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We investigate theoretically dynamical aspects of the optical Freedericksz transition in nematic
liquid crystals. Specifically, we analyze (1) the existence and stability of a sequence of higher-order
longitudinal modes past the Freedericksz transition, (2) effects due to transverse correlations of the
molecular orientation, and (3) the effects of thermal noise on the stability of the spatial modes.
Higher-order longitudinal modes are studied both in the weak-anisotropy limit, in which case the
problem reduces at steady state to a sine-Gordon equation, and in the general case, using a combina-
tion of analytical and numerical methods. They can be excited by the influence of internal fluctua-
tions. Transverse correlations are shown to lead to the existence of transverse inhomogeneities
("kinks") of the direct-angle distribution that can appear even under plane-wave illumination.

I. INTRODUCTION

The optical Freedericksz transition (OFT), i.e., the
change in refractive index of a nematic liquid crystal due
to the distortion of the director field under the influence
of a laser beam, has been the object of considerable stud-
ies in the last few years. ' ' The Freedericksz transition
was originally discovered in 1927 by employing a static
magnetic field, but its recent observation' under laser
irradiation reawakened the interest in this problem.

In the paper we investigate theoretically the dynamics
of nematic liquid crystals illuminated by a laser beam. In
particular, we analyze static and dynamical aspects of the
OFT related to (1) the existence of further transitions cor-
responding to higher-order longitudinal modes in the
crystal, (2) their stability against small perturbations and
noise, and (3) transverse effects due to transverse correla-
tions of the molecular orientation. Higher-order longitu-
dinal configurations are important not only from a basic
physics point of view, but also for potential applications,
e.g., in spatial light modulation, bistable devices, and non-
linear waveguides. The dynamical study of transverse
effects near a phase transition, a problem of obvious prac-
tical importance, is also relevant to the general study of
nucleation.

This paper is organized as follows: Sec. II defines our
model and notation. Section III presents analytical re-
sults obtained in a plane-wave, one-dimensional, small-
anisotropy model of the OFT. The steady-state charac-
teristics of higher-order longitudinal modes of the director
angle are discussed. The steady-state inclusion of trans-
verse effects is given in Sec. IV, where we show that trans-
verse inhomogeneities in the director-angle distribution
are then possible, even under plane-wave illumination.
Analytical results are derived for simple pump-beam
profiles. They are useful in providing intuition for the nu-
merical work of the following sections. Sections V—VII
address the dynamics of the liquid crystal. A linear sta-

bility analysis of higher-order longitudinal modes present-
ed in Sec. V shows them to be unstable, but with possibly
exceedingly long lifetimes. Furthermore, the existence of
transversely propagating wave fronts is predicted in the vi-
cinity of the OFT threshold. Section VI gives the main
results of a numerical study of the full nonlinear problem.
Section VII returns to a one-dimensional model to discuss
the effects of internal noise on the stability and accessibili-
ty of higher-order spatial modes. Finally, Sec. VIII is a
summary and conclusion.

II. MODEL AND NOTATION

We consider a homeotropic nematic liquid crystal of
thickness d and infinite transverse dimensions irradiated
by a cw laser incident along the z axis perpendicular to its
surface, and polarized in the x direction, see Fig. 1. The

Z

Z=Q
FIG. 1. Sample of nematic liquid crystal, homeotropically

aligned, pumped perpendicularly by a linearly polarized laser
beam. 0 is the angle between the directors and the z axis.
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free energy of this system is'

d r —,
' kii V n +k22 n VXn

consistent geometrical-optics approach. We have here
adopted Ong's model.

+k»(nXVXn)'+2F, ]I . (2.1)

&ere k;; (i =1,2, 3) are the Franck elastic constants of
splaying, twisting, and bending, respectively, n is the
director field of the molecules, n=( sin0, 0, cosO), where
we assume that the polarization of the field inside the
liquid crystal remains in the x-z plane, and F, is the
electromagnetic energy density,

III. PLANE-WA VE SMALL-ANISOTROP Y MODEL

In order to gain some insight into the problem at hand,
we first restrict our analysis to a plane-wave input laser.
In this case, P(x) becomes a constant, and a first integra-
tion of Eq. (2.7) yields immediately

F, = —,'(E D+B.H) . (2.2) —,'(d, O) +P, =C,
(1 —r sin 0)' (3.1)

In this paper we take for simplicity all elastic constants to
be equal, kii ——kq2 ——k33 —=K'. Because the magnetic sus-
ceptibility is much smaller than the dielectric susceptibili-
ty, we assume the liquid crystal to be nonmagnetic. The
dielectric tensor e of the medium is a function of the
orientation 0(z) of the director, which in turn is a function
of the laser light intensity

where C is a constant of integration.
Consider first what happens if v «1, i.e., no —-n, . The

square root in Eq. (3.1) can then be expanded to first or-
der, leading to

D=e(0)E, (2.3) —,'(d, O) +P 1+—sin 0 =C . (3.2)

where

S, (x)np
F,

(1 —r sin 0)'~

E(x,y, z, t) =E(x,y, z) exp[i(kz tot) ]+c.c. —

is the electric field inside the crystal. It can then be
shown' that if beam diffraction and absorption are negli-
gible, the z component S, (x,y, z) of the Poynting vector
remains constant as the field propagates along the crystal,
S, (x,y, z)=S, (x,y). For this preliminary study we further
restrict ourselves to one transverse coordinate, so that
S, (x,y) =S,(x) only. Within the slowly-varying-envelope
approximation, (2.2)—(2.4) then yield

