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Fermion gas with screened interactions
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We consider an interacting fermion system in jellium. The particle-particle interaction is taken as
a screened Coulombic one. The behavior of the ground-state energy per particle as a function of the
screening and the interparticle distance r, is obtained. The density of states at the Fermi level as a
function of the Wigner-Seitz distance and the screening parameter is calculated. In all the cases con-
sidered in this work, the localization of the particles in the system is obtained in a natural way in the
low-density region, in agreement with Wigner s prediction. Our results, obtained using as state func-
tion an expansion of periodic functions, are compared to the usual plane waves and to similar calcu-
lations with the same potential.

I. INTRODUCTION

Calculations for fermion systems in which the particle-
particle interaction is a screened Coulomb potential ap-
pear often in the literature. Sometimes this type of in-
teraction is considered as a powerful way of accounting
for some correlation effects in the fermion gas. ' Physical-
ly the effective interaction between electrons in a plasma
(quantum or classical) is not a particularly long-range one;
for this reason screened potentials that cut out the long-
range interactions have been extensively used. ' In a
quantum plasma the effective interaction between a pair of
electrons will be screened as a result of the polarization
cloud which surrounds any electron. In two-dimensional
electron layers, calculations with screened potentials have
been extensively done. In connection with an evaluation
of the nuclear reaction rate in a compressed star, screened
potentials have also been used. '

Jellium is a relevant model for the study of many-body
systems such as metals or stellar matter. There are
many calculations that use this model, such as variational
calculations, the plane-wave Hartree-Fock (HF) method,
density-functional calculations, ' " and numerical
methods such as Monte Carlo simulations, ' ' in order to
get ground-state energies or other properties of the sys-
tem.

Despite its simplicity, the HF approximation has been
successfully used to evaluate one-particle properties of
many-body systems. ' It is also useful as a starting point
to more complex approximations. However, in the calcu-
lation of the HF energy of the electron gas with a plane-
wave solution (PW) there is an alarming feature occurring
in the derivative BE/Bk at the Fermi level: it becomes
logarithmically infinite. ' It must be remarked that this
singularity is also obtained with other nontrivial solutions
for the state function when the Coulomb potential is
used. ' This behavior can be traced back to the long-
range nature of the Coulomb potential because it does not
occur for other short-ranged potentials like the Yukawa
interaction. For these potentials, the elimination of the
divergence allows the description of transport properties

of the system.
In this work we consider a fermion system in jellium,

interacting via screened Coulombic interactions of Yu-
kawa type, with the purpose to cut the long range of the
interaction. As a particular case the Coulomb potential is
considered. In order to obtain an adequate description of
the behavior of the system at all densities, the trial state
function is taken as an expansion of periodic functions; as
is well known, ' in the low-density region, periodic solu-
tions (charge-density waves) are found to be better than
PW's. The state functions in this work have periodicity in
one, two, or three orthogonal directions, potentially
describing in this way some systems with diff'erent sym-
metries. The state function was also selected so that it
gives the same value for the total momentum at any den-
sity.

In this work a HF calculation is done for the ground-
state energy, and the coefficients in the expansion of the
wave function are self-consistently determined. The be-
havior of the ground-state energy is obtained as a function
of the screening p and the density parameter r, . In agree-
ment with the Wigner prediction, ' we get localization for
the particles in all these systems starting with some criti-
cal values of the parameter r, . The dependence of this
critical value on the type of system is displayed. Our re-
sults are compared with others that use different state
functions. In order to see the eff'ect of the screening in the
elimination of the divergence in BE/Bk at the Fermi level,
we evaluate the density of states at k =kF.

II. THEORY

The Hamiltonian of a fermion gas in jellium has a ki-
netic energy term for the fermions and fermion-fermion,
fermion-background, and background-background
potential-energy terms. All these interaction terms are
supposed to have the same functional form. According to
a theorem for the jellium model, ' the background terms
cancel with the direct term of the fermions, so we only
have the kinetic energy and the exchange term.

We select as single-particle state function an expansion
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in terms of periodic functions of the form

ikr N N A

n= —Nn= —Nn= —Nx y z

with n=in +jn~+kn„7~ is the spin function, and qo is
a parameter to be determined. As interaction potential we
propose a screened Coulombic, Yukawa-type potential
V(r~ )=e exp( pr J )/rz,—where r~ =

~
r; —rj

~

.
The selected state function guarantees the periodic

character in three independent directions. As a particular
case, we can describe systems which present periodic be-
havior in one or two directions. ' With this kind of ex-
pansion the total momentum is always zero at all densi-
ties.

In order to get the coefficients in the expansion (1), the
HF equations must be solved self-consistently, i.e.,

—g g (n~k~, n2k2
~

V
~
n4k2, n3k~)C„*,C„*,C„,

n2 n4

=c„,C„,, (2)

where C„is used instead of C„„„andg„replacesg„,with all the sums run from Nu—p to N
Once we have determined the state function, the ground-
state energy per particle of the system is evaluated.

On the other hand, the derivative of the one-particle en-
ergy spectrum at the Fermi level does not diverge when a
Yukawa-type interaction is used. Then the density of
states N(k) at the Fermi level is nonzero. In atomic units
the derivative of E (k) is

BE(k) g ~
C„,

~
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(3)

where N~4 ——n~ —n4 ——N ~4e„and d„=ek.e„.This equa-
tion, as claimed before, does not diverge as in the
Coulomb case, even the terms with N=O, i.e., n~ ——n4. In
fact if the screening is turned off, the last term in Eq. (3)
diverges.

