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We have measured the frequency-dependent shear modulus of glycerol near the glass transition.
The measurements, which covered three decades of frequency, probed the stress response of super-
cooled glycerol to small shear deformations. The shear response function has the same shape as the
one obtained from ultrasonic experiments. Combined with previous measurements of ultrasound and
specific heat, this result suggests that a single relaxation mechanism is responsible for such diverse
phenomena as volume, shear, and enthalpy relaxations of the supercooled liquid of glycerol.

I. INTRODUCTION

When a liquid is cooled below the freezing temperature,
it usually undergoes a first-order phase transition into a
crystal. However, there are many materials which can be
easily supercooled mainly due to the fact that they have a
large viscosity at the melting temperature. The dynamics
of this supercooled state and the glass transition, which
occurs when a liquid is sufficiently supercooled, have been
a subject of intensive research since the turn of the centu-
ry. Despite these efforts, a proper understanding of this
phenomenon is still lacking.

There are some outstanding questions which still
remain to be answered. (i) Is there or is there not a true
glass transition' ™3 (in the thermodynamic sense)? It has
been suggested that there is a true underlying phase tran-
sition which is masked by kinetic effects due to the liquid
falling out of equilibrium. If there is such a phase transi-
tion, one would expect the growth of a length scale associ-
ated with this transition. So far no evidence for such a
diverging length scale has been found. (ii) The second
question concerns the dynamics of the liquid in the super-
cooled state. This has been the focus of much research*
and plays an important role in answering the previous
question. Is there a single relaxation mechanism which
governs different relaxations in the supercooled state and
if yes, what is the mechanism for this relaxation?

In a recent publication,” we have measured the speed
and attenuation of ultrasound in glycerol and compared
the data with those of a specific-heat experiment® on the
same sample. We concluded from that experiment that
there seems to be a single relaxation mechanism responsi-
ble for different relaxations due to different perturbations.
In this paper we report the measurements of the
frequency-dependent shear modulus in glycerol. Since
longitudinal sound involves the bulk modulus as well as
the shear modulus,’ it is of interest to compare pure quan-
tities such as the shear modulus with other response func-
tions. In addition to this, the shear modulus is a key
quantity which distinguishes solids from liquids. There-
fore, it is of great importance to study the shear modulus
as a liquid becomes an amorphous solid.

There is a vast amount of literature on the subject of
rheology,® the measurement of the shear modulus, and
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various methods have been developed to measure shear
moduli over the years. These include transient methods,
sinusoidal techniques, and wave-propagation methods at
high frequencies. In transient methods one measures the
stress (or strain) as a function of time after the sudden im-
position of strain (or stress). In sinusoidal techniques one
works in the frequency domain. Here one imposes a
sinusoidal strain (or stress) and measures the stress (or
strain) as a function of frequency. Either a single- or a
double-transducer technique can be used. These two
complimentary methods can be used when the dimension
of the sample is small compared with the wavelength of
the shear wave. At higher frequencies one measures
reflection coefficients of a shear wave between a material
whose properties are known and the sample.

In our experiment we adopt a sinusoidal technique and
measure the shear modulus of glycerol as a function of
frequency. Since at lower frequencies, where the dimen-
sions are small compared to a wavelength an X-cut quartz
transducer can be used as a generator of a shear strain
and a detector of a shear stress, we have applied the two-
transducer technique which is frequently used in ultrason-
ic experiments to low-frequency shear-modulus measure-
ments. In this way we were able to cover three decades of
frequency.

This paper is organized as follows. In Sec. II we
present a brief discussion of the frequency-dependent
shear modulus in liquids. In Sec. III we explain the ex-
perimental methods we have used. In Sec. IV we present
and discuss the data.