C =13 1+—sin OM
2

(3.3)

The director angle can thus be expressed implicitly in
terms of the elliptic integral

w~ere

0(z) d |9'z, ——+i/Pr sinOMz,
(1 —p sin 0')'~ (3.4)

The constant of integration C can be determined by ob-
serving that there is always an extremurn angle OM for
which d, 0=0, so that

where p =1/sin OM ) 1 . (3.5)

r =1—no/n (2.6) The solution of (3.4) are in the form of elliptic functions

Here no and n, are the ordinary and extraordinary
indexes of refraction of the crystal. Minimizing the free
energy (2.1) yields the well-known Euler-Lagrange equa-
tion of motion for the director-angle distribution 0(x,z)

0(z) =+ sin '[( I /p)sn(v f3r z, 1/p)] . (3.6)

For a homeotropic liquid crystal, 0(0)=0(d)=0. These
boundary conditions indicate the possibility of spatial
modes of 0(z). Specifically, 0(d) =0 implies

where

(1 rsin 0)—(2.7) i/gr d =2mK(1/p),

where m is an integer and

(3.7)

S,(x)
/3(x)=np

KC
(2.8)

is the scaled z component of the Poynting vector.
Equation (2.7) has been studied extensively as a model

for the OFT. Durbin et al. studied the plane-wave limit
of a similar equation in their paper which reported the
first experimental observation of the OFT. Zel'dovich
et a(. ' developed a geometrical-optics theory which
incorporated transverse effects. Ong' has critically
discussed both of these models and advanced a self-

which gives the scaled threshold intensity

p,'h 7r Id r, —— (3.10)

p): J z 2 tzz (3.8)
[1—(1/p ) sin 0]'

is a tabulated monotonic function of 1/p with K(0)
=rr/2. Since K(1/p) ) ir/2, Eq. (3.7) gives the threshold
of the successive modes. In particular, the first mode
m = 1 becomes possible for

(3.9)
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which is the threshold of the OFT. For intensities p & p, h,

the only possible solution is 8(z) =0, i.e., the directors
remain unchanged under the influence of the laser. The
shorter the medium the harder it is to reach the OFT.
Furthermore, for a given incident intensity, the maximum
angle OM is larger, the thicker the medium, as is readily
seen from Eqs. (3.5) and (3.7) and the fact that K(1/p) is
a monotonic function of 1 /p. This is because the anchor-
ing conditions of a homeotropic liquid crystal
8(0)=8(d) =0 are felt more weakly in the bulk of the
crystal for thick samples than for thin ones.

Equation (3.7) also gives the threshold intensity of the
rn th mode as

pih=m ~ /d r, (3.1 1)

which shows that the required intensity increases quadrat-
ically with the order of the mode. This is reasonable since
for higher-order modes the maxima in reorientation occur
progressively closer to the boundaries, where the mole-
cules are strongly anchored. Note that for a given intensi-
ty, the amplitude 8(z) of reorientation decreases with m.

Figure 2 illustrates the first and second longitudinal
modes of the director angle as functions of z for different
normalized incident intensities p. The form (3.6) of 8(z)
shows that for intensities close to the threshold value Pth,
the spatial distribution of the director angles is well ap-
proximated by sin(mnz/d). For higher intensities, the
corresponding elliptic functions flatten in the rniddle, indi-
cative of a saturation of the director reorientation in the
crystal. The stability of these spatial modes is discussed
in Sec. V.

We remark that in the small-anisotropy limit, Eq. (2.7)
reduces to the sine-Gordon equation (SGE) and is identi-
cal in form to the exact equation for a liquid crystal in a
homogeneous static magnetic field applied normally to the
equilibrium directors. ' The results of this section there-
fore apply equally well to this case.

IV. TRANSVERSE EFFECTS—
SMALL-REORIENTATION REGIME

sinO cosO = 0—aO
(1 —r sin 8) ~

where

(4.1)

a. =—', —3r/2 (4.2)

In this limit, Eq. (2.7) can be interpreted as the Euler-
Lagrange equation resulting from the Lagrangian density

2L =(r)„8) +(B,8) Pr(B——a8 /2),
with the variational principle 6I=0, where

I= f dx JdzL.

(4.3)

(4.4)

A considerable simplification occurs in the vicinity of
the OFT, where the z dependence of the problem can be
integrated out exactly: The boundary conditions 8(x,0)
=8(x,d)=0 suggest expanding 8(x,z) as a Fourier series

8(x,z) = g a„(x) i s(nn~z/d) .
n =1

(4.5)

So far, our analysis has been limited to the case of
plane waves incident on the liquid crystal. This section
removes this restriction, and discusses aspects of trans-
verse effects amenable to an analytical solution. A nu-
merical analysis allowing the description of more realistic
incident laser beam profiles is presented in Sec. VI. In or-
der to keep the problem tractable, we neglect the effects of
diffraction, an approximation valid for thin samples, and
limit our analysis to those transverse effects originating in
the transverse correlations of the director reorientation.
Also, we restrict ourselves in this section to the vicinity of
the Freedericksz transition, where the director-angle dis-
tribution 8(x,z) is small enough to justify a third-order ex-
pansion. Specifically, we assume [see Eq. (2.7)]

1.5

In Sec. III we saw that higher-order spatial modes are ab-
sent in the vicinity of the OFT, as they require higher in-
cident intensities. We ignore them here, and restrict the
sum (4.5) to its first term"

