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Postponement of Hopf bifurcations by multiplicative colored noise
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Problems related to the definition of a Hopf bifurcation in the presence of noise are discussed in

terms of three physical observables: the correlation functions, the power spectra, and the statistical
densities. Of these, only the statistical density exhibits a distinct noise-induced transition. For a
specific definition, only postponements are observed in analog simulator experiments with a Brussela-
tor subject to white and colored noise on the control parameter. A recent prediction due to Lefever
and Turner [Phys. Rev. Lett. 56, 1631 (1986)] is qualitatively tested.

I. INTRODUCTION

One of the more striking efFects of parametric (multipli-
cative) noise on nonlinear dynamical systems which exhib-
it instabilities is to induce a shift in the critical mean value
of the control parameter which drives the instability.
Such shifts were first observed in Fokker-Planck models
of white-noise-driven systems with applications in biology
and chemical dynamics, but were soon applied to various
systems, including general bistability. Early applica-
tions were to turbulence transitions in nematic liquid crys-
tals ' ' and superAuid helium. Noise-induced shifts were
originally observed in experiments on electronic oscilla-
tors which were later followed by demonstrations with
analog simulators which offered quantitative results in ex-
cellent agreement with the predictions of the white-noise
Fokker-Planck models. ' Early experiments with an elec-
trohydrodynamic instability in nematic liquid crystals"'
have more recently resulted in beautiful and unambiguous
demonstrations of noise-induced shifts, ' as well as other
effects' associated with the formation of dissipative struc-
tures in nonequilibrium systems. A recent theoretical as-
sessment and review has been given. '

The shifts can be either toward smaller mean control-
parameter values (advancements) or larger values (post-
ponernents), depending on the type of multiplicative noise,
whether linear ' ' or quadratic, Gaussian or dichoto-
mous, ' or white (most early works) or colored. ' '' To
date, to the best of our knowledge, only postponements
have been observed in experiments and in analog simula-
tions. Similar effects for harmonically modulated parame-
ters in hydrodynamic models have been predicted' but
not observed in experiments. ' Postponements of the first
bifurcations of discrete maps included by multiplicative
noise have also been predicted and observed in numerical
experiments. '

The shifts discussed here in systems which already
deterministically exhibit a dynamical instability are one
type of noise-induced transition treated by Horsthemke
and Lefever, ' the other being the so-called "pure" noise-

induced transition wherein bi- or multimodality is in-
duced by noise in a system which deterministically has ei-
ther no instability or a fewer number of instabilities. ' '

It also should be noted that the shifts we focus on here
must be distinguished from the postponements induced in
bifurcating systems by deterministically sweeping a con-
trol parameter at a non-negligible velocity. Such systems,
both continuous ' and discrete ' have recently been
studied with additive noise.

In this paper we study noise-induced postponements of
a critical feature of the statistical densities of noisy limit
cycles using an analog electronic circuit model of the
Brusselator. The motivation for this work was provided
by a recent theory due to Lefever and Turner (LT),
which predicts either advancements or postponements de-
pending on the magnitude of the noise correlation time
relative to the rotation time of the limit cycle. Only post-
ponements are predicted in other approaches ' based on
normal forms.

In Sec. II we discuss the (not insignificant) problem of
how a Hopf bifurcation can be defined in the presence of
multiplicative noise. We present, and subsequently use, a
definition which is physically reasonable and, in addition,
has the advantage of being easily accessible in an experi-
rnent. Section III describes our circuit model of the
Brusselator and presents some examples of measured,
three-dimensional statistical densities which are the raw
data. In Sec. IV the data on postponements are shown.
In Sec. V an algorithm is presented for transforming the
measured densities into the phase space of polar coordi-
nates used by LT, and our search for the predicted ad-
vancements is discussed. Finally, a brief discussion and
conclusions are given in Sec. VI.