II. FREQUENCY-DEPENDENT SHEAR MODULUS

One of the most conspicuous features of a liquid com-
pared to a solid is that it cannot support shear strains.
While one does not face any difficulty with this notion in
ordinary liquids, one has trouble understanding the be-
havior of supercooled liquids in this context. This is due
to the fact that in a supercooled liquid the relaxation time
of the system becomes so large that it is comparable to the
duration of an external perturbation. In this situation the
response of a liquid depends on the relative duration of
the applied stress and the relaxation time associated with
the change of equilibrium due to the stress. If the time
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scale over which the shear stress is applied is long com-
pared with the relaxation time, the liquid responds to the
stress by flowing. The behavior is then characterized by
viscous flow. If, on the other hand, the time scale of the
external stress is less than the relaxation time, then the
response is elastic which is characteristic of a solid. In
the region where these two time constants are comparable
to each other, the liquid is said to be viscoelastic and the
properties of the liquid are frequency dependent.

In a viscoelastic system, as in an elastic medium, the
state of deformation at a given point is described by a
strain tensor.” The strain tensor represents the relative
change in position of a small element at that point. For
an infinitesimal deformation, the strain tensor y; is
defined by
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where x; and u; are, respectively, the Cartesian coordi-
nates of the point where the strain is specified and its dis-
placement. The corresponding stress tensor o; is defined
as follows:

tij = —Psu +Ulj ’ 2)

where ¢;; is a second-rank stress tensor that represents the
force applied in the j direction per unit area of a plane
whose normal lies in the i/ direction. For an isotropic
medium, the stress tensor can be resolved arbitrarily as
the sum of a hydrostatic pressure p and a residual stress
tensor o ;.

In our case we are interested in a shear deformation
which is described by the off-diagonal elements of y;; and
0. When the system is under a shear deformation, y
and o; are related by the constitutive equation

i
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where I'(¢) is called the decay function. The decay func-
tion I'(¢#) describes the response of the stress to a steplike
strain and goes to zero as ¢ approaches infinity. Notice
that for isotropic systems there is only one decay function
for shear deformations. The basic principle on which Eq.
(3) is based is that the effects of sequential changes in
strain are additive when they are infinitesimal (i.e.,
Boltzmann’s linear superposition principle).

As with any other linear response function, the shear
response can be measured in the frequency domain as well
as in the time domain. In this case we integrate Eq. (3)
by parts and then take its Fourier transform

oj(@)=G o)y (o), i#j @

where G(w) is the frequency-dependent shear modulus
given by

dr

- e ' . (5)
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In the ideal case, where there is only one relaxation
time, one can write the shear modulus in the frequency
domain as follows:

G=G6, %, 6)
1+ioT

where G, is a high-frequency limit of the shear modulus
and 7 is a characteristic shear relaxation time. The imagi-
nary part has a familiar Debye form whose full width at
half maximum is 1.14 decades. If one measures the
response in the time domain, rather than in the frequency
domain, a single relaxation time would imply that the
shear stress decays exponentially in response to a step
function in the strain applied to the system. In general,
however, the response is never characterized by an ex-
ponential decay but by a more complex functional form.'"°
It has been the usual procedure to describe such a behav-
ior by a distribution of relaxation times. That is,

o
l+ioT

G(w)=G, [g(r) dr, (7)
where g (7) is the distribution function of such times. Al-
though one can always fit the data by assuming a distribu-
tion of relaxation times, it is not clear that such an inter-
pretation of the data is justified since there is no universal-
ly accepted theoretical model that accounts for the simi-
larity in the distributions that are found in many different
experiments on the same sample as well as in different
samples.!!

It is one of the purposes of the present experiment to
see if this similarity, already found in glycerol by the ul-
trasound,>'? dielectric,'® light scattering,'* and specific-
heat experiments,® persists to the shear modulus. Shear
and bulk deformations are essentially different in charac-
ter, one involving a shape change and the other a volume
change, and it might therefore be expected that they are
accompanied by quite different molecular processes.

