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Universality of the cluster integrals of repulsive systems
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We provide evidence for the universal behavior of the exponent characterizing the singularity of the
Mayer fugacity series for the pressure of a fluid. As long as the two-body potential is positive but
otherwise unrestricted, this exponent appears to be independent of the form of the potential and it is
a monotonic, slowly increasing function, P(D), of the dimensionality D of the system. A limited ver-
sion of universality has previously been proposed by Poland [J. Stat. Phys. 35, 341 (1984)], restricted
to hard, approximately spherical particles. Our results for P(D) diff'er somewhat from those of
Poland.

I. INTRODUCTION

It is well known that the radius of convergence R of the
Mayer series expansions of the pressure p (z) and number
density p(z) of a fluid phase in powers of the fugacity z is
dramatically smaller than the fugacity z~ associated with
the transition to an ordered phase. The value of R is
fixed by the presence of an algebraic singularity at the
point —R on the negative real z axis. The occurrence of
this dominant singularity is a direct consequence of an ex-
tremely important theorem due to Groeneveld' applying
to systems of particles interacting via a positive two-body
potential. In practical terms, the singularity at —R
presents a major obstacle with regard to efT'orts to obtain
estimates of z~ and the corresponding critical exponent of
the pressure. This is because an asymptotic analysis of
the Mayer series can only provide the location of the
singularity closest to the origin (the "dominant singulari-
ty") as well as the corresponding exponent, labeled P in
the following, characterizing the singular behavior of p (z).
There is an important exception to this pessimistic
scenario. If one had sufficiently accurate estimates of R
and P, one could employ a suitably chosen conformal
mapping giving rise to a transformed series whose radius
of convergence is determined by the physical singularity
z~. To achieve this, the point —R must be mapped to the
exterior of the new circle of convergence. As a first step
in this direction, we will be concerned here with the deter-
mination of the exponent (t. In this article we provide nu-
merical evidence for the universality of P, depending solely
on the dimensionality D of the system, for any lattice gas
or any model of a fluid in continuous space based on an
arbitrary although exclusively positive (see Sec. IV) two-
body potential. Poland has previously suggested that P is
universal for approximately spherical, hard particles. We
will show here that Poland s twin restrictions [(i) hard-
core interactions, (ii) approximately spherical particles]
can both be waived. Moreover, our results for P(D) dilfer
somewhat from his.

To test the notation of universality for nonspherical
particles we have obtained numerical estimates of P(D) for
the model of parallel hard hypercubes in continuous
space. Likewise, to study soft repulsive two-body in-
teractions we have considered the Gaussian model,
whereby f (r) = —exp( rr ) is a—dopted for the Mayer
function. The quantity —kttTln(1+f) is a short-ranged
positive two-body eA'ective potential diverging logarithmic-
ally for r~0 having the unphysical property of being
temperature dependent. For both of these models cluster
integrals (see below) can be obtained for arbitrary values
of D, integer or otherwise. This enables us to study the
dependence of P on the continuous variable D.

A crucial test of the universality of tb can be made for
two-dimensional systems. In the Appendix we derive the
exact analytical result tb(2) = —', for the hard hexagon mod-
el, which is a triangular lattice gas with nearest-
neighbor exclusions. For all the two-dimensional models
we have considered our numerical results for P (see Table
I) are in fact consistent with this value, tb(2)= —,'. On a
considerably weaker footing, we oA'er some evidence sug-
gesting that, as D increases, P tends to tb( ac ) = —,'. Furth-
ermore, we remark that for all D our results are well de-
scribed by the formula P(D)= —,'—( —', ) '. In particular,
this simple analytic expression reproduces the exact values
P(0)=0, P(I)= —,', P(2)= —', , which are presented in Sec. II.
For D=3 this formula yields P(3)= —",, =1.0555. . . . Our
numerical estimates for a variety of three-dimensional sys-
tems (Table II) are consistent with this value. By con-
trast, Poland has suggested that tb(1) = —,', tb(2) = —', ,

P(3) = 1. His proposal for D=2 is in conflict with the ex-
act result for the hard hexagon model. Furthermore, his
proposal for D=3 is consistently smaller that all of our
estimates in Table II.

To provide the necessary background material as well
as to fix the notation we very briefly review some well-
known facts. A complete description of the fluid phase is
provided by the well-known Mayer series for the pressure
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TABLE I. Estimated values of P for two-dimensional systems . For the lattice gases nearest-
neighbors, next-nearest-neighbors, and next-next-nearest-neighbor exclusions (n=1,2,3, respectively) are
considered. M denotes the number of cluster integrals available.

Model

Square lattice (n=1)
Square lattice (n=2)
Triangular lattice (n = 1)
Triangular lattice (n =2)
Triangular lattice (n =3)
Square lattice, dimers
Parallel hard squares
Hard disks
Gaussian

18
16

(exact)
10
9

12
7
7
8

0.83(1)
0.83(1)
0.8333. . .
0.83(1)
0.83(1)
0.836(5)
0.83(1)
0.82(2)
0.835(2)

Reference

30
31

Appendix
32

3
33
4

34
5, 20

in powers of the fugacity z,

Pp= g b„z".
n =1

Here p= I/(k~T), k~ is Bolzmann's constant, T is the
absolute temperature, and the coefficients I b„] are the
Mayer cluster integrals. The number density follows
from (1) as

oo

p=z (Pp)= g nb„z" .
az

(2)

In principle the equation of state of the fluid can be deter-
mined in terms of the cluster integrals upon eliminating z
between (1) and (2). Each cluster integral is expressible in
terms of irreducible integrals. However, in practice the
number of irreducible integrals contributing to b„, for a
given value of n, increases extremely rapidly with n.
Moreover, their evaluation is generally notoriously com-
plicated. Nevertheless, in the case of particles interacting
via a positive two-body central potential, Groeneveld's
theorem' provides a number of extremely important gen-
eral statements concerning the cluster integrals as well as
the radius of convergence of the infinite series in (1) and
(2). First, b„ is positive (negative) for odd (even) n This.
is the source of the fact that the dominant singularity of
the series (1) and (2) is