Our results can be summarized as follows: Using the
definition presented in Sec. II, we observe only postpone-
ments for both quasiwhite and colored noise. In the
transformed coordinates we observe some qualitative
features predicted by LT; however, the magnitudes of the
predicted advancements are too small to observe in this
experiment.
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II. THE HOPF BIFURCATION
IN THE PRESENCE OF NOISE

The Brusselator system is defined by

x = A —(1+B)x+x y,
y=Bx —x y,

(la)

(lb) ( V. ( t) V. (s) ) = (D /7. )e (2)

on an oscilloscope screen.
In this work we investigate the effects of multiplicative

noise on the control parameter, that is, we let
8~B(t)= (B) + V„(t), where V„ is a colored noise
defined by ( V„)=0, and

where 3 is a constant and 8 is the control parameter.
Without loss of generality, we take 3 =1. The steady
states of (1) are then x, = 2 = 1 and y, =B/3 =B. The
deterministic bifurcation from the fixed points x =1, y =8
for 8 &B, to a limit cycle occurs at the critical value
8, =1+A =2. A sample, deterministic limit cycle mea-
sured on the analog system described in Sec. III is shown
in Fig. 1(a) for B=2 5, wh. ere x(t) is plotted versus y(t)

I', a',
I

FIG. 1. Limit cycles y vs x of the electronic Brusselator. (a)
for B=2.5 without external noise; (b) for 8=2.5, D=O.OI, and
~=0.10, plotted on the same scale as (a); and (c) B=1.8 ( &B, ),
D=O.OI, and ~=1.0. The scale is expanded by a factor of 2.5
compared to (a) and (b). The dot at the center is the fixed point
observed without external noise.

The noise intensity is D, and its correlation time is ~. The
limit cycle of Fig. 1(a) now becomes noisy, as shown in
Fig. 1(b), and in order to proceed further it is necessary to
measure some statistical quantity, for example, the power
spectra, correlation functions, or the statistical densities.

We are interested in the effects of the noise on the loca-
tion of the bifurcation. It therefore becomes necessary to
precisely define what is meant by a Hopf bifurcation in
the presence of noise. Defining the deterministic bifurca-
tion in our case presents no problem: It is the perfectly
articulated transition from the time-independent state for
8 &8, to the oscillatory limit cycle precisely at B=B,.
However, the difficulties with attempts to adapt this
definition to the noisy case are illustrated in Fig. 1(c).
Here the same noise intensity obtains as in Fig. 1(b), but
now 8=1.8 &8, . Limit-cycle-like behavior, though at re-
duced amplitude and stochastic in nature, is clearly evi-
dent. This photograph is a double exposure, with the
noise momentarily removed to reveal the time-
independent state which shows as the bright spot in the
center of the trajectories.

Figure 1(c) suggests that when noise is present, even
very small noise, there is always harmonic behavior, also
for 8 «B„sothat the bifurcation is difficult to define.
In order to further test this assertion, we show in Fig. 2 a
series of measured autocorrelation functions and power
spectra for D=0.01 (quite a small value) and for B rang-
ing from 8 ~B, to 8 &&8, . All show the clear signature
of harmonic behavior at the Brusselator limit-cycle fre-
quency, except Fig. 2(e) where the power spectrum shows
no clearly resolved peak at co&0; however, even for this
very small value of 8=0.60, the correlation function
shows damped harmonic behavior with the first maximum
still located at coii '. [AII plots in Fig. 2 were made to the
same horizontal scale so that the locations of co~

' and co~
are the same in 2(a) —2(e)]. This problem has been studied
in detail by %'iesenfeld who examined period doubling
and Hopf bifurcations in the presence of additive
noise. He has observed the same persistence of har-
monic behavior for 8 &8, which he has called the "noisy
precursor" of the actual bifurcation.

An early and excellent discussion of transitions to
limit-cycle behavior in the presence of noise has been
given by San Miguel and Chaturvedi, based on the idea
of an irreversible circulation of fluctuations. These au-
thors stress that limit-cycle behavior cannot be defined
from the stationary probability density alone, but instead
they define an order parameter based on the circulation
(L„~)=(xy —yx). It is easy to imagine single-peaked,
stationary densities, and those with crater or craterlike
shapes for which this flow could be evaluated. As shown
below, however, our measured densities display three dis-
tinct shapes, single peaked, craterlike but with an open
rim, and finally cratered with a closed rim, which develop
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Horsthemke and Lefever. '" In the Appendix we discuss
the San Miguel-Chaturvedi order parameter applied to the
Brusselator, and show that a suitably generalized version
of it becomes nonzero at exactly the critical density
defined here. In Sec. III the electronic Brusselator is de-
scribed, and some examples of measured densities P(x,y)
are shown.

III. THE ELECTRONIC CIRCUIT MODEL

The electronic circuit model of Eqs. (1) is shown
schematically in Fig. 3. This is an example of the
"minimum-component" design used at the University of
Pisa which employs only two multipliers, two operational
amplifiers, and one inverter (amplifier with gain equal to
—1). The operation can be understood by writing two
equations for the outputs of the two amplifiers Vi —=y and
V4 ——x:

(dx/dt')RC= Vo —[1+(B+V„)]x+xy,
(dy /dt')RC = (B+V„)x—x y,

(3a)

(3b)

INV. =

R
C

—L+. ~i= ~

B

x + '=:x g
V,

R
~/VP

R V4= X

Noise
Gen & Filter

FICs. 3. The electronic Brusselator. The multipliers, shown

by crosses, are Analog Devices AD 534. The output of the first
multiplier is V2 =xy. The output of the second is
V3 =x y —(8 + V„)x.The other voltages are defined in the text.

where the limit-cycle frequency is established by the two
identical time constants ~~ ——1 /R C, and where
Vo—= A =1 V. Note also that Eqs. (3) can be written in
the form of Eqs. (1) by substituting the dimensionless time
t—:t '/R C for the real time t '. This time t also appears in
Eq. (2) if we define the dimensionless noise correlation
time r=r„/RC, where r„is the actual noise correlation
time determined by the linear filter at the output of the
wide-band noise generator. Throughout this experiment
RC = 10 s. The values of ~„varied from 10 s
(&=0.1, quasiwhite noise) to 10 s (&=10, very colored
noise). The noise voltage V„is accurately Gaussian with
zero mean. The noise intensity D was obtained from
measured values of ( V„)=D/r at the output of the filter.

In operation, the voltages x and y were connected to a
data-analysis system (Nicolet Lab-80 or 1180) which first
digitized time series of x(t) and y(t), then computed a
first approximation to P(x,y). Successive time series were
obtained and a running average of P(x,y) was accumulat-
ed until satisfactorily small statistical errors were evident.
Typically 1 to 5 million points in the time series of each
variable were used. A sample measured density, for
B & B* and for D (D * for noise of moderate intensity, is
shown in Fig. 4, with a three-dimensional view depicted

FIG. 4. Measured P(x,y ) for 8=2.2, D =0.008, and ~=0.10.
(a) a three-dimensional view as observed from the direction indi-
cated by the arrow in (b). (b) a plot of nine contours of constant
probability at equally spaced intervals. The cross-hatched area
indicates the crater which is concave downward.

in 4(a) and its contour plot shown in 4(b). The arrow in
Fig. 4(b) shows the direction in which Fig. 4(a) is viewed.
The crater is clearly visible in both plots, and is indicated
by the cross hatching in 4(b).

IV. THE RESULTS

Figure 5(a) shows a measured density which is approxi-
mately critical, i.e., for which D =D * and B=B*. In
practice, this condition was determined by observing the
contours, and vertical cross sections cut parallel to the x
axis. Figure 5(b) shows a density for D &D*. Normally,
D was set at a desired value and B was adjusted by trial
and error until the approximately critical density was
found. We always found that for D & 0, B*

&B„i.e., we
always found postponements.

The largest postponements (for a given D) were found
for quasiwhite noise. Our results for several noise correla-
tion times are shown in Fig. 6 in the form of a phase dia-
gram, where in the regions above and to the left of a line
joining the data for a given ~ the densities are cratered
with a doubly connected horizontal cross section, while
below and to the right, they are not. The straight lines
serve only as a guide to the eye, but suggest a linear rela-
tion between the magnitude of the postponement and the
noise intensity. In Fig. 7 we have replotted the same
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1.4

1.3

1.2

1.0
0.5 10

FIG. 7. 8* vs ~ for D*=0.2 (triangles), 0.15 (squares), 0.10
(circles), and 0.05 {crosses).

x = 1+EQ cos6

y =2+Is +au ' (sin8 —cos9),

(5a)

(Sb)

FIG. 5. Measured P(x,y ) for B=2.2 and ~=0.10. (a)
D=D*=0.016 (and B=B ). (b) D=0.03&D* (and B &B*).

data, except now B* is displayed versus ~ on a semilog
plot. The solid lines suggest an exponential relation,
though we have not included data for the smallest ~ and
D.

V. THE SEARCH FOR ADVANCEMENTS

where I=1,0, —1 for B above, at, or below B, . Examples
of Eqs. (5) are plotted in Fig. 8 where it is clear that u

determines the size of the limit cycle. LT then developed
a colored-noise Fokker-Planck analysis from which they
are able to calculate the two-dimensional stationary densi-
ties P(u, 6). After integrating over 9 they arrive at a one-
dimensional density P(u), and from B„P(u)=0they ob-
tain the location of its extremum u . Their final formula
1s

u = —', +e'( ——",,
' +47 ( V„)/36 ) .

As the negative sign indicates, for small enough noise, in-

For quasiwhite noise, specifically for ~„&&co~', LT
predict advancements. They show that near the bifurca-
tion

~a'=
~

(~) —Il,
~

(4)

With 3 = 1, the transformation equations which define
the polar coordinates shown in Fig. 8 become

1.6

1.4
0

1.2

1.0
O.i0.05

D (v olts2)
0.15 0.2

FIG. 6. The postponed bifurcation parameter B* vs noise in-

tensity D for various noise correlation times.

FIG. 8. The idealized limit cycle of Eqs. (5), used by LT to
calculate P(u, 0). This plot is for x =xo+ eu ' 'cosO and

y=yo+e +au' (sin9 —cosO), with xo=0. 1 and yo=0. 1. The
crosses mark the locations of successive values of 0 in increments
of m/3.
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shown by the two representative errors. The entries cal-
culated from Eq. (6) indicate only a very weak depen-
dence on ( V„). In an effort to enhance the shifts we
have tried larger values of both e and ( V„).Unfor-
tunately, they lead to much broader densities P(u ) and
hence to larger error bars in u'" ', so that the search was
again inconclusive.

VI. CONCLUSIONS

0 0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 9. One-dimensional densities in the polar coordinate u,
for ( V„')=0.05. The broad density is for 8=2.15 and the nar-
row one is for 8=2.30. The arrows on the u axis show the loca-
tions of the maxima u predicted by Eq. (6).

creasing e from small values should move the location of
the maximum toward smaller values. Alternatively, one
can fix e and increase ( V„)which moves u toward
larger values indicating that the "mean amplitude" of the
limit cycle is increased, indicating an advancement.

We have measured several two-dimensional densities
P(x,y) for v=0. 1, then transformed them to P(u, 8) using
Eqs. (5), and subsequently summed over 0, in order to ob-
tain P(u). First, we fixed D=0.01 (or ( V„)=0.005) (Ref.
35) and varied (B). Two such densities, one for
(B)=2.15 (or @=0.15) and the other for (B ) =2.30 (or
@=0.30) are shown in Fig. 9. There is at least qualitative
agreement with the prediction of LT, since the observed
leftward shift of u~ with increasing e for small noise in-

tensity is a certain indication of the negative sign in Eq.
(6). The formula predicts, however, a considerably larger
shift than we observe. This may be because either the ex-
perimental e =0.30 or &=0 lare too l. arge (or both). The
theory is valid only for small e, and very small ~.

We have used the same procedure in attempts to ob-
serve shifts in u with fixed e and variable ( V„).The
results are summarized in Table I. Note that u is a
measure of the effective size of the limit cycle. That u
increases with increasing ( V„)for small enough r is an
important prediction of the LT theory.

No statistically significant shifts were observed as

0.02
0.04
0.05
0.08
0.10
0.15

expt

0.69+0.05
0.63
0.62
0.69

0.71+0.08
0.75

u '""'
um

0.47
0.47
0.48
0.48
0.49
0.50

TABLE I. Calculated and measured maxima in the density
P(u) for e'=0. 10.

We have studied a Hopf bifurcation from a time-
independent state to a limit cycle with noise on the bifur-
cation parameter using an electronic model of the Brusse-
lator. Measurements of the power spectra and autocorre-
lation functions of the fluctuating output show evidence of
harmonic behavior and no critical features for all mean
values of the bifurcation parameter. However, a critical
feature of the measured two-dimensional densities can be
defined in terms of its topology. Using this definition,
substantial postponements of the mean critical bifurcation
parameter are found for both long and short noise correla-
tion times. However, the question of whether or not the
effective size of the limit cycle increases with increasing D
for small r (which in the LT theory would be the signa-
ture of an advancement) remains open, since the predicted
increases were to small to measure in this experiment.
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APPENDIX

A possible order parameter which could characterize
the onset of limit-cycle behavior in the presence of noise
has been offered by San Miguel and Chaturvedi:

i)=(xy —yx)
~ p,

that is, the circulation I.,~ evaluated at the maximum of
the stationary two-dimensional density. For a specific ex-
ample they show that g becomes nonzero exactly at that
point in parameter space for which the density undergoes
a transition from a single-peaked shape, through which all
cross sections perpendicular to the xy plane are also
monomodal, to a (symmetric) crater shape with a closed
rim (through which all vertical cross sections are bimo-
dal). As indicated here by Figs. 4 and 5, the Brusselator
densities, by contrast, pass through two transitions: (1)
single peaked to craterlike but with a nonconnected rim
and (2) nonconnected to connected rim. In the first case,
a line joining all connected maxima does not close, while
in the second case it does. Figure 10 shows sketches of
such lines above horizontal cross sections of measured
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tx. '
c ~".

I I) lf N

FIG. 10. Sketches of closed and open loci of connected maxima of the Brusselator stationary statistical densities, showing the two

topologies: (a) horizontal cross sections above a certain altitude are doubly connected, and (b) all horizontal cross sections are singly

connected. The photographs show examples of measured cross sections for B)B, at two values of D as indicated. The cursor (bright

spot) marks the lowest altitude of the crater rim in (a), and marks the same location in (b) with D increased above D*.

densities. Figure 10(a) shows a crater with a connected
rim, where the cursor (bright spot) marks the point on the
rim with the lowest altitude above the crater bottom. In
Fig. 10(b) the noise intensity has been increased so that
the bottom of the crater has risen above the rim and all
horizontal cross sections are simply connected.

We have generalized the definition of the order parame-
ter to include cases where there is a locus of connected
maxima, not all at the same altitude (in contrast to the
symmetric example given in Ref. 33):

tl= (L,y )
~
p„h=f L„y(s)ds, (A2)

path

where "path" maps the locus of connected maxima as a
function of s. Such paths may be expected to lie very
close to those actual trajectories which occur with the
highest probability. Though all physical trajectories must
be closed, in order to preserve the topological differences
indicated in Fig. 10, we close the path integral in (A2) only

when the locus of connected maxima is closed. Using this
definition, and Stokes' Theorem, it is straightforward to
show that

for B)B' and D)D
=0, otherwise, (A3)

where 3 is the area enclosed by the path. In this way the
order parameter proposed in Ref. 33 is reduced to a topo-
logical indicator which exactly identifies the critical densi-

ty defined in the text of this paper.
We wish to remark that in this extended definition, g

jumps discontinuously at the critical point. The physical
significance of this jump is, however, doubtful since g is
not a directly measurable quantity. It is the actual topol-
ogy of the stationary density (which is a physical observ-
able) which undergoes a drastic change at the critical
point, in the Brusselator.
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