Before going into Sec. III, we mention, in passing, the
relationship between the shear modulus and the dynamic
viscosity. The dynamic viscosity 7(w) is the quantity
which is used when one describes viscoelastic systems
from the liquid point of view. The dynamic viscosity,
which is the ratio of the stress to the rate of the shear
strain, is simply related to the shear modulus by

Gl(w)=ion(w) . (8)

We will use the shear modulus G (@) in describing the ex-
perimental results throughout this paper.

III. EXPERIMENTAL METHOD

In a typical experiment measuring a mechanical proper-
ty,® such as the shear modulus, one measures the extrinsic
quantities (i.e., the displacement and force). The ratio of
these is related to the shear modulus by a form factor
which depends on apparatus geometry. To measure a
shear modulus as an absolute quantity, one must take
pains to keep the geometry simple and thereby be able to
calculate the form factor. This limits the experimental
geometry to simple configurations such as two parallel
planes or two concentric cylinders.

On the other hand, there are many occasions where one
is more interested in the relative change of a shear
modulus as a function of external parameters such as tem-
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perature and frequency, rather than the absolute value it-
self. In these cases, one is not interested in the form fac-
tor of the apparatus at all as long as it remains constant
throughout the measurements. Indeed, the study of the
glass transition is one of those occasions where one is
more interested in how the shear modulus changes as a
function of temperature and frequency rather than its ab-
solute magnitude. In this experiment we take advantage
of this and the fact that one can use quartz crystal as
stable and reliable transducers of shear deformations at
lower frequencies to measure the shear modulus of gly-
cerol.

Central to the whole experiment is the idea that quartz
be used as a shear transducer. Due to the crystal struc-
ture of quartz,'” there are five piezoelectric constants with
only two independent values. In the case of X-cut plates
which were used in this experiment, only three of these
five constants are relevant. The relationships between the
electric field and the strains in the free crystal without
external stresses are

XX =d11Ex y (93)
Y, =dnE,, (9b)
Yz =d ]4Ex y (9C)
where E, is the electric field across the x axis and
ou ou ou ou
Xx = = ’ Y, = . ) z= - -
ax ' oy z oy

The values of d;; at room temperature are the following:'®
dii=—d;3=6.9X 10~3 esu , dia=—2X 10~3 esu

Notice that Z,=0. Among Egs. (9), Eq. (9¢c) describes a
shear deformation which does not change the volume. On
the other hand, Egs. (9a) and (9b) describe extension and
compression. It is this property that is used to generate
ultrasonic longitudinal waves in the megahertz range.
When the wavelength of the wave is much larger than the
dimensions, it is necessary to consider the deformation as
a whole. Since d;; = —d; due to the symmetry, it is easy
to see this deformation does not change the total volume.
Let the dimensions of the plate be /, and I, parallel to the
x axis and y axis. When a potential difference V is ap-
plied to the x direction, the following expressions hold:

Alx:dllV ’

(10)
Al, =dp(l, /L)Y =—d (L, /1)V .
The area change is then,
AS——‘IyAIX+lely=d111yV—dnlyV:O . (11)

Since Z, =0, there is no volume change. Figure 1 shows
how a combined extension and compression represent a
pure shear.

The above considerations show that if one applies a
sinusoidal voltage to an X-cut quartz crystal, one gets an
oscillatory shear deformation. The basic idea of the ex-
periment is the following. Let us fill a closed vessel with
the liquid sample (glycerol) and immerse two quartz
transducers in it. Here the dimensions of the cell have to

be much smaller than the wavelength of the sound in the
liquid. This sets the limit for the highest frequency of the
experiment. At the highest frequency (10 kHz) the experi-
ment was done, the ratio of the size of the cell to the
wavelength was approximately L. If we apply the
sinusoidal voltage on a transducer, then it will generate
the shear strain field in the liquid. This is due to the fact
that (i) since the wavelength of the sound is much larger
than the dimensions of the cell, there is no density varia-
tion in the liquid, (ii) the total volume of the liquid in the
cell is constant, and (iii) there is a shear deformation of
the transducer.!”