1.0 8(x,z) -=a (x) sin(vrz/d ), (4.6)

0.5

-0.5
.0 Z

which coincides with the solution (3.6) in the plane-wave
small-8 limit. Substituting this ansatz into (4.3) and per-
forming the straightforward integration of the Lagrangian
(4.4) over z yields then an Euler-Lagrange equation for
a (x) only:

—1.0
d„a +[rP(x)(1—3aa /4) —m /d ]a =0 . (4.7)

—1.5
A. Plane-wave illumination

FIG. 2. Reorientation angle distribution 0 for the first- and
second-order spatial modes as a function of z (in units of d). For
the first mode, p=2 (solid line) and p=6 (dashed line). For the
second mode, P=6. In all cases, as well as in the following
figures, P is scaled to P~h.

The transverse correlation of the reorientation angle can
lead to the appearance of transverse inhomogeneities of
8(x,z) even under plane-wave illumination. We prove this
point by taking the incident laser beam to be a plane
wave, /3(x)—:P =const. Equation (4.7) then becomes
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d „a+a(cr—ga ) =0,
where

(4.8)

a =Pr vr —/d (4.9)

and

$=3aPr/4 . (4.10)

The homogeneous solutions are easily found by dropping
the second-order derivative in Eq. (4.8). For o &0 we
readily find the solution a =0 and

a =+V g/g, (4. 1 1)

(d„a) =C—oa +pa /2, (4.12)

where the constant of integration C is given by the asymp-
totic condition d a (+ oo ) =0, which yields

C =o.a „—ga „/2 . (4.13)

whereas for cr &0 only the zero solution applies. This
refiects the fact that as the incident intensity /3 is increased
past the threshold p,'h of the OFT [compare Eqs. (4.9) and
(3.10)], the director angle exhibits a second-order-like
phase transition. '

The opposite case g & 0 is characterized by a stable con-
stant solution a =0 for o. &0, which becomes metastable
at a =0. A third-order expansion is not sufficient to ob-
tain stable solutions past this point, and the next (5th) or-
der in (4.1) must be included. In the remainder of this
paper we concentrate on the case g & 0, 0 & r & —,'.

In this case a first integration of Eq. (4.8) yields

B. Step-function illumination

Let us now turn to the case of a step-function incident
intensity, which also permits an analytical solution and
gives an indication of the characteristic transverse dimen-
sion over which the OFT diffuses into a region which is
below threshold from a region above threshold. Here, the
incident scaled intensity distribution is taken as

P(x)=/3 for x &0

=0 for x&0. (4.17)

The parameters o. and g in the diffusion equation (4.8) be-
come

o =Pr —m /d for x &0

~2/d ~ for & 0 (4.18)

Equation (4.15) indicates that even under plane-wave il-

lumination, the transverse coupling between the molecules
of the liquid crystal induces a transverse anisotropy in the
reorientation angle 0 for sufficiently high incident intensi-
ties. The location at which switching between the solu-
tions a and —a takes place along the x axis is howev-
er undetermined. Similar results have been obtained pre-
viously by Brochard ' for the case of the magnetic
Freedericksz transition.

Above threshold, four possible behaviors of the reorien-
tation are thus possible: 3 homogeneous ones, a =a
0, —a, and the inhomogeneous hyperbolic tangent solu-
tion, which is illustrated in Fig. 3.

Using Eq. (4.11) to eliminate o gives

d a =+&//2(a „—a ),
whose solutions are (a & 0)

a (x)= +a tanh(a „+g/2x + C~ )

and

a (x)=+a „coth(a „v g/2x +Cq ),

(4.14)

(4.15)

(4.16)

and

$=3aPr/4 for x &0

=0 for x&0.
For x &0, the solution is the exponential

a (x) = Cq exp(7rx /d ),

(4.19)

(4.20)

where C~ and Cq are arbitrary constants of integration.
The solution (4.16) is clearly unphysical.

a(x}
1 5"
1.0
0.5.

and for x &0, it is in the form of the hyperbolic tangent
(4.15).

The constants C~ and Cq are determined by the con-
tinuity of a(x) and of its derivative at x=0. A straight-
forward calculation gives

C, = tanh '[(2cr) '
[—rr/d+(H/d +2o )' ]I,

(4.21)

and

-0.5 8 X C =(2$) ' '[—~/d+(~'/d'+2 )'o] . (4.22)

-10
~ s ~ f 5

FIG. 3. Inhomogeneous director-angle distribution in the
middle of the sample (z =d/2) as a function of x for P= 1.2 and
CI ——0 (arbitrary units). The anisotropy r is fixed in all the
figures to r =0.23.

This general solution is illustrated in Fig. 4. A charac-
teristic transverse diffusion length l, of the Freedericksz
transition may be defined by adding the characteristic
lengths of the exponential and hyperbolic tangent. We
choose for convenience the characteristic length to be x,
for an exponential of the form exp( —x/x, ), and xo for
tanh(x/xo+a). In our case this gives
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a(x) C. Quadratic beam profile

We conclude this section by the discussion of a last
analytical case, the somewhat more realistic situation of a
quadratic beam profile:

P(x)=P(1 —4x /~ ) for ~x
~

(b./2

=0 otherwise ~ (4.24)

-4 -2 0 2 4 6 8 X

FIG. 4. Transverse distribution 0(x) at z =d /2 for the case of
a step-function illumination. Same parameters as in Fig. 3. a(x)=ap —a2x +a4x2 4 (4.25)

As before, we neglect the effects of diffraction and expand
Eq. (2.7) to third order in 9 and seek solutions of the form
0(x,z) =a (x) sin(vrz/d), with a (x) governed by the
diffusion equation (4.7). The symmetry of the pump in-
tensity about x =0 suggests an expansion of a (x) as

1, =x, +xp =d /~+ ~2/o.

