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A Lorentz gas interacting with a Lennard-Jones (LJ) potential and obeying classical equations of
motion has been simulated by the molecular-dynamics method. A system of 255 Ar particles and
one H2 molecule at a reduced Ar density 0.413 and temperature 2.475 is simplified by allowing the
"argon" to have infinite mass, and the hydrogen molecule interacts with Ar atoms via the LJ poten-
tial. The simulated incoherent dynamic structure factor S(g, t)vfor the hydrogen molecule, which is

corrected for the rotational states, is found to be in reasonable agreement with the experimental data
of Egelstaff et al. (unpublished). One-parameter phenomenological model calculations are also com-

pared to these data.

I. INTRODUCTION

One fundamental problem of condensed-matter physics
is the scattering of a light particle in a medium of heavy
stationary scatterers, which is the "Lorentz-gas" (LG)
model. ' There has been interest in a classical particle
moving in an environment of randomly distributed static
scatterers, both at the theoretical and experimental lev-
els. '" The situation is simple when the distance between
scatterers is large, and in the limiting case an exact solu-
tion is available' based on the linearized Boltzmann
equation. However, the problem becomes complicated as
the scatterer density increases, so that the dynamic corre-
lations start playing a role (including the memory effects)
and the system attains the characteristics of a genuine
many-particle fluid. The kinetic theory of this fluid, in
the hard-sphere approximation, involves fundamental
difficulties which increase considerably in the presence of
"soft" interaction potentials.

Even though the dynamics of the host medium is ab-
sent, the LG system exhibits a number of interesting non-
trivial features. ' A significant feature is a nonexponen-
tial decay of the velocity autocorrelation function (VAF)
at long times, which indicates some nontrivial correlation
effects present in the system. "' These long-time tails
(with the VAF decaying according to some power law) are
a general feature of transport in disordered diffusive sys-
tems, both classical and quantum mechanical. A variety
of methods (Refs. 13 and 14) have been used to derive
long-time tails. The molecular-dynamics (MD) simulation
studies of Bruin' revealed that both the diffusivity and
the VAF are nonanalytic functions of the density, yielding
a percolation edge separating the phase with nonzero
diffusivity from the one having no diffusion. This type of

phase transition has been detected rather convincingly in
two- and three-dimensional LG models through MD
simulation experiments.

Recently, Gotze et al. ' examined two- and three-
dimensional LG systems of overlapping hard spheres and
studied various characteristic features related to the densi-

ty and velocity autocorrelation functions. These features
emerge quite naturally from an analysis of either of the
phases near the percolation edge, ' including the density
variation of the long-time tail which proves to be con-
sistent with the computer simulation.

In general, MD computer simulation' ' has been car-
ried out with the hard-sphere potential. No work exists
which uses a realistic potential. The present work in-
volves MD simulation studies of the incoherent dynamic
structure factor S, ( Q, co ) of the LG system with the
Lennard- Jones (LJ) potential.

From the experimental-neutron-scattering point of view
the hydrogen molecule in argon is a good LG system be-
cause hydrogen is the lightest classical particle, it has an
intrinsic neutron cross section much greater than that of
argon, the neutron scattering from hydrogen is almost to-
tally incoherent, and the inelastic component' of the
scattering is to a good approximation a convolution of the
rotational, translation, and vibrational terms. For the
problem in hand, one can ignore the vibrational com-
ponent, and the wide separation of the rotational levels al-
lows the translational term to be observed. In the experi-
mental work' used here, pure hydrogen gas at 298 psi
pressure was studied first and found to behave as a perfect
gas. Then argon was pumped into the vessel with the H2
to raise the pressure to about 7498 psi. On this sample of
the LG gas, neutron time-of-flight measurements were
made. Since Ar is relatively invisible to neutrons, the dy-
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namics of the hydrogen molecules were observed easil .
e ydrogen-argon system in the liquid phase h

easi y.

20 21
ase as

been studied ' by neutron scattering; for the dense gas
phase, data are available from the neutron scattering ex-
periments of McPherson and Egelstaff. Some indirect
data on the dynamical behavior of the LG system over a
wide range of densities are available through far-infrared
absorption experiments. The new neutron scattering
data' on S,(Q, cu) were measured at 113 angles from
5'—1
'— 00' for 30-meV neutrons, and cover several densities

up to a density which is about half the density at the per-
colation edge. We work with the highest experimental
density, and these data are expected to involve many
physically important features of the high-density regime.