Since piezoelectricity is a reversible effect, the external
shear stress induced by the shear strain will generate a
charge on the electrodes of the second transducer.
Another property of quartz is that it does not respond to
(no charge is induced by) hydrostatic pressure (see Ref.
15, Chap. VIII). Indeed one can divide the piezoelectric
crystals into two classes according to the response to hy-
drostatic pressure. Quartz belongs to the class which does
not respond to hydrostatic pressure. We can detect only
the shear stress in the liquid by monitoring the induced
charge. If we keep the input voltage to the first transduc-
er constant with variation of frequency and temperature,
the output voltage from the second one will directly
reflect any change in the shear modulus in the sample.
(Here we are assuming that a constant input voltage gen-
erates a constant shear strain regardless of frequency and
temperature and it will be a major source of error.'?)

One fundamental difference of our setup from the ones
with simple geometry is that, in our case, the strain field
is not uniform. As a matter of fact, the strain field in-
duced in the liquid would be quite complicated depending
on the shape of the vessel which provides the rigid bound-
ary conditions. Fortunately, however, we are dealing
with an isotropic medium. And, as a result, there is only
one shear modulus, i.e., the ratio of the stress to the strain
is the same regardless of the magnitude and direction of
the strain. Consequently, nonuniformity of the strain
field does not present any problem in our case as long as
we keep the relative configurations of the two transducers

\ extension
/compression

/ shear —4

FIG. 1. Equivalence of pure shear to combined extension and
compression.
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intact throughout the experiment. In other words, the
first transducer generates the same strain field (as a result
of constant input voltage) at the position of the second
transducer. Likewise, the second transducer detects the
stress which is the shear modulus times the strain which
is constant throughout the experiment.

The sample cell we used in this experiment is shown in
Fig. 2(a). It was made of copper to ensure the lack of
thermal gradient, and has a cylindrical shape with inside
diameter 3 in., outside diameter 13 in. and length % in.
The cell was closed by two thick copper caps. The cell
which contains two transducers (X-cut quartz plates with
diameter J in. and fundamental frequency 1 MHz) is con-

1

nected to the reservoir through a hole of diameter . in.

and length 2 in. The reservoir was necessary to keep the
cell full of liquid in the presence of the large thermal con-
traction of glycerol. The distance between the transducers
was approximately 1 in.

Temperature was measured with the copper-Constantan
thermocouple and controlled within 0.1 K by the software
developed in this laboratory for a Hewlett-Packard 86
computer in conjunction with a programmable power
source. As we show in Fig. 2(b), the output voltage ( ~20
V,.p) of the Hewlett-Packard 3325A frequency synthesizer
was directly fed into the transducer. The signal from the
second transducer was measured with the Princeton ap-
plied Research 124A lock-in amplifier and/or the
Hewlett-Packard 3561A signal analyzer. The data were
taken every 2 K. We cooled (or heated) the system, wait-
ed for an hour (or even two hours at lower temperatures)
to ensure that equilibrium had been reached and then
took the data as a function of frequency. Since we want
to measure the linear response of the system in equilibri-
um, we have checked the linearity of the output signal to

LiQuip
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FIG. 2. (a) Schematic diagram of the sample cell and (b) a
block diagram of the experimental measurement apparatus.

Dnnnn
o

MAGNITUDE (arb. units)

o (a)
0 Spgogopooon

40

PHASE (deg)
o

a
o a oo
nnDnD ao

0
185 195 205 215 225 235 245 255

T (K)

FIG. 3. Typical raw data (lock-in output) as a function of
temperature at f =1 kHz. (a) Magnitude and (b) phase change
of the output signal.

the input voltage. Within the voltage level we used, no
nonlinearity was discovered for the entire temperature re-
gion.