We assume a 2 ((a p and keep terms up to second power
in x. This is consistent near the threshold of the Freeder-
icksz transition. Inserting this ansatz into Eq. (4.7) yields

1/2

a2 =—
2

(P—~ /d r —3Paap/4) . (4.26)

=d /~+ 2

r(P vr ld r)— At
~

x
~

=b, /2, the solution (4.25) and its derivative must
go continuously into the solution (4.20) which reads now

a (x ) = C exp( vr
~

x
~

—/d ) . (4.27)

1 +
Qrpt„

2

r(p —ptt )

1/2

(4.23) These conditions allow to determine the constants a p and
C. One finds for ap the three possible values

ap ——0, (4.28a)
Figure 5 illustrates the behavior of l, as a function of

the incident intensity S for three values of d. The diver-
gence of the characteristic length around the threshold
value is indicative of a second-order phase transition, near
the threshold all transverse spatial frequencies are impor-
tant.

1/2
(P H/d r)(b, /2—+nb, /8d) w/dr-

ap ——+
3Pa 6( 1+~b, /4d ) /8

(4.28b)

and for C

2

C=ape" 1 — (P n ld r ———,'Paap) . (4.29)

A nonzero solution for ap is possible only if

P &, + (4d+~A)8vr —1

d2r Ar
(4.30)

200

100"

The first term on the right-hand side of Eq. (4.30) is the
plane wave OFT threshold intensity (3.10). For r positive,
which is the case here, the threshold intensity is larger in
the case where the incident laser has a transverse profile. '

The smaller the radius of the incident beam, the higher
the threshold intensity of the OFT.

400
I

800 1 200

FICx. 5. Transverse diffusion length I, (p, m) of the Freeder-
icksz transition under step-function illumination, as a function mf
the input intensity S (8'/cm ) for d =500 pm (solid line), 250
pm (dashed line), and d = 1 50 pm (dotted line). Here we take
material parameters corresponding to MBBA, i.e.,
K=7.5& 10 ' N, no= 1.54, and r=0.23.

V. DYNAMICS

In order to analyze the stability and the dynamics of
the solutions presented in the preceding sections, we intro-
duce a phenomenological Debye-type relaxation of the
director angle proportional to the viscosity of the liquid
crystal. ' This is a good approximation provided that
thermal effects can be neglected. The equation of motion
for the director-angle distribution now becomes [compare
with Eq. (2.7)]
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"d,„0(x,z, t) +B„0(x,z, t) +/3(x)r
sinOcosO

(1 r—sin 0) ~

=—a, 0(x,z, t) .
K

(5.1)

We first analyze the stability of the one-dimensional
higher-order spatial modes of Sec. III in the limit of small
anisotropy r && 1.

A. One-dimensional small-anisotropy model

In the one-dimensional small-anisotropy limit, Eq. (5.1)
reduces to

B„0(z,t)+/3r sin0cos0= —B,0 .
K

(5.2)

We use this equation to perform a linear stability analysis
of the spatial modes of the director 0(z). To this end, we
perturb the steady-state solution (3.5) by a small time-
dependent quantity e(z, t):

differential equations in time. The boundary conditions
0(z =O, t) =0(z =d, t) =0 were used to evaluate the second
derivatives at the surfaces of the sample. Typical results
of this analysis are presented in Fig. 7. The following
general trends are observed.

If the system is initially close to the unstable homo-
geneous mode 0(z)=0 and irradiated with a laser of in-

tensity /3~/3, 'h, the directors evolve in time towards a spa-
tial distribution corresponding to the first sn mode in a
time inversely proportional to (p —/3I'„). (Note that the de-
tails of our numerical algorithm imposed that the director
angle takes positive values in this case. The stochastic
description of Sec. VII shows that in fact the evolution to
a physically equivalent negative 8 distribution is just as
likely. ) This evolution, illustrated in Fig. 7(a), is
confirmed by a linearized determination of the switch-on

0(z, t)=B„(z)+E(z,t) . (5.3) (a)

Introducing (5.3) into Eq. (5.2), factorizing e(z, t) as
e(z, t)= A(z)e ', and keeping only terms linear in e, yields
the eigenvalue equation

0.0-

—5.0-

d„A+[g(z) —A]A =0
where A, = 1 y /x and the potential g (z) is

g (z) =/3r 1 — sn ( I//3r z )
2 2

p

(5.4)

(5.5)

—10.0-

—1 5.0-

-20.0 I

2
''I '

6 8
I

10

The stability of 0„(z) against small perturbations is deter-
mined by the sign of the maximum eigenvalue
which must be negative for the steady-state solution to be
stable.

We proceed by expanding A (z) on the complete and
orthogonal basis of [ sin(nnz/d)], n integer. The eigen-
values k„are then obtained by diagonalizing the matrix L
of elements

Amax

10

2 dL„=— dz sin
Q 0

[a,', +g(z)) sin
m~z

(5.6)
1 0 '--

A numerical diagonalization of L shows that for the
lowest-order spatial mode, A, ,„ is always negative, start-
ing at 0 for /3=pIh and decreasing monotonically for in-
creasing /3. This proves the stability of the first mode
against small perturbations above the OFT threshold.

