle forces. The real-space Smoluchowski-equation limit of the
Fokker-Planck equation is also generalized. It is suggested that the general evolution equation and
stable densities may describe statistically the strange or fractal behavior of turbulent systems in the
neighborhood of their critical points in phase space, with generally noninteger-order derivative laws

governing the turbulent diffusion.

I. INTRODUCTION

Consider the motion of a body in a regular external
field of force additionally subjected to irregular forces
from neighboring bodies. Its description has begun his-
torically with a Langevin equation in configuration space
r and time ¢ for the particle momentum p:

p=[—Bp+F(r,0)J(At)+R(A?) (1)

in which p is the momentum change in time A¢, F(r,?) is
the external force, R is the stochastic force from neigh-
bors, and the frictional coefficient 8 is assumed to account
for regular drag on the particle produced by its surround-
ings. In the nonrelativistic limit

r=pAt/m =ult , (2)

with m the particle mass and u the particle velocity. R(z)
is presumed to vary independently of u and much more
rapidly.

The only physically meaningful time-asymptotic distri-
bution of velocities which derives from (1) has always
been thought to be of Maxwell-Gauss, or normal, form:

miju 2
2kpT

P(u)—(m /2mkp T)3/2exp

ast—>o0 , (3)

in which T is the temperature of the surrounding medium
and kp is Boltzmann’s constant. This is the time-
asymptotic form for P(u)—however, only if the stochas-
tic forces are similarly distributed. A Markovian statisti-
cal description of the dynamics which consequently as-
sumes normal transition probabilities for the increments
in phase space results in the Fokker-Planck equation for
the particle density P(r,u,t) (for the standard derivation
see Chandrasekhar'):

a_P+u.a_P+K.a_P~

= P 4
at or du @

3
Bau (uP)+q du Ju

K=F(r)/m , (5a)
q=BkpT /m (5b)

(in which the of P(r,u,t) have been
suppressed).

The Maxwell-Gauss distribution is but one of a broader
class of time-asymptotic distributions permitted by the
Langevin equation,’ the symmetric cases of the stable dis-
tributions named after Lévy.> For a space of n dimen-

sions the Lévy distributions P (u,?) are of the form*

1
(2m)"

arguments

Pu,t)= [ dkg(k,texp (—ik-u), (6a)

c'k

(k,t)=ex
dln=exp k|

—bt k|

14+io(k,y)

l , (6b)

with the parameter restrictions

0<y<2, b>0, —1<|c| <1, o)
and with the definition
a)(k,)/)=tan7r—2y, y+#1
(8)

o(k,y)=(2/7)n | kbt |, y=1.

(Holt and Crow’ present graphical representations as well
as an extensive list of properties.) The symmetric cases
are of present interest, and have ¢=0 so that the charac-
teristic function ¢ is simply the exponential of a generally
noninteger power of the magnitude of the transform vari-
able. They arise asymptotically from solutions to the
Langevin equation if the stochastic forces are similarly
distributed, a property noted previously for the normal
case y=2.°

Their statistical-dynamical significance is suggested by
the fact that the stable distributions obey a broader ver-
sion of the central-limit theorem: The appropriately
normed sum of n mutually independent variables with a
common distribution that possesses singular higher mo-
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36 STATISTICAL DYNAMICS OF STABLE PROCESSES 893

ments (subject to certain restrictions on the behavior of
the tails of the distribution) will tend to a non-normal
stable distribution, just as a normed sum of similar vari-
ables whose common distribution has finite higher mo-
ments will tend to the normal distribution.

The presence of singularities in the variance and higher
moments of the non-normal stable distributions has been
regarded as evidence that they are incorrect as detailed
descriptions of real physical processes. Yet such singular-
ities would in the case of the Langevin equation reflect the
occurrence of non-oscillatory jump discontinuities in the
temporal evolution of the momentum”? and so cusps in
the configuration-space path traced by a particle. Insofar
as such singularities in the particle motion are real, the
singularities in its statistical description are physically
meaningful. These cusps are characteristic of the
“strange” or fractal behavior in phase space of a chaotic
system in the neighborhood of its critical points,”’~!! so
that a generalization of the Fokker-Planck equation to the
wider class of stable transitions may be expected to de-
scribe more accurately the statistics of turbulent or chaot-
ic systems in regions of phase space where they show such
“anomalous” behavior.