In Fig. 3 we show typical raw data (magnitude and
phase change of the signal with respect to the reference) at
S =1 kHz. The data show what we expect from relaxa-
tion phenomena. The magnitude increases from a very
small value (characteristic of a liquid)!® to a large value
(characteristic of a solid) in a narrow temperature region.
In association with this increase in magnitude is the phase
change which goes through a peak. From the magnitude
and phase change of the signal, one can calculate the real
part G’ and the imaginary part G” of the shear modulus.
The result, especially the phase change, was very sensitive
to the existence of bubbles in the sample cell. We have
paid careful attention to the procedure used to fill up the
sample cell in order to avoid trapping bubbles in the cell.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In Fig. 4 we show the real and imaginary part of the
shear modulus of glycerol, G(w,T)=G’'+iG", as a func-
tion of temperature at different frequencies. In plotting
the results, we have normalized the data with respect to
the shear modulus at 7 =186 K where the shear modulus
does not show any frequency dependence. The data are
those of typical relaxation phenomena with the peak in
the imaginary part moving to lower temperature as the
frequency is lowered. Associated with a peak in the imag-
inary part is a frequency dispersion in the real part.

In order to compare the shear response function with
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other response functions, we plot the shear modulus as a
function of frequency at fixed temperatures. In Fig. 5 we
show the real and imaginary parts versus logqof at three
different temperatures. As the temperature changes, the
peak in the imaginary part moves through our frequency
window. Note that G''(w) has a wider full width at half
maximum than the Debye form (1.14 decades) and is
asymmetric with a tail to the high-frequency side. Due to
a limited width of the frequency window of our experi-
ment, we cannot see the whole shape of the response func-
tion. This is a typical problem one always faces in any re-
laxational spectroscopy. However, in many complex sys-
tems it is known that time-temperature superposition
works.?’ Indeed we have used this technique in the previ-
ous experiment” in glycerol.

To test the validity of this method in the shear-modulus
case, we attempt to construct the master curve by rigidly
shifting the curves in G (w) versus logjow. The shift factor
we use for this purpose is w,=15.7x10"exp[—2310/
(T —129)] which was the mean relaxation time obtained
from the combined results of the previous ultrasonic and
specific-heat measurements (see Ref. 5). If we can con-
struct a master plot with this mean relaxation time, it
would suggest that there exists a single average relaxation
time in the system. As we show in Fig. 6, this is indeed
the case. The shape of the master curve shows a familiar
form, that is, skewed with a tail to the high-frequency (or
low-temperature) side.’’ Notice that although we have
used the Vogel-Fulcher fit as a shift factor, it would have
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FIG. 4. Plots of (a) the real part G’ and (b) the imaginary
part G of the shear modulus vs temperature. The lines are
guides for the eye.

been equally good to use the scaling fit
wp=15.7Xx10"°[(T /175.5)—1]'*%). While the former
form has been used widely in this field, this latter form
was introduced recently by various hydrodynamic
theories of the glass transition.” These hydrodynamic
theories are quite different from the theories that existed
previously (e.g., the entropy theory' or the free-volume
theory?). Although the details of the theories differ, the
basic ingredient seems to be a dynamic feedback mecha-
nism. The glass transition is brought about dynamically
and no thermodynamic transition is predicted even in the
limit of infinitely slow cooling rate.

As we saw above, the fact that we can construct the
master curve with a mean relaxation time which was ob-
tained from the ultrasonic and the specific-heat experi-
ments, implies that a single relaxation mechanism is
operating in this supercooled liquid. To further test this
notion, we compare two master curves from the ultrasonic
and shear-modulus measurements. One can certainly im-
agine a situation where one has the same average relaxa-
tion time but different spectral shapes of response func-
tions. (For instance, the dielectric response of glycerol
has the same average relaxation time, but does not have
the same spectral shape as other responses such as specific
heat and ultrasound.’) Indeed if one adopts the point of
view that there is a distribution of relaxation times, one
would guess a priori that the shapes of these response
functions would be different. This is due to the fact that
the spectral shape of the response functions, one involving
a pure shear and the other involving a volume change as
well, reflects the molecular processes accompanying the
changes. We show, in Fig. 7, two master curves. Except
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FIG. 5. Plots of (a) the real part G’ and (b) the imaginary
part G" of the shear modulus vs logiof at 197 K (0), 209 K
(A), and 223 K (O). The lines are guides for the eye.
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at the wings where the data are less reliable, it shows ex-
cellent coincidence. In view of the fact that the shapes of
the specific-heat and ultrasonic response functions were
the same within the experimental error, we therefore con-
clude that a single relaxation mechanism is operating and
is responsible for different relaxations such as volume,
shear, and enthalpy.