In contrast, the linear stability analysis around the
second and higher sn modes shows these to be unstable.
In these cases, A, „is positive for /3=pIh, and decreases
monotonically for increasing )33, to asymptotically reach 0
as /3~0c. This is illustrated in Fig. 6 for the case of the
second spatial mode m =2.

We have studied numerically the dynamical evolution
(5.2) of the directors by discretizing the problem along the
longitudinal dimension, using a three-point evaluation of
the second-order spatial derivative. This reduces the
problem to the solution of a system of coupled first-order

10-6

10 7 I

I

20
I
I

40
I

I

60

FIG. 6. Maximum eigenvalue A, „as a function of P, for (a)
the first and (b) the second sn mode. The eigenvalues were cal-
culated using eight sine functions in the first case and 32 in the
second. In both cases a further increase of the number of basis
functions left the eigenvalues unchanged.
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time ~,„,which gives

p p—t'h
d2 Pl

(5.7)

B. Two-dimensional problem, small-0 expansion

Let us now turn to the more realistic two-dimensional
description of the system. In the case of weak plane-wave
illumination, the stability analysis of the steady-state solu-

Equation (5.7) displays critical slowing down around the
threshold condition P=P,h, which is again indicative of a
phase transition.

This same first-order mode is also reached if the system
is initially close to a higher-order spatial mode [Fig. 7(b)],
confirming the fact that they are unstable. However, the
lifetime of these modes becomes very long for high
enough incident intensities, as already seen in Fig. 6. In
practice, this means that high incident intensities can be
used to trap the system in the vicinity of the higher-order
longitudinal modes for very long times [minutes or hours
for 4-methoxybenzylidene-4-(n-butyl)aniline (MBBA)].
Note however that these higher modes cannot be reached
by a continuous change of /3 from p(pth, but could be
present in transient situations where the system is abrupt-
ly driven into a new regime (hard-mode excitation) or in
resonator configurations. Furthermore, these higher-order
modes will show up in the statistical mechanics of the
problem, although this aspect is not considered here.

tions can be performed analytically by developing the
nonlinearity in Eq. (5.1) to third order in 8, and seeking a
solution of the type 8(x,z, t)=a(x, t) sin(vrz/d). The re-
sulting equation of motion for a(x, t) is the nonlinear
diffusion equation

Linearizing a (x, t) about the steady state a„(x) [Eq.
(4.15)]

a (x, t)=a„(x)+e(x,t) (5.9)

and factorizing the small perturbation c(x, t) as
3 (x) exp( I t), yields

d 3+(Pr —m. /d —9aPra„—y—I /Ir)A =0 . (5.10)

The stability of the inhomogeneous steady-state solution
(4.15) is obtained by substituting its value into (5.10). In-
troducing

y =x +C)/v,
v= [-,'(pr —+/d')]'",
/t=3(Pr rr /d ),—

2(/3r vr—/d ) y—/Irt—

(5.1 1)

—B,a (x, t) r) —a (x, t)
K

=(pr m. /—d )a(x, t) —'ap—ra (x, t) . (5.8)

(a)

e(t, z)

we obtain the eigenvalue equation

d~y A (y)+ II+ A (y) =0 .
cosh (vy)

(5.12)

zo
Its eigenvalues A„are well known' and imply, with
(5.1 1)

I „=—(a /2y )(Pr —H/d )n (4—n ), (5.13)

together with the condition

10 e(t, z) I „((a./y)(Pr —m /d ), (5.14)
0-

-1.0 -y

0.

0 0.4 0.8 1.2

FIG. 7. Dynamical evolution of 6t(z, t) towards the first sn
mode for d =250 pm, the crystal parameters of Fig. 6, and

y =0.8 P; (a) 0(z, t) evolving from a very small homogeneous ini-
tial angle distribution 0(z, t =0)=10 ', for P=2; (b) same for an
initial distirbution 0(z, t =0)= sin(2mzld) and P= 6.

which limits the possible values of n to n (4. For these
values, I „ is always negative for p &p,h, that is, the inho-
mogeneous steady-state solution is stable. This demon-
strates the possibility of inducing a stable inhomogeneous
transverse distribution of directors under homogeneous
plane-wave pumping.

Nonlinear diffusion equations of the form (5.8) have
been studied in considerable detail in biology, where
they describe selection-migration processes. They are
known ' ' to sustain traveling-wave solutions of the form
a(x, t)=a(x —vt). In our specific case, we obtain three
generic types of wave fronts, all others being obtained by
translation and parity inversion. Taking a with the +
sign in (4.11), they can be expressed as
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tained by a numerical integration of Eq. (2.7) with the
form (6.1) of the incident intensity, is in good agreement
with an analytical determination of the threshold based on
a linearized version of (2.7) for small angles and using a
sech (x /coo) beam profile, which yields the result

(x,z = d/2, t)
1.5-

1.0—

0.5-

0.0
1

f30, th f3th +
( ~d )

(6.3)

e..„
&/2

0.8-

0.4-

0.0

/

I
I

I

I

I

I

I

2 4 6 10

FICx. 10. Maximum reorientation angle 0 „as a function of
the scaled input intensity for various spot sizes and d =250 pm:
cop=200 pm (dashed line), cop=100 pm (solid line), and cop=50
pm (dotted line).