The plan of this paper is as follows. Section II de-
scribes the basic theory while Sec. III gives the details of
the calculation. Molecular-dynamics results are com-
pared with the experimental data in Sec. IV, and this
comparison and model calculations are discussed in Sec.

II. THEORY

The incoherent scattering cross section of neutrons per
hydrogen molecule may be written in the form' '

CT d 0
dQ de J~ dQ dc'

neglect of the dynamical coupling between the rotational
motion and the translational motion of the molecule. For
the gas at room temperature the ratio of ortho- to parahy-
drogen is about 3:1 and most of the molecules are in their
ground state. Because of the spin dependence of the
neutron-proton cross section, the ratio of the ortho to
para scattering is about 6 for the incident energy of 30
meV used in these experiments. However, a large part of
the para cross section is due to J =0~1 inelastic scatter-
ing which has a low intensity at the scattering angles em-
ployed.

In a compact notation, the total incoherent dynamic
structure factor may be expressed in the form of convolu-
tion

S, (Q, co) = fStt (Q, ni')ST(Q, ni —co')d~u',

where co' corresponds to the rotational energy states of the
hydrogen molecule and Sr(Q, ni) and Stt(Q, co) are the
translational and rotational contributions. S~ (Q, cu) is cal-
culated by the free-molecule expressions b Y

d K 118 20
ns given y oung

and Koppel or Sears and the translational contribution
Sr Q, to ) will be dealt with by either the molecular-

ynamics simulation method or a phenomenological mod-
e ~

' e incoherent dynamic structur f te ac or
T Q, cu is associated with the translational motion

through the intermediate structure function F, (Q, t) by the
relation

k
a (Q,J,J')ST(Q, ru —cojg ) .

J J'

Here the subscript J,J' represents the partial cross section
for the rotational transition J~J' ~——k —k,0 —k, is the
momentum transfer in units of fi k d k h0 an are t e initial
and final wave vectors, respectively. fico=A' (k —k /2m
is the energy transferred to the system in the scattering

tational energy gain with the quantum numbers J and J'.
The Pauli principle requires that J be even when the total
nuclear spin I=It+I' of the hydrogen molecule is 0
(parahydrogen) and odd when I is 1 (orthohydrogen . 8
is the rotational constant. a (Q J J') 1

' ' hp ays ' the role of
g . n wr~~~ng thean e ective incoherent scattering length I '

h
a ove expression, the main approximation has been the

Sr(Q, ai) = I F, (Q, t)e' 'dt,1

2~

with

Fs(Q, t)=(p' g(0)pg(t)),

where

s iQ.R

(4)

TABLE I. Parameter used in the MD calculation of LJ gas

Parameters for the LJ potential
u (A) c/kg (K)

Ar-Ar
Hq-Ar

3.405
3.168

120
64

Other parameters

Temperature T=297 K
Total number of Ar particles 255; H2 molecules, 1

Time so=(mo. H/48cH)' =8.87& 10 ' sec
Reduced time increment At*=0.032 (in units of ~ )in unis o
Box length = (%/n )

' =29.0 A
Reduced density p*=no.A, =0.413

OJ
O

O
0 O. 24O. (2 0.36 O. 48

t(ps)

FIG. 1. Intermediate structure function F, (Q, t) vs t obtained
from the MD calculation for Q/Q0=4, 6, 7, 9, 11, and 13. The
slower decaying curves correspond to smaller values of Q.
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Here s indicates the quantity corresponding to the hydro-
gen molecule.

III. CALCULATIONS

A. Calculation of Sr ( Q, co) by molecular dynamics

dom distribution of heavy scatterers, we have considered
the equilibrium configuration of a real system at a particu-
lar density and temperature. This is proper as we are
comparing with experimental results.

The relevant dynamic structure factor is then obtained
after taking the Fourier transform,

p; (r) =4cg (6)

where j corresponds to the Ar atom. The MD calculation
was carried out for N =256 particles in a box with
periodic boundary conditions, and the various parameters
used are given Table I. An initial equilibrium
configuration, i.e., all three components of the position
vector of N particles at a particular density and tempera-
ture, was obtained by the Monte Carlo method. Then
the hydrogen molecule was allowed to move at intervals
of b, t* in the static background of Ar atoms. The time is
measured in terms of 7p= 8.87 & 10 ' sec. The box
length L was taken to be -29.0 A with the reduced Ar
density n *=0.413. Wave vectors for the MD run are in-
tegral multiples of 2m/L -0.21 A ' which we denote by
Qo. The calculation was performed for six values,
Q/Qo ——4, 6, 7, 9, 11, and 13, but only four will be shown
in the figures.