V. CONCLUSION

We now summarize the experimental findings and dis-
cuss their implications in the following.

(1) The shear modulus data, the ultrasonic data, and the
specific-heat data obtained from experiments performed
on the same sample all show the same non-Debye relaxa-
tion which slows down as the temperature is lowered. In
this regard, it is suggestive that the recent computer-
simulation experiment done by Grest and Nagel?? finds
that most of what happens in the glass transition occurs
in C, —C,. That is, they see a very large change in C,,
but only a minimal change in C, as a Lennard-Jones fluid
is cooled through the glass transition. Since
C,—C, =TVa?/k; (where a and k7 are the thermal ex-
pansion coefficient and the isothermal compressibility, re-
spectively), and the ultrasound involves the compressibili-
ty, their results seem to suggest some connection between
the specific heat and the mechanical properties in the glass
transition.

(ii) The average relaxation time probed by different per-
turbations show the same behavior. They are well de-
scribed either by a scaling law 7=7o[(T/T,)—1] “or a
Vogel-Fulcher law 7=7exp[ —A /(T —Ty)], although the
former requires the anomalously large exponent a=12.5.
In the latter case Ty (129 K) is very close Tk (134 K), the
Kauzmann temperature®® where the entropy of the super-
cooled liquid would extrapolate to less than that of the
corresponding equilibrium crystal.

We can now go back and address the questions which
were raised in Sec. I. If we push our data and extrapolate
to zero frequency, we would have a setup discontinuity in
the specific heat, the compressibility, and the shear
modulus at T =T,. This is due to the fact that the
difference between the high-temperature and the low-
temperature values in these quantities (often called relaxa-
tion strength) does not change as one changes the measur-
ing frequency. This discontinuity is reminiscent of
Ehrenfest’s second-order phase transition.?* According to
his definition, the transition has a discontinuity in the
second-order derivatives of the free energy such as the

specific heat, the compressibility, and the thermal expan-
sion coefficient, while the first-order derivatives such as
volume and entropy are continuous.

It is dangerous practice, however, to extrapolate to zero
frequency, not only because the extrapolation cannot be
confirmed experimentally, but also because there are other
glass-forming liquids which behave differently. Many
liquids have been found to have viscosities which obey
Vogel-Fulcher law over one range of temperatures and
then cross over to an Arrhenius form as the temperature
is lowered further.?

As far as the dynamics of supercooled glycerol is con-
cerned, it now seems clear that there is a single relaxation
mechanism.?® At the moment we are not able to answer
what it is. In this context it is interesting to compare the
glass transition with the critical slowing down in critical
phenomena.?’ As a critical point is approached by chang-
ing the external parameter, the characteristic time arises
in association with the characteristic length scale. Al-
though it is not intuitively clear what kind of order exists
in the glassy state, one can imagine an (undoubtedly sub-
tle) order parameter’® on a macroscopic level which dis-
tinguishes the glassy state from the fully disordered liquid
state. If we suppose the slow relaxation is associated with
this ordering, it would provide some justification for hav-
ing the same relaxation for different phenomena which
seem to be accompanied by different molecular processes.
We have tried to identify the order parameter by measur-
ing the nonlinear dielectric susceptibility, the magnetic
analog of which showed a divergence in spin glasses.”
This attempt to find the diverging length scale was so far
unsuccessful. Other experiments in this direction are un-
derway in this laboratory.
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