The dashed and dotted lines in Fig. 9 compare the value
of the two-dimensional OFT threshold intensities obtained
for quadratic [Eq. (4.30)] and sech [Eq. (6.3)] beam
profiles to the numerical values obtained for a Gaussian.
All cases exhibit the same trends, but the quadratic beam
profile shows too abrupt a decrease in po th for increasing
cOO.

For the fundamental mode, the maximum angle of re-
orientation 0,„ is reached at the center of the sample,
where the boundary conditions are the less strongly felt.
This angle is bounded by ~/2, which corresponds to the
situation where the molecules are totally aligned with the
field polarization in the middle of the sample. Figure 10
shows O,„as a function of /3O for three values coo of the
spot size: for a given intensity f3, 0,„ is larger, the
broader the input beam, consistently with the fact that the
OFT threshold decreases for increasing coo.

The dynamics of the system is obtained by numerically
solving Eq. (5.1) for the Gaussian beam profile (6.1). Our
numerical study indicates that the 1,1, mode is the only
stable one. This is illustrated in Fig. 11 which depicts the
evolution of the system initially in the 1,3 mode. As
was the case for the plane-wave one-dimensional longitu-
dinal modes, the higher-order modes can however have
extremely long lifetimes if the crystal is irradiated by an
intense laser beam, as will be discussed in more detail in
Sec. VII. Switching between various modes can be in-
duced by changing the peak incident power Po for a con-
stant beam waist coo, but also coo for constant PD, as direct-
ly implied by the results of Fig. 9 ~

I . t . I . a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
(10 )

FIG. 11. Dynamical evolution of the 1,3 mode (same pa-
rameters as Fig. 8).

VII. STOCHASTIC DESCRIPTION

So far, we have treated the dynamics of the optical
Freedericksz transition in a completely deterministic way.
The analysis of Sec. V predicts that the system is invari-
ably driven into the potential corresponding to the funda-
mental mode. To determine if this remains true in a real
system in the presence of internal fluctuations, or whether
it is only a feature of the deterministic model, we now in-
troduce internal fluctuations in the medium and describe
the transition as a stochastic process.

Specifically, we proceed by including internal fluctua-
tions of the molecular alignment due to thermal agitation.
We restrict our analysis to the simple model of a one-
dimensional system and study specifically the transient
dynamics of the director orientation when the laser is
switched on. A similar case was discussed by Sagues and
San Miguel, who studied a stochastic model of the one-
dimensional Freedericksz transition in a static magnetic
field. They described the internal Auctuations of the
liquid crystal by an additive noise term and the random
fluctuations of the magnetic field by a multiplicative noise
component. But their analysis was limited to third order
in the reorientation angle 0, thus limiting its validity to
low intensities of the magnetic field. Because of their
multiplicative character, the fiuctuations of the magnetic
field shift the position of the minima of the potential, and
hence the position of the threshold of the Freedericksz
transition, the critical value of the field being reduced by a
quantity proportional to the strength of correlations of the
fluctuations of the magnetic field.

In contrast to this work we consider internal fluctua-
tions only, but keep the nonlinearity to all orders in 0.
This allows us to study the dynamics of higher-order
modes. We discuss the case of a plane-wave incident laser
field illuminating at normal incidence a homeotropically
aligned sample of a nematic liquid crystal (NLC) of longi-
tudinal dimension d and infinite transverse dimensions.
The input laser beam is polarized along the x direction;
we assume that the system is stable against fluctuations in
the x-y plane, i.e., only fluctuations in the x-z plane are
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amplified. The problem is then homogeneous in the
transverse dimensions and reduced to a one-dimensional
solution, where only the spatial longitudinal coordinate z
is relevant.

The dynamics of the molecular reorientation angle
0(z, t) is then governed by the Langevin equation

W„(0)=JV exp
F(0)
kT

(7.9)

where k is the Boltzmann constant, T the temperature in
K, and JV a normalization constant. In steady state, the
most probable molecular configuration corresponds to a
minimum of the free energy.

(1 rsin—0)
(7.1)

where a stochastic force g has been added to the one-
dimensional form of the deterministic equation (5.1). We
assume that the Langevin force i/(z, t) describes Gaussian
white noise of zero mean and 6-function correlated,

(il(z, t)il(z', t') ) =2c6(t —t')6(z —z') . (7.2)

where c is a constant which measures the strength of the
fluctuations.

The deterministic part on the right-hand side of (7.1)
corresponds to the variation of the free-energy density in
the sample as the director angle 0 is varied. This is easily
seen by expressing the free energy F(0) for this specific
case as

F(0)= 3 f dz V(0)

= 3 f dz ,'Ir[(a, O) ——2/3(1—r sin 0) ' ], (7.3)

where 2 is the transverse area of the liquid-crystal sarn-
ple. Defining the quantity 57/M in a variational sense as

fiv az d av
fiO

=
aO dz a(a, O)

'

allows to reexpress (7.1) as

'
+g(z, r),1 6."7

~y nB

(7.4)

(7.5)

a, W(0) = —a [h (z, t) W(0) ]+a g[g (z, t) W(0)], (7.6)

where

h (z, t) = lim —(0(t +r) 0(r))—1

z sinO cosO

(1 —r sin 0)'~ (7.7)

and

g (z, t) = —,
' lim —([0(t +r) —0(t)]') =E .