The initial velocity (three components) of the hydrogen
molecule is obtained by choosing random speeds and ran-
dom directions from the Maxwellian velocity distribution.
Subsequent projections are obtained from the Verlet algo-
rithm and r(t) and p(t) are evaluated for 5000 time steps
at time increments At'=0. 032, from Newton's equations
of motion. The intermediate structure function F,(g, t) is
then evaluated at equal time steps of At*. In the calcula-
tion of F, (g, t) every tenth time step is taken as the time
origin and an average is taken over 500 time origins.
Also, an average over 50 initial velocity configurations
was taken and this gave an average temperature of 312 K.
The calculated intermediate structure functions, F,(g, t)
for various Q's, are plotted in Fig. l.

The MD calculation has several limitations compared
to the experiment. In the realistic (experimental) case the
scatterers are of finite mass, compared to the infinite mass
chosen for the calculations. The long-time tail represents
ring and repeated-ring collisions, so one has to be very
careful in choosing a proper cutoff' to represent this effect.
The F, (g, t) data show the presence of some spurious fiuc-
tuations, though small in magnitude. A long-time tail ap-
pears particularly below 1.5 A ', and increases as Q de-
creases. The slow decay creates some inherent computa-
tional difficulty in getting ST(g, co): For this reason we
took a suitable cutoff point in time and extended the tail
by an exponential decay. Thus it was possible to consider
the long-time tail only approximately in the present calcu-
lation. Compared to an ideal LG gas which has a ran-

The translational part of S,(g,~) is calculated as fol-
lows. Argon atoms in the Lorentz-gas system are as-
sumed to be of infinite mass and hence stationary. A hy-
drogen molecule is allowed to interact with Ar atoms
through the LJ potential

12

S T(g, co) =—f F, (g, t)cos(cot)dt .
7T 0

(7)

B. Model calculation for S(Q,co)

We wish to the calculate the translational contribution
from a binary-collision model, such as the Nelkin-
Ghatak model. Calculations for two values of g were

compared to a simpler mathematical model of Egelstaff
and Schofield (ES) giving excellent agreement. There-
fore the simple ES model was used for rest of the Q
values. It assumes

F, (g, t)=exp[ —
—,'a(t)Q ], (8)

where a(t) ~ t in the short-time limit and a(t) = 2Dt

TABLE II. Parameters used to calculate rotational contribu-
tion to S,(Q, cu).

Temperature, 297 K
Molecular Mass 2
Bond length, 0.742 A
Rotational constant, 7.35 meV
Elastic energy, 30.97 meV
Neutron wavelength 1.625 A
Scattering length ao = —0.374&& 10 ' cm
Scattering length a1=5.82&(10 ' cm
Concentration of orthohydrogen, 75%%uo

Maximum quantum number of rotational states, 11

In the process, we tried to avoid the spurious fluctuations
at long times, particularly at lower wave vectors, by
choosing a suitable cutoff and extending the tail exponen-
tially as 3 exp( Bt) —Then. F, (Q, t) was multiplied by the
experimental resolution function, exp( —0.82t ) which is
more important at lower values of the wave vector than at
higher values of Q. For example, its effect at Q=0. 867
A ' on the peak value of $, (g, co) was found to be about
1%.

In a real system the H2 molecule will exhibit some
quantum rotational effects [see Eqs. (1) and (2)]. The
translational contribution and the rotational contribution
S~(g, co) are convoluted to get the total incoherent contri-
bution to the dynamic structure factor. Also there are
some small effects which have been ignored as they are
not expected to change the result by more than 1%.
They include quantum effects on translation, the effect of
H2-Ar coherent scattering, and many-body potential
effects (i.e., beyond pair interactions). The first transla-
tional quantum correction would come from the terms of

—A' Q /2mkg T
the type e which will produce a correction at
room temperature for large wave vectors, i.e., Q & 3.0
0

A ', which are not considered in this paper.
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within the diffusion approximation. Egelstaff and
Schofield proposed the expression

0.03

a(t)=2D[(t +c )'~ —c], (9) 0.02

with c=ma/k~T, which has the desired behavior at
short and long times. It represents fairly well the
molecular-dynamics results of Levesque and Verlet on
liquid Ar. Although it does not satisfy the fourth fre-
quency moment of S,(Q, ro), Lovesey noted that the
difference in F, (Q, t) is small. Thus the Egelstaff-
Schofield formula is a simple model involving one relax-
ation time. The situation can be different in a Lorentz gas
at high density, where the long-time tail can be observed.
After making this model calculation, the rotational contri-
bution (see Table II) is incorporated as discussed in Sec.
V.