III. RESULTS AND DISCUSSION

We now show the results for the ground-state energy
per particle as a function of the density. The value of the
parameter qo in Eq. (1) must be qo & 2kF in order to satis-

fy the HF equations. The qo value we use is 2k~ since it
corresponds to the best energy. We have done calcula-
tions using different values of the screening parameter, in-

cluding the Coulomb case.
The results are obtained for systems with different sym-

metries. Localization of the particles along three direc-
tions is obtained when n, n~, and n, run from —N up to

In two directions, localization is obtained when one of
the sum indexes is equal to zero and the other two run
from —N up to N. Finally, localization in only one direc-
tion is obtained when two of the indexes are zero. Be-
cause of the symmetrical character of the sum indexes
(from —N up to N), we have total momentum equal to
zero at any density, even when the HF solution changes
from a PW to a periodic function.

In the figures the results for the ground-state energy are
shown. We draw the difference in energy AE, obtained
with the energy per particle using the state function (1)
minus the PW energy per particle. In all the cases con-
sidered here the self-consistent solution becomes a PW in
the high-density region. Starting with a transition r,
value (about 32 or greater), the state function becomes a
periodic one, and the system density changes from homo-
geneous to periodic. This result is consistent with
Wigner's prediction.
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FIG. 1. Energy difference per particle between the function in

Eq. (1) with corrugation along one axis and the plane wave as a
function of r, (in units of the Bohr radius). The results for
different values of p are shown.

FIG. 3. Energy difference per particle between the function in

Eq. (I) with the three sum indexes running from —1 up to 1 and
the plane wave as a function of r, . The results for different
values of p, including p =0, are shown.

In Fig. I the results for state function (I) with an ex-
pansion in which the electron localization is along one
axis are shown. In the expansion considered here N is
equal to 5, i.e., the state function has 11 terms. With this
expansion the convergence for the energy is good because
the difference from the results for N =6 is less than 10
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FIG. 2. Energy difference per particle between the function in

Eq. (1) with corrugation along two orthogonal axes and the
plane wave as a function of r, . The results for different values of
p are shown.

FIG. 4. Energy per particle obtained with different state func-
tions in terms of the variable r, . The results are shown in the
Coulomb case p=0. The dashed curve is the energy for the
plane wave, the dot-dashed curve shows the results for the func-
tion in Ref. 20. The double dot-dashed curve shows the results
for the function in Eq. (1) with corrugation along one axis. The
cross-dashed curve is the energy for the function in Eq. (1) with
corrugation along two orthogonal directions. The continuous
curve corresponds to the function in Eq. (1) with corrugation
along three orthogonal directions.
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The energies for different values of the screening parame-
ter are compared. When r, is small EE=O because the
PW is the self-consistent solution, and DE&0 at small
densities since the self-consistent solution becomes period-
ic. The r, transition value increases with the screening
parameter. It is equal to 32 in the Coulomb case, but
when @=1 (in units of 2k&) it is equal to 77.

The results for an expansion of the state function in
which the electron localization is along two independent
directions are shown in Fig. 2. Good convergence for the
energy is obtained for values of N )2, having 25 terms in
the expansion in Eq. (1). The results displayed in Fig. 2
are similar to those of Fig. 1. However, the ground-state
energy obtained is lower when the system has periodicity
along two independent directions. In the Coulomb case it
is seen that the transition from PW to periodic function is
also at r, =32. But for other values of p, the transition
happens at smaller r, values than those for the same p in
Fig. 1. The results for the case in which the localization
is along three independent directions are shown in Fig. 3.
Good convergence for the energy is obtained in this case
since N=1, i.e., with an expansion of the wave function
with 27 terms. The ground-state energy is lower than in
the two cases shown before. Again the transition from
PW to periodic function is at r, =32 for the Coulomb po-
tential. When p&0 the transition happens at smaller r,
values than with the other two symmetries for the same p.

As can be seen from Figs. 1 —3, the lowest ground-state
energy is obtained for the Coulomb potential. On the oth-
er hand, the lowest ground-state energy at any value of p
is obtained with the state function that gives localization
along three directions. In fact, calculations were done us-
ing the expansion in Fig. 1 with N=13, i.e., a state func-
tion with 27 terms, and the results are the same as those
in Fig. 1 for a function with 11 terms (N=5). Then the

energy not only depends on the number of terms of the
state function, but on the symmetry of the system.

Finally, in Fig. 4 we compare the results for the energy
per particle, using three kinds of expansion for the state
function, with the results from Ref. 20. As claimed be-
fore the lowest energy is obtained using an expansion in
the three indexes, and the differences between PW energy
and these results are 1 order of magnitude greater than
the difference between PW energy and the results from
Ref. 20.

We have some final remarks. It has been shown that
the transition from PW to periodic function, in the
Coulomb case, happens at r, =32 for the three types of
state function. When we use a potential with p=0, the
transition occurs at smaller values of the density. Howev-
er, in these cases it is seen that the transition depends also
on the kind of expansion used, as follows from Figs. 1 —3.

For all the expansions of the state function considered
in this work, the system presents total momentum conser-
vation because the transition is from PW to a function in
which C„=C

„

for all n. This transition, observed in all
the cases considered, occurs in a natural way in our calcu-
lations at low densities. This is in agreement with the
Wigner hypothesis of localization of the particles. With
the state functions proposed in this work it is possible to
describe systems with different symmetries. The method
presented in this work gives a systematic way to do self-
consistent calculations which give better results for the
ground-state energy than other previous HF calculations.
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