7. ~0 7

The stationary solution W„(0) of (7.6) is given by

(7.8)

as advertised.
An equivalent way to proceed is by means of the

Fokker-Planck equation associated to the Langevin equa-
tion (7.1). This equation governs the transition probabili-
ty to a specified state characterized by a given 0(z) distri-
bution from an initial state 00(z). The Fokker-Planck
equation is a dynamical equation for this probability
W(0), given an initial condition Oo. The Fokker-Planck
equation associated to the Langevin equation (7.1) is

A. Langevin approach —numerical solution

This section studies the transition from the uniform
homeotropic orientation to a nonuniform B distribution by
solving numerically Eq. (7.1) for a large number of reali-
zations of the noise force g. This allows us to discuss the
effects of fluctuations on the behavior of the system in a
statistical sense. In particular, the characteristic average
time for the onset of a nonhomogeneous molecular distri-
bution is determined by averaging the result of computer
simulations of the stochastic process over a large number
of realizations.

In a series of numerical experiments, we have switched
the laser at time t =0 from zero to a fixed intensity larger
than threshold. The initial molecular orientation is homo-
geneous and characterized by 0(z, t =0)=0. The time
evolution of 0 is followed during 100 sec. After the laser
is switched on, the internal fluctuations start being
amplified and drive the system away from the now unsta-
ble homogeneous initial state into a nonhomogeneous dis-
tribution (Freedericksz transition). Averaging over all
realizations allows us to determine the statistics of the
switch-on time ~ for the onset of a nonhomogeneous re-
orientation distribution.

The first series of realization of the stochastic process
was performed for a constant laser intensity /3 equal to ten
times the plane-wave threshold of the OFT. The most re-
markable result is that the second spatial mode was
reached, in a few cases, in contrast to the deterministic
case. This second mode is very close to the second mode
of the elliptic sine function, which is the approximate
solution obtained in Sec. II for the case of small dielectric
anisotropy. (In the numerical calculations performed
here, the dielectric anisotropy r was fixed to r =0.23, cor-
responding to MBBA. ) In some cases the system was
found to evolve towards the second longitudinal mode
and to sustain this reorientation distribution for times in
excess of 100 sec.

Several examples of the dynamics of B(z, t) are illustrat-
ed in Fig. 12 for D =E/d =10 . Case (a) corresponds to
the most commonly found dynamical evolution of B: the
unstable zero solution evolves towards the fundamental
inhornogeneous longitudinal mode, where saturation
occurs in the reorientation (a large part of the longitudinal
profile of 0 reaches the maximum value +ir/2). The sign
of 0 is of course physically irrelevant, i.e. , 0(z, t) is physi-
cally equivalent to —0(z, t). Positive and negative angles
of reorientation have been observed to appear with equal
frequencies within the statistical uncertainty of our nu-
merical experiment.

Case (b) represents the situation already mentioned
where the fluctuations drive the system into the second



36 DYNAMICS OF THE 0OPTICAL FREEDERICKSZ TRANSITION 885

1 437 (b)

0.069,
0.529-

-0.483- -0.378

-1.036-
-1.285

—~. 589
0.5

1 ( )

0.730

-0.~0~ =

20 40 60 80 100

1,620 ((j )

1.630

20 40 60 80 )00

-0.932

0.5
20 40 60 80 &00

0.506

-o 050

FIG. 12. Exam lesF . . mp es of the dynamical behavi
'

a e avior of 0(z, t) for D=10 d=, 8 =250 tLm, and P= IOP, h.

spatial mode. ThThe longitudinal rofil

f
1 p

fi 1 h
onger integration times th A

th t b
mode. S h it tio i ill t

m ac' into the

th o d (1

befor h f d lda istribution i

~ ~

S

in view of the deter
w at might be expected

ci 1

erministic analysis, the
cip e lead to highe d

is, e OFT can in prin-
ci er modes of the m
distribution than th f

molecular orientatio
e undamental o

a ional

p intensity ten timit an in uti
one.

In the
reorientation can in rinci

o, te

thir

p p
'

ns studied in t
'

appeared clearl, bu
p

e evolution
e

suc a mode. I hevolve towards h
showed a tend ency to

g. 12(d), th lo 't d'ngi u inal rofile
in

e is
wever rapidly wa h d

ation. This profil

ar s the fundament 1a mode takes
e clear evolution t-

o determine the sw'

0-

mo
e switch-on time v.

ten
'

pa ion, we note that

~

tio, t ema imy rom satura
'

in-

h od ( S . III). W h
bi il ) h

p max, m at z~.
ic 0(zm, t) reaches the

Averaging the values f
sto

ues o ~ over all

e ifferent m
e

1 fo
sum-

g

smalle
realizations was in

n 7 i, a

h D=10
1 ing to the fundamental

e 4

in Fig. 13(b). We
en a mode are reported

now have ( ) =
.56 sec; as exp t d,

=44.61 sec and

d 1

ece, for s
r ime to esca e th

e system
p

educing D b a
mogeneous

y a further factor of 10
s o a still increased

o to

, (,) =51 73 sec and 6= 8.72 sec.
ic -on

similar numer 1 p
'

ent
4

ica experiment p

are ex e
g ordIn this case, hi h - es

in omogeneous m
si ion to

cases leading to thca e second mode. I
s mode, the 40 rem

'

6.87 sec, with th e significantl w
7 ]

.09 [
'

. ].
Comparing this serie

OP ho 1M fo

e intensity of the laser, e rste aser is large, and the first



886 F. MARQUIS, P. MEYSTRE, E. M. WRIGHT, AND A. E. KAPLAN 36

30-

20 I-

0
24

ll ll

44 64
t

30-

20

10-

30 50
t

Ib)