0.01

0.00

0.02

I

12 18
I

24 30

IV. COMPARISON TO EXPERIMENT

3cS.01
N

A table of the experimental incoherent dynamic struc-
ture factor at 297 K, S,(Q, cu), was available. ' The data,
being measured at fixed scattering angles, were interpolat-
ed onto a constant-Q scale, and normalized by comparing
pure-hydrogen-gas data to an appropriate calculation for

0.00
12

I

24
I

3E)

ENERGY TRANSFER (meV)

I

48 60

FICr. 3. Same as in Fig. 3. (a) Q= 1.950 A ', (b) Q=2. 818
A '. Data are omitted at low co because of corrections for
Bragg scattering.

O. OB
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FIG. 2. Total incoherent dynamic structure factor S, (Q, co) vs

co of the Lorentz gas. Pluses represent the experimental data of
Egelsta6' et al. (Ref. 19). The solid line represents the present
MD calculation. (a) Q=0. 867 A ', (b) Q =1.300 A

the perfect gas, after correcting for resolution effects. A
correction arising from the multiple scattering over the
relevant range of energy transfers was evaluated and was
found to be less than 2%.

The results obtained from the MD calculation of
Sr(Q, cu), corrected for the rotational energy states of the
hydrogen molecule, are presented in Figs. 2 and 3 and
compared with the experimental data. ' Immediately, one
observes that the MD calculation agrees fairly well with
the data overall. However, near the zero-energy-transfer
region, MD results show some disagreement. The region
of disagreement for the lowest wave vector Q =0.867
A ' lies within co&1.5 meV. The MD peak value is
larger by about 6% than the experimental value, and for
these data the cutoff point in F, (Q, t) was chosen at
t =0.34 ps and the exponential decay was extended to
1.42 ps. If this cutoff is shifted to 0.57 ps, the MD peak
further increases by about 7%, at the cost of smoothness
in the S, (Q, ru) plot. This probably indicates some contri-
bution from the long-time tail of F, (Q, t), which is a mani-
festation of various ring collisions and other many-body
effects.

The model of the Sec. III B was fitted to the experimen-
tal data by the least-squares method. The parameters ob-
tained and quality of fit are shown in Figs. 4 and 5 and
will be discussed in the Sec. V.
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V. DISCUSSION
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In the molecular-dynamics simulation it was assumed
that all the Ar atoms are of infinite mass so that they will
not move, whatever energy is transferred from the hydro-
gen molecule on collision with the Ar atom. In a realistic
system involving finite mass (m =40), the Ar atom moves
and contributes to the width of S, (Q, co). Consequently,
one can expect a sharper peak from MD simulation than
the experimental one. This effect will be more evident at
lower g values.

We can obtain a quantitative assessment of the effect of
the finite mass of argon, by letting the Ar atom move by
normal dynamics and doing a MD calculation. However,
to obtain a qualitative effect, we followed the kinetic argu-
ments given by Mcpherson and Egelstaff. There are two
related physical concepts which must be taken into ac-
count simultaneously. The mean free path, l~, for a mul-
ticomponent gaseous mixture in the framework of the
hard-sphere potential, may be expressed' as

l i = irgp, o i,g(o. i, )( I+ m ) /m, )
'

S

(10)

0.00 I

1 2
I

18

0.03

0.02

3
C3

0.01

ENERGY TRANSFER (mev)

FICr. 4. Total incoherent dynamic structure factor S, (Q, co) vs

cu of Lorentz gas. Pluses corresponded to the experimental re-
sult of Egelstaff et aI. (Ref. 19) the solid line is the ES model,
and the dashed line represents the perfect gas. (a) Q=0.867
A ', ckiiT/6=3. 34; (b) Q=1.300 A ', eke T/Pi=3. 33.