II. EVOLUTION EQUATIONS
FOR STABLE DISTRIBUTIONS BY FRACTIONAL
DIFFERENTIATION

It will prove useful to obtain the evolution equation for
the stable distribution (6)—(8). The 1+ 1 dimensional
case P(u,t) for one phase-space variable plus time has
been treated in part'? for symmetric distributions with pa-
rameter ¥ a rational number. With y written in the irre-
ducible ratio form m /n, m and n integers, Seshadri and
West have shown that

M:(_l)”“"/zb"w, m even  (9a)
ar" 0u™

and

%P (u,t) mp 20 3*P (u,1)
ot dum

Let us also first consider the (1 + 1)-dimensional case of
a symmetric stable distribution. Simple differentiation of
(6)—(8) with respect to ¢ produces

9P _
a

Integrals of this form can be expressed compactly by
employing the Fourier representation'® of what is now
known as the (scalar) Weyl fractional derivative.'*!> The
Weyl derivative of order a of a function of f(x) is defined
as

=(—1) , m odd . (9b)

b [« .
~E;fwdk|k\Vexp(-zku—bt|k|7). (10)

Df—wf(X)ZL(rj_l‘)z_) f°° ds(s —x)~'=%f (s)

T (11a)

or

D&, f ()=t [* dstx—5)"1"9f(s),  (11b)

MN—a) -«

whichever is defined, for Rea <0. A more general order

derivative can be written with the identity for Riemann-
Liouville derivatives:

n

D;’Ayf(x)zﬁD,_yf(x) for n —1<Rea<n , (12)
X

n a positive integer. In the particular case of the Weyl
derivative y =+ «. For the Weyl derivative

a
dx“®

in which we have used an abbreviated notation for the
derivative operator. One can then obtain Fourier’s repre-
sentation of the fractional derivative:

exp(Bx)=pB%xp(Bx), ReB <0 (13)

d® e L

dxa * 21

* dk(ik)*exp(ikx)
x [ dy f(plexp(—ikp) . (14)

The ath Weyl derivative with respect to u of the sym-
metric stable distribution in 1 4+ 1 dimensions is then
a(l
u“’

P(u,t)

_ (=i

[ o) a—r .—_. _ 7’
o aurf_wdkk exp(—iku —bt |k |7)

forr —1<Rea<r, (15)

where r is a positive integer.
Another Weyl derivative together with the choice of an
appropriate branch of (—i)” then gives

B == S
ou® du® 2m Qu’ du”

X f°° dkik |2(a7r)

Xexp(—iku —bt |k |¥). (16)

By a simple identity Eq. (10) can be rewritten for integer
r:

2 b ¥y
SrPwn=—(=17 =

X f°° dk |k |7 *exp(—iku —bt |k |7) .

(17)

A fractional partial differential equation for P (u,t) follows
upon equating 2a =y, y+#1,

d ar

~Pu,)=—(—1)""?b——P(u,t) .

3 (u,t) (—1) ou’ (u,t) (18)
The derivative on the right-hand side is to be understood
as
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3 ay/Z»l
Qu qur/2-1

3 ay/Z—l

EW P(u,t)

(19)

since 0 <a <1 by (7a) and so r=1 by (12b) and (15b).
It is evident that the Gaussian diffusion equation is
correctly recovered for y =2,
]

Py _ b ¥
o 27 3x"3x" Y - =
be my | @ 9™ 9"
_1ym2< Ir 1 2
+(=1) 2T tan 2 | 9x 3x™ ax™

[ dk |k |7~ Yexp(—ikx —bt [k |7)

2
9 plu=b3

3 —é—z*P(u,t) . (20)
u

The same procedure can be applied to the more general
case of asymmetric stable distributions with ¢=40 in (6b).
The first partial derivative in time of P (u,?) is (y#1)

1+ic tan

k v
|k | 2

[ dk |k |77 mexp(—ikx —bt |k |7)

1+ic tan (21)

i
2

k
|k |

so that by (16) with a=7y/2 for the first term on the right-hand side of (21) and a=(y —1)/2 for the second term,

v

2

%P(u,t)z [—(-—I)V/Zb +(=17=Y"2pc tan

The asymmetry of the distribution does not alter the or-
der of the fractional derivative but does change the com-
plex effective diffusion coefficient seen in Eq. (18).

The equation for P(u,t) in more than one phase-space
dimension may be written compactly with the new notion
of a vector fractional derivative (VFD) introduced in Ap-
pendix A. The operator is designed to reduce in one di-
mension to the scalar Weyl derivative in the form suggest-
ed by Fourier.

The first time derivative of a symmetric stable distribu-
tion P (u,?) may then be expressed immediately as

a3 ar!

d
o — 1)v7?2
P(u,=— (=17 | F0 oy

ot

P(u,t). (23)

This again reduces to the standard diffusion equation for
the Gaussian case y =2.

The more general case which includes asymmetric
stable forms can be found similarly to be (y+1)

9 _ yray | O 37!
atp(u,t)— (—=1)"<b 30 a7 P(u,t)
=122 my | 9" 24
+(—1) b tan 5 c B P(u,1) . 24)

The second term on the right-hand side may also be writ-
ten with
FY4

2
du?

a2

c
du? 2

d 9

du Jdu

P(u,t)=— P(u,?)

(25)

to make the connection to the ordinary diffusion equation
somewhat more apparent.

av

du’

P(u,t) . (22)

I

III. EVOLUTION EQUATION FOR PROCESSES
WITH STABLE TRANSITION PROBABILITIES

Here we will generalize the Fokker-Planck equation to
non-normal transition probabilities of stable form, along
lines similar to the standard Fokker-Planck derivation in
Chandrasekhar.!

Suppose that the density of particles P(r,u,?) in phase
space subject to regular external and stochastic internal
forces evolves as a Markov process with W(r,u;Ar,Au)
defined as the transition probability that a particle at posi-
tion r with velocity u suffers changes Ar and Au in a time
At. Then by definition

P(r,u,t +A0= [~ d(Auw)
X [* d(ADP(r—Ar,u—Au,)
XW(r—Ar,u—Au;r,u) . (26)

Assume that the individual particle motions are governed
by Langevin equations (1)-(2). With a new variable
¥(r,u;Au) defined by

Y(r,u;Ar,Au)=1v(r,u;Au)8(Ar—uAr) , (27)
Eq. (26) becomes
P(r+uAtu,t+An= [* d(AuwP(r,u—Au,1)

X Y(r,u—Au;u) (28)

after shifting the space coordinate by Ar and performing
the Ar integration.

The expression for 1 can be obtained by assuming that
the stochastic accelerations R(At?)/m in the Langevin
equation for the velocity, written in the form

Au=—(Bu—K)Ar +B(At), R=mB, F=mK, (29)
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are distributed in a symmetric stable manner so that simi-
lar distributions describe the time-asymptotic solutions.
Hence by Eqgs. (6)—(8)

¢lo,At)=exp(—bAt |0 |7)
= [* d[B(AnIp[B(AD]explic-B(AN],  (30)

in which p[B(At)] is this distribution of stochastic ac-
celerations.

An equation which is differential in time is derived
|

Y(r,u—Au;Au)= Py f

1

da exp(—io-{Au+[B(u—Au)—

from the small-A¢ limit after expanding (28) and (30) in
Taylor series in At and retaining terms up to first order.
One finds

P(r+ult,u,t +At)~P(r,u,t)

3. .3

3 or P(r,u,t) (31

+ At

so that with (29) and the Fourier inversion of (30) one
finds in three dimensions

K]At}—b |o | YAt)

“ da[exp( —io-Auw)]{1—io-[Blu—Au)—K]+b |0 | TAt}

873
=8(Au)— At— f da[exp —io-Auw)]fio-[Blu—Au)—K]+b |0 |7} . (32)
To first order in At then (28) becomes, suppressing the arguments of P(r,u,?) on the left-hand side,
2wl lpo— L (" dawPmu—aun [ dolexp(—io-Aw)]{io-[Bu—Aw—K]+b o |?]  (33)
ot or 87T3 — o ’ ’ —

since the zeroth-order terms on both sides cancel.
Let

y=u—Au, d(Au)=-dy, (34)

so that the right-hand side is

Sy g

ofexp[—io-(u—y)]}

X{io:[By—K]+b |0 |"|P(ry,1) .

(35)

With the aid of some identities presented in Appendix A
involving fractional differentiation, one finds that upon

performing the integrations over o and y Eq. (33) be-
comes
d d d
9 42 2 ip
ar T ar "X e
d 1772 3 !
=B— P. (36
ﬁau (uP)—(—1)"""b e (36)
This is the general evolution equation desired. In the

Gaussian limit y =2 it clearly reduces to the Fokker-
Planck equation. As before, the effect of these non-
Gaussian symmetric statistics has been to generalize the
ordinary Laplacian to an operator of noninteger order.

IV. EQUILIBRIUM SOLUTION OF THE STABLE
TRANSITION EQUATION

In equilibrium there is no change in the distribution
P(r,u,t) due to collisions. By (36) this change is

ap

—R— 1//2
EY B “(uP)— b

du

8 ! ]

1
collisions au du’~

(37)

The equilibrium condition is, after one integration over
the velocity,

BuP (r,u,t)—(—1)7/2p-3_
ou?’~

P(r u,t)=cg , (38)

in which ¢y is a constant vector.

This equation is best solved for the Fourier transform
of P(r,u,z) with respect to u, that is, its characteristic
function in velocity space, defined by

Q(r,k,t)= f°° du P(r,u,t)exp(ik-u) . (39)

Transformation of (38) produces the equation for
Q(r,k,1):
—éai(—Q<r,k,z)+—k|k|r 20 (£, k, 1) = (2;’ cod(k),  (40)

in which the right-hand side contains the Dirac 8 distribu-
tion.
A formal representation of the solution of (40) is

S|

b ¥
—8 |kl ]

Q(r,k,n= Qo(r,t)+z‘zg’ co [ dkd(K)exp

X exp

41)
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If the arbitrary integration constant co=0, then (41) is
the characteristic function for a stable distribution.
Hence, the particles in equilibrium are Lévy distributed in
velocity. As wusual, the special case y=2 correctly
reduces to Maxwell-Gauss form. The homogeneous form
of (38) with the arguments r and ¢ suppressed is then an
ordinary fractional derivative equation for the single-
variable symmetric stable distributions.

V. FIELD-FREE SOLUTIONS OF THE STABLE
TRANSITION EQUATION

Here we will treat the solutions of (36) for K=0 sepa-
rately for the conditions of configuration-space homo-
geneity and inhomogeneity.

A. Configuration-space homogeneity

By assumption, K=0 and (3/9r)P(r,u,#)=0 in (36) so
that in three dimensions
a d 3 97!
—P =38P —P —i¥h | —- P . 42
at BP +Bu du ! du Ju’! 42)

The term linear in u can be eliminated by a change of in-
dependent variable,

v=uexp(Bt), P=P(r,v,t), (43)
to give

aiP =3BP —ivb[exp(ypBt)]

(44)

ar—!
av ov? !

The term linear in P can be eliminated by a change of
dependent variable,

X(r,v,t)=P(r,v,t)exp(—3pt) , (45)
to yield

d ar !

a—)(——z’b[exp vBt)] v Byl ]X. (46)

Equation (46) is identical in form to (23) for a symmetric
stable distribution, but with a time-dependent generalized
diffusion coefficient. This suggests the ansatz (suppressing
the configuration-space variable)

X(v,t) o a’kexp[—ik-(v—vo)—a(t)b [k|¥].
47)
Substitution of (47) in (46) produces the restriction on
al(t):
d——ex Bt) or a(t)=a +—1—ex (vBt) (48)
dr ply =dap VB ply ’

in which a is set by initial conditions.
Upon retracing the transformations, one finds the solu-
tion P(u,t) of (42) as

P(u,t)=

dkexp | —ik-(ue? —ug)

><f;°°

1
ag+ ——e?P
" yB

(49)

This result is in agreement with the form obtained by
other methods by West and Seshadri!® for a spatially
homogeneous linear system driven by stably distributed
external forces. They derived and solved a conventional
partial differential equation for the system’s characteristic
function. The coefficients in this equation contained
noninteger powers of the Fourier-transform variable,
which as we have seen makes it equivalent to the author’s
fractional derivative formalism for the probability distri-
bution directly.

In the Gaussian case ¥y =2 of (49) simple evaluation of
the integral reveals the variance o3 of the density to be

of=b (50)

1
— fage ¥
yB " °

Although there is no finite variance for y <2, the expres-
sion above may be useful as a pseudovariance for deter-
mining ao by initial conditions for all y. Specifically, if
the initial distribution is a single velocity, when o} at =0
vanishes and so the integration constant is
1
apg=———. (51)
By
For the Gaussian case the integral in (49) then correctly
reduces to the well-known Ornstein-Uhlenbeck!” distribu-
tion

2m7b —3/2
P(u,t)= %[l—exp(—ZBt)]
—B | u—upexp(—pB1) | ?
XX T T —exp( —280)] (52)

B. Configuration-space inhomogeneity

Here it is assumed that in (36) K=0 but the
configuration-space derivative of P (r,u,?) need not vanish.
One has in three dimensions

9 9 O p_yv
5 P rw s P =3P +pu P irb

3 3!
du gu’ !

(53)

Eliminate the term linear in P by transforming to a new
P’
P'(r,u,t)=P(r,u,t)exp(—38t) (54)

to obtain
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a or’!

du Ju’ !

35 v
atP +u-— Bu b

P . (55

Without the fractional derivative expression this equa-
tion is linear, homogeneous, and first order. Hence, as in
the special case ¥ =2 treated by Chandrasekhar,! its gen-
eral solution can be written as a function of the Lagrang-
ian system:

d d
o u=—pu, a r=u, (56)
or, equivalently, the new independent variables
v=uexp(ft) , (57)
1 1
s=r+—u=r+—vexp(—pft) . (58)
B g* P

As in Sec. V A above, first transform one set of in-
dependent variables from u to v and so rename P'(r,u,t)
as X(r,v,t) to remove the term linear in u,

a3 or—1
v yr!

——X—}-e"BtV i){_ —iTpe "Bt

. 9
ar X (59)

|

e
X(r,v,t)=
r,v prynY;

Lezﬂq_cO

—b 2B

The initial conditions determine the integration constants c;.

1 2

28 ClZ—E;, c=0.

Co=—

|k |2+

One expects as before that (59) will be solved by some
distribution jointly in v and s. To find its characteristic
function, define a new ®(k,/,¢) with the ansatz

X(r,v, t)— f dk f dl exp[ —ik-(v—vp)

—il-(s—sp)
—o(k,l,0)] . (60)

Substitution into (59) with the definitions (57) and (58)
yields the restriction

i<I>(k,l,t)=b

3 (61)

1
kexp(Bt)+ =1
exp(B 3 ‘

or, equivalently, the time-dependent jointly stable form

D(k,1,0)=Do+b [ dt [kexp(Bt)+— (62)

P, merely serves to normalize the distribution.
In the normal case y =2 the time integral can be per-
formed explicitly to give

[ ax [~ dlexp[—ik-(v—vo)—il-(s—so)

—;eﬁt—kcx k-l

é;z+cZ}11|2+ } (63)

If v=vg and s=sg at =0,

(64)

Upon performing the integrations, one finds the normalizing factor ®, to be zero, and the closed expression for y =2 as

B, |V——V0|2——Bx |V-—VQ| : IS—Sol —l--B()ls—S()|2

X(s,v,t)=-1—3(BOB2—%B%)‘3/2exp —
T
with
1
By=— 2[J,[l—exp(2[3t)] , (66)
- 67)
1= 32 [lﬁexp(Bt)] ’ (
By—— 68
2= th s ( )

in agreement with the known result for the Fokker-Planck
equation.

VI. EXTERNALLY FORCED SOLUTIONS
OF THE STABLE TRANSITION EQUATION

The harmonic oscillator is of traditional interest, so we
shall first deal with it separately.

, (65)
4(BoB, —1B?)

A. Harmonic-oscillator force law

For simplicity let us consider the problem in only one
dimension. The force law is

K(x)=—w’x (69)
and (36) in 1D for P(x,u,t) becomes
d d 0

=P +u—— —P=B—(uP)—i"

EY +ua P— coxau B (uP) tbau (70)

The standard transformation of dependent variable to
X(x,u,t)=P(x,u,t)exp(—pt) (71)

simplifies (70) to

d d 0 vy 07

= - - —X— . 72

at)(—i-ua X — wxa X = Bu X tbaqu (72)

The Lagrangian subsystem is
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%u =—PBu —w’x , (73)

el (74)
whose first integrals are

p=(aox —u)exp(—ayt), (75)

o=(a;x —u)exp(—apt) , (76)

in which a¢ and a; are the two roots of the quadratic

|

a’+Pa +w*=0, a7
specifically,

ag=1[—B+(B—40M'?], (78)

a;=i—B—(B—40?)'?] . (79)

We again expect the solution of (72) to be a joint distri-
bution in p and o, and so employ the ansatz with the new
function ®(k,1,t),

X(p,a,t)::l—z [ ak [ dlexpl—ik(p—po)—illc—0o)— Dk, LD)] . (80)
e — o© — oo

Insertion of (80) into (72) gives the restriction on ®(k,/,¢):

%(D(k,l,t):b[—k exp(—at)—Ilexp(—ayt)]”, (81)

or, equivalently, the time-dependent jointly stable form

®(k,1,1) =Do+b [ di[ —k exp(—a t)—Iexp(—aod)]” ,
(82)

in which @, is a normalization constant. This again is
equivalent to the characteristic function obtained by other
methods by West and Seshadri'® for a linearly damped
harmonic oscillator driven by Lévy stable fluctuations.

It is easily checked by explicit evaluation of the integral
in (80) that the ¥y =2 case reduces correctly to the joint
Gaussian solution of the Fokker-Planck equation for ap-
propriate initial conditions.

B. General force law

The general method for solving (36) for an arbitrary
external force law K(r) is clear. One finds the first in-
tegrals of the motion in n dimensions of

4iu, Ly

dt dt
and transforms the independent variables from r and u to
these 2n new quantities. One assumes the solution to be a
joint distribution in these new variables, which due to the
nature of the fractional derivative is most easily Fourier
transformed and solved for its characteristic function.
This last is an exponential of the first time integral of the
yth power of a time-varying weighted sum of the
Fourier-transform variables. The distribution is thus of
time-dependent jointly stable form.

=u, = —pBu—K(r,u,t) (83)

VII. THE STABLE TRANSITION EQUATION
IN CONFIGURATION SPACE
FOR LOCAL EQUILIBRIUM

After some duration At much greater than the relaxa-
tion time 1/ of the Langevin equation (1), one may ex-

f

pect that equilibrium conditions will exist locally
throughout a system of particles governed by the stable
transition equation. We have seen that in such a local
equilibrium the particles in some suitably small spatial re-
gion will be stable distributed in velocity. Here we wish
to derive from the stable transition equation another
governing the variation in time and configuration space of
a distribution which is locally stable in velocity. This will
generalize the Smoluchowski-equation'® limit of the
Fokker-Planck equation.

Reorganize the terms in (36) to the form [again
suppressing the arguments of P (r,u,?) for simplicity]

3 3 0 1 b 97!
Op_ipt_9 P_— _jr2
ot = Pau "ar | [ TR T B }
/31’~1 ! ar-! l-yii
ou’~!  grr! B or
B [Lgp b
—ar | gKP+ 5 a1 J (84)
Integrate this over all u along the line
r+‘%u=ro:const (85)
so that
1 d d 0
dr=——du, B———=2—
r B v Bau or Bau (86)
and
ﬁ?’—l ay—l .a_y.i._[l (_I)Y]By—l_ﬂ (87)
ouw— a1 LT dur—!

One finds that
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1 b 9!
P——KP—i">
" B : B dur!

d
o d,

I+ —u=r
B 0

duP =283

a 1
- fr+(l/B)u=r0dua. lEKP +1

For the first integrated term to vanish, P(u) must asymp-
totically approach zero as |u|— co faster than |u| '
This is true only for stable distributions with parameter
¥ > 1. The other integrated terms vanish for any y > 0.
With the restriction

I<r<2, (89)
one then has
dp, 0|1 b ol
fr+(1/B)u=r0du atP+ or lBKP+l B,’/ ary_lP =0.
(90)

With the assumption of a local stable equilibrium, the
velocity dependence of P(r,u,?) can be separated from
that on r and ¢ by

P(r,u,t)~U(u)p (1,t) , 91)

in which U(u) is a stable distribution of order y. This
will be valid within spatial cells of size Ar~ |uy | At or
Ar~(b/B*'? on a side, in which |uy | is the largest
speed whose contribution to the integral (90) is dominant.

The stable generalization of the Smoluchowski equation
follows immediately as

9 |1 b 3!

—_ — . | = ;Y —
EY (r,t)+ o BK(r)p(r,t)—H 8 37—

p(r,t) | =0 .

92)

The Laplacian in space found in the Gaussian limit is
now more broadly an operator involving fractional deriva-
tives, as one would expect.
In the case of a stationary generalized diffusion of
current jo,
.1 L, b dv!
jo==Kp(n)+i"—
B P BY dr’—!
An explicit expression for p (r) is obtained in Appendix B
in the form in one dimension

B’ d'=" Jo
s ¢(X)dx“7 300

where ¢(x) is a stable distribution in the variable p defined
by

p(r) . 93)

p(x)= (94)

14 di-r
P =——F(1+‘}/)WK(X) (95)
or for a force law derivable from a potential
14 d2-r 6
P =F(1+y)dx2_7 Vix) . (96)

Equation (94) can be rewritten as

u=+ y—1 u=+ o
4= 177 | 2P
b ar! ’
y O (88)
B arr—!
:
y—1
o= — L g2 px) ©97)

BY dx?~! é(x) ’

where b/B=(kpT/m)"’?. When this is integrated be-
tween any two points x 4 and xpg, one finds the generaliza-
tion of the Kramer’s relation' from the simple Gaussian
case to more broadly stable transitions:

o, 1 b | d"2 pix) ||
— = |/ 98
Jo ., x¢(x) 5 |ax7—2 ox) ., (98)
In more than one dimension this becomes
e, 1 b |d72 po) ||”
d =—— 99
JO frA r¢(f) ﬁy dry_z ¢(r) ‘, ( )

In the Gaussian case ¥ =2, one correctly recovers the
result that ¢(x) is a damped exponential in the potential
V(x). For the other stable distributions, however, their
arguments are by (96) noninteger powers of fractional
derivatives of the potential, and their damping for large
values of the argument is asymptotically a noninteger
power law rather than exponential.

VIII. DISCUSSION

The formalism developed here, based on stably distri-
buted fluctuating forces, should prove useful for describ-
ing a variety of apparently chaotic or more generally
nonequilibrium processes.

The success of some recent models'® of turbulent
diffusion which rely in part on stable distributions is en-
couraging, but also points to the need for an approach
such as this paper’s which is connected more directly to
fundamental statistical dynamical law.

In turbulent flows one encounters enhanced diffusion
where the relative mean-square displacement (r2(¢)) of
marked particles as a function of time increases super-
linearly,

(rée)) ~t%, a>1. (100)

Richardson?® experimentally found the dependence to be
cubic in turbulent air, and proposed as an explanation
that a standard diffusion law applied but with a fractional
4-power law for the relative diffusion coefficient,

3 ) )
5 P(nt)=—2 D(No-P(r1), (101)
D(ry=r*"3, (102)

where P (r,t) is the probability that two particles spatially
coincident at =0 will be spatially separate by a distance
at time z. Hentschel and Procaccia?! have widened this to
a fractional law in space and time
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D(r,t)=r%"

in the study of fractal cloud shapes.

Shlesinger, Klafter, and West!® have used a stably dis-
tributed random-walk model together with Kolmogorov’s
— 3 law to describe this enhanced diffusion, and have de-
rived the appropriate fractional-power-law mean-square
displacements (with intermittency corrections).

This paper’s noninteger derivative formalism for
diffusion based on stable transitions suggests, however,
that these successful model results may not be evidence
for a fractional-power relative diffusion coefficient, but
rather for a fractional generalization of the order of
derivatives in the diffusion equation with spatially con-
stant coefficients.”> One would replace (101) and in part
(103) with

(103)

iP(r,z‘)=—i““D 9

ot arY
Straightforward use of fractional calculus reproduces the
superlinear law (100), with the fractional-power diffusion
coefficient laws being lowest-order approximations to
(104). Fractional time dependence follows naturally from
the broader form

P(rt) . (104)

a"?
—P(r,t)=(—1)"" (105)
ar”

ar

There are mathematically more rigorous reasons for
believing in the utility of our formalism for turbulence. It
is well known that real turbulent processes are manifestly
non-Gaussian in their statistics.2>~2% This is usually tak-
en to mean that the distributions of various dynamical
quantities such as fluid velocity possess nonzero but finite
skewness, and a defined kurtosis which deviates from
quasinormality. Theoretical models of turbulence based
on this perspective are equivalent to perturbative expan-
sions in small non-Gaussianity parameters around a
Gaussian base state.”’?® Observation of the trajectories of
fluid elements in turbulent flows,?’ however, show that
their paths are filled with cusps, points of discontinuity in
fluid velocity. These are hallmark signs of fractal
motion,’® and, as was noted above, imply statistical distri-
butions with singular moments of at least second and
higher order, distributions which are maximally non-
Gaussian. (Montroll and Shlesinger’! have also noted
that these singular moments reflect an absence of scale
and hence the existence of dynamical features on all
scales, which lead to the observed intermittent clustering
of events as a function of space or time.) Infinite second
or higher moments invalidate the perturbative expansions
in conventional turbulence theories. They are, however,
natural consequences of the Lévy stable generalizations of
Gaussian processes examined here. And since the govern-
ing equation presented above which generalizes the
Fokker-Planck to stable non-Gaussianity is not higher
than second order, the probability density function it de-
scribes is everywhere positive. This cannot be guaranteed
by other attempts such as the Kramers-Moyal finitely
non-Gaussian expansion of the Fokker-Planck equation,
insofar as it is higher than second order in its phase-space
derivatives.

The ease with which the stable density formalisms in-

clude the Gaussian, but one example of which is the sim-
ple generalization of the Fokker-Planck equation which
results with the use of fractional derivatives in Laplacian-
like form, strongly suggests that these probability distribu-
tions be regarded as the natural basic elements of new and
broader statistical theories which encompass both tradi-
tional equilibrium and nonequilibrium processes.
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APPENDIX A

Define the vector-fractional-derivative (VFD) operator
with

exp(zkx =i% | k| “ exp(ik-x) (A1)

a a
so that the n-dimensional VFD of an arbitrary function
f(x) is, if it exists,

% (x) _ i

f * dkk|k|* 'explik-x)
ax“ (277)" —©

><f_°°

for Rea <0. This is the analog to the Fourier representa-
tion (14) of the scalar Weyl fractional derivative. For a
more general range for a, one can use the easily verified
identity

dy f(y)exp(ik-y) (A2)

b " aa—-2n
ox“ ax“‘z"f(X)
in which n is selected so that @ —2n <0 and the integral
in (A2) exists. This is the analog to Eq. (12).
Some identities which prove useful for the calculations
in Sec. III follow immediately:

9.9
ox 0x

fx)=(—1)" (A3)

io-yexp[—io-(u—y)]= —%-y exp[—io-(u—y)],

(A4)
|o | Yexp[—io-(u—y)]
a3 !
—j7
=i 30 a7 exp[—io-(u—y)] . (AS)
APPENDIX B

Consider the solution of Eq. (93) in one dimension for
simplicity,
y b dr! 1
/37 I .,_1P(X)+“EK(X
It is convenient to write p (x) as the product of two func-
tions ¢(x) and ¥(x):

p (x)=jo . (B1)

=¢(x)(x) , (B2)
whose relationship is defined implicitly by the equation
d y—1
— B”¢ T Y(x)=jo (B3)
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so that
dl-r

d‘V

These definitions will prove helpful in clarifying how to
generalize, from the stable equation, the Kramers rela-
tion! for the special Gaussian case with a force law deriv-
able from a potential. Specifically, if

p(x)= ———d)( Lo/é(x)] . (B4)

K(x)=— v, (B5)
dx
then with ¥ =2 one can write (93) as
v 2 V(x)
Ix p(x)exp —B——I;(}—)— —E—_]oexp B b(x ] . (B6)
In one dimension this becomes
B BY (x)
plx)= b exp —p
x [ dx jo |exp —B—’;—(’—‘l : (B7)
which is cast in the form of (B4) if written formally as
__B _BVx) !
p(x)= b |eXP b dx -
X |jo/exp | — ﬁl—/bix—) (B8)

We shall see that ¢(x) in the more generally stable case is
not simply exponential, so that the expression for p (x) for
1 <y <2 will generalize both the order of the derivative
and the functional dependence on the potential for the
v =2 normal case.

Transform from configuration to Fourier space with the
representations

¢(x)=—1— J 7 dkewoexp(—ikx) (B9)
= f dk ®(k)exp( —ikx) , (B10)
K(x)=—- f°° dk Q(k)exp( —ikx) . (B11)
27T —
The relation (B3) between ¢(x) and ¥(x) becomes
—% [ [ dk di(—ik)='®( — k)W(k)exp(— ilx)
=472, , (B12)

while Eq. (B1) for p (x) expressed with the decomposition
(B2) is

;—1;ffdkdll”“<b(l—k)\l/(k)exp(—ilx)

—IE [ ] [akardo @i —orvio—

X exp( —ilx)=4172j0 .

k)W(k)

(B13)

With both integral expressions in (B12) and (B13) equal to
41%j, one has

ffdkdl

l =1y Eby—(—ik)y“JXm—k)

1
+—_

P “ daQI—

)®(o—k)

X W(k)exp(—ilx) =0 (B14)
A linear equation for ® alone follows if one can set the

square bracketed term to zero:

b yy-1y b pyr-

Y —k)
ﬁV BY

1

- 2mB

Inverse Fourier transform (B15) for the equivalent
configuration-space equation for ¢(x). One finds after ap-
plying the operator

* doQU—0)(c—k) . (BIS)

fwf dk dl exp( — ikx — ily)

and with the use of Weyl fractional derivatives to express
the noninteger powers of the transform variables that

- %S(x +YK () . (B16)
Integrate this over all x from — o to + « to get
o ;:_1 s)+00) | [ 7 ds e ]
=—%K(y)¢(y) . (B17)

For derivatives of integer n order, the Dirac § function
satisfies

f ) d" d"
z f(2) (z2)=(=1)" (z)],=0. (B18)
- f dZn dz" f | z=0
With the same true for noninteger powers
® dr—!
- dz— =7 8(2)=0 (B19)
if ¥ > 1, as has already been assumed.
The equation for ¢(x) is then found to be
ivh dv7! 1
= ——K(x)¢(x) (B20)
BY dxv! B ¢
Hence ¢(x) solves the homogeneous equation for

p(x),jo=0 in (Bl), for 1<y <2,
known for the special Gaussian case.

One can cast (B20) in stable distribution form, the
homogeneous version of (38), by a change of independent
variable. Rewrite (B20) as

a result previously
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i"b d\-v

T Px)=— dxlﬂ,K(X)qS(x) . (B21)
The generalized chain rule for fractional derivatives’? is
a a dgl(p) |dh(p)
Dg(plf(p)ZDh(p) f(p)—d—,% —dp&
1+a
“1 h(p)—h(o) (B22)
glp)—g(o) o=p

in which Dy, is the fractional derivative of order a with
respect to g(p). With this, transform from x to p in
(B21):
ivh
g1 o(p)
d!=7 dx p—o r
=——— |K(p)p(p)— —
dp'~" pIdlp dp | x(p)—x (o) o=p
(B23)
This is of stable form in the new variable p,
L b dr!
T g PP =PHP) (B24)

if one defines the relationship between x and p implicitly

2
Cdx | _p—o |77
dp

x(p)—x(o) (B25)

K(p)=p .
o=p

Take the (1 —y)th Riemann-Liouville fractional derivative
with respect to p of both sides to find

22—y
1—y _
_d - p)ggc_ p—o
dp p |x(p)—x(o) o—p
= : p?  (B26)
'(1+7y)
or, equivalently,
d'=r 1
— K(x)= Lo B27
dx' 7 T T4+n” B27)

(In this last, the fractional derivative is of Riemann-
Liouville type with lower limit of integration equal to
zero, so that the derivative of p on the right-hand side ex-
ists as stated.)

If the force law is derivable from a potential (B5), then
one finds explicitly for p

d'=v d
dx'=7 dx

px)= |[[(14+7v) Vi(x) . (B28)
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