70

0.705-

- 0.202

—1.114

0.5 so
I O 60

t

FIG. 14. Example of the dynamics of the Freedericksz transi-
tion for p=20p, h. The noise strength is D= 10

30-
B. Fokker-Planck approach

I

12 18 24 30
t

FIG. 13. Distribution of switch-on times ~l to the first nonho-
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togram s.

part of the evolution is characterized by a richer structure.
The number of realizations for which an evolution to-
wards a higher mode (third or even fourth) shortly ap-
pears in a transient regime is increased with the intensity.
For example, the realization of Fig. 14 clearly displays a
transient evolution from the unstable zero state to the
third mode, with a final evolution towards the fundamen-
tal distribution.

Section VII A showed that under the inhuence of inter-
nal fluctuations, a Freedericksz transition can be induced
not only to the fundamental nonhomogeneous state, but
also, at least in a transient, to several higher modes. We
now present a probabilistic, Fokker-Planck description of
the steady-state statistical distribution of the possible
orientational states 8(z, t). Equation (7.9) shows that in

steady state, the free energy plays the role of the general-
ized potential U(8). The statistical distribution of the
different modes can then be directly deduced from the
variations of F as the input intensity is increased above
threshold. Absolute probabilities cannot be determined,
but ratios between probabilities to observe a given asymp-
totic state can be worked out by comparing the free ener-

gy of the liquid crystal in these states.
To illustrate this point, we return to the simplified

model of a small dielectric anisotropy of Sec. III. In this
limit the different deterministic distributions of 6j are given
in steady state by the successive modes (3.6) of the elliptic
sine function, and the free energy becomes

P

F= AxP J dz — cn (&Prz)dn (&Prz) — 1—
o 2 p [1—1/p sn (&Prz)]

sn (&prz)
p

' —1/2

(7.10)

where 1/p is the modulus of the elliptic functions. The
functions cn(u, 1/p) and dn(u, 1/p) can be related to the
Jacobian elliptic sine function through the relations

cn (u, 1/p)=1 —sn (u, 1/p)

and

dn (u, 1/p) = 1 —1/psn (u, 1/p ) .

For intensities below threshold, the free energy is simply
expressed by the linear relation F= —IrPd.

Performing the integral numerically for P above thresh-
old yields a negative free energy that is a decreasing func-
tion of the input intensity: the potential minimum be-
comes deeper as P is increased. The negative sign is be-
cause the electromagnetic energy overcomes the elastic en-

I

ergy above threshold. For a fixed intensity, I' is more
negative, the lower the index of the mode, implying that
the fundamental mode of molecular reorientation is the
most likely to appear asymptotically.

Each mode of molecular reorientation corresponds to a
minimum of the free energy. It is deepest for the funda-
mental mode, and becomes increasingly shallower with
the order of the mode. In other words, the higher modes
are only transient solutions and evolve asymptotically to-
wards the fundamental reorientation under the inhuence
of noise. We introduce the short-hand notation W(n) to
denote the steady-state probability to find the nth mode of
the molecular reorientation; the ratio of probabilities to
observe a transition to two different modes n and m of the
molecular reorientation is proportional to

—= exp[ —F(n)+F(m)],W(n)
(7.1 1)8 (m)
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FIG. 15. Difference in free energies between (a) the second
and first spatial modes and (b) the third and second spatial
modes as a function of the pump intensity, in units of the thresh-
old intensity P,l, .

VIII. SUMMARY AND CONCLUSION

We have investigated theoretically dynamical aspects of
the optical Freedericksz transition in nematic liquid crys-
tals, combining simplified analytical models and a numeri-
cal study of a full two-dimensional description. In one
dimension, the crystal can exhibit higher-order spatial
modes of very long lifetime that might be observed by
hard-mode excitation. In the more realistic two-
dimensional case, we have shown that due to the trans-
verse correlations of the director angle, inhomogeneous

where F(n) expresses in the same way the free energy of
the liquid crystal in the nth mode of the molecular reori-
entation. The differences —F(n)+F(m) are plotted in
Fig. 15 for (a) the first two modes and (b) the second and
third modes. These quantities are always positive, and in-
crease for increasing values of the input field, confirming
that the lowest-order mode is always the more probable to
appear when a Freedericksz transition occurs.

transverse structures and traveling-wave type transverse
propagation of the director angle field is possible even un-
der plane-wave excitation. When the crystal is irradiated
by a Gaussian beam, unstable mode structures are possi-
ble, but as in the one-dimensional case, they are unstable
(but long lived), except for the fundamental. These results
will be of practical importance in connection with the
realization of spatial light modulators.

Our stochastic description of the Freedericksz transition
shows clearly that higher-mode solutions can be reached
in a transient regime. These appear in numerical simula-
tions for high enough incident intensities of the laser, even
if the fundamental mode is the most likely to appear
asymptotically.

It will be interesting in subsequent work to introduce
external Auctuations of the laser intensity and to analyze
the eftects of the resulting colored noise on the optical
Freedericksz transition. Future work will also include a
generalization of the present results to a more realistic full
three-dimensional geometry, including the full three-
dimensional nucleation problem.

Note added in proof. The effect of fiuctuations on
domain walls near the Freedericksz transition has been re-
cently discussed by W. Xiu Lu, Phys. Rev. A 34, 5179
(1986).
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