where the subscript 1 represents the hydrogen molecule,
m, and p, are the mass and the number density of the
component s, o.~, is the hard-sphere diameter at the 1 —s
contact, and g(o i, ) is the pair distribution function at
contact. In addition, we consider the "persistence of ve-
locity. "' The mean persistence ratio, defined as the mean
of the ratio of the component of velocity after collision
along the incident direction of velocity, to the velocity be-
fore the collision, is given' by

co~2= —,'M~+ ,'MiM2 ' In—[(m2 +1)/m I ),
where Mi =mi/(m~+mq) and M2=m2/(mi+m2). mi
and m2 are the masses of two different particles, i.e., the
hydrogen molecule and the argon atom, in a binary gase-
ous system. The velocity vector is randomized after an
average number of collisions n, which we obtain from

n (co i2)"

(12)

0.00
0

0. 02

I

18 The effective mean free path for diffusion will be at most
l,ff ——l ~ n and the diffusion coeScient D can be expressed
in terms of the above kinetic quantities, as

2l eff leffvD=—
6~ 6

l&nv

6
(13)

3 0.01
(3
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0.00
12 24

ENERGY TRANSFER (meV)

1

48

FICJ. 5. Same as in Fig. 5. (a) Q=1.950 A ', cking T/
A'=4. 53; (b) Q =2.818 A ', ckBT/Pi=5 60. Data are omitt. ed
at low co because of corrections for Bragg scattering.

where ~ is a suitable relaxation time, v is the mean veloci-
ty and is -l,ff/~. The product l~n was calculated for
m~/mq~O and for m~/m2 ———,'„and was found to be
1.58 and 1.59 A, respectively. As a check on these for-
mulas we calculated the ratio of the relaxation time for a
pure hydrogen system to that of a H2-Ar system. The re-
sult was about 2 [from Eq. (13)] compared with the exper-
imental average value of 1.7 obtained from the work of
McPherson and Egelstaff. Then, as a check on the value
of l~, we made a calculation with the parameter c of the
ES model, which in units of A/k~ T is
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FICx. 6. Half-width (meV) vs Q (A ') of the Lorentz gas.
Pluses represent the experimental data of Egelstaff' et al. (Ref.
19). Open circles correspond to the present molecular dynamic
calculation.

G (A )

FIG. 7. Half-width (HW) times S(Q,O) vs Q for the Lorentz
gas. Various symbols are same as in Fig. 7.

lt+Mktt T/%=3. 3l~ A. We considered some typical
average value of this parameter (see Figs. 4 and 5), i.e.,
-4.7, so that the mean free path comes out to be 1.4 A,
which compares reasonably well with the value 1.5 A ob-
tained from kinetic theory. This leads us to two con-
clusions: (a) the assumption of an infinite mass for argon
is a good approximation, and (b) the finite mass of the
scatterers, however, enhances the diffusion and hence the
linewidth for large m ~ /mq ratios.

The dynamic structure factors S, (Q, co) calculated from
the Egelstaff-Schofield model for four values of the wave
vector Q, are compared with the experimental data in
Figs. 4 and 5. The perfect-gas calculation is given also for
reference. The model calculation lies between the
perfect-gas result and the experimental data. The model
has one parameter, namely diffusion, to cover the salient
features of the system and also has only one relaxation
time. The disagreement with the experiment (or with the
MD calculation) suggests that a better model is needed.

Finally the half-width and half-width multiplied by
S(Q,O) versus Q are presented in Figs. 6 and 7, respec-
tively. These results demonstrate clearly that the MD
and experimental values are close to each other, in gen-
eral, and also that they tend to follow the limiting behav-
ior as Q~O or Q~large values. At all Q's, the MD cal-

culation lies below the experimental data of Egelstaff
et al. ,

' in agreement with Figs. 2 and 3. Figure 7 shows
that the data lie within the range obtained from the
Ficks-law limit, I /tr (for Q~O) and the ideal-gas limit for
(Q~os). The latter is &in2/tr times a rotational factor,
to give a prediction of -0.43. This illustrates that the
data we have been discussing cover the most sensitive
range of Q.

The MD results are not sensitive to different equilibri-
um configurations of the host. Nevertheless, a random
configuration of host atoms might have a significant effect,
particularly near the zero-energy transfer region. We
have not made any attempt to analyze the long-time tail
of F, (Q, t) for small Q because a larger system is needed
to discuss this important characteristic. It would be desir-
able to undertake further MD calculations which take ac-
count of these considerations and the effect of moving Ar
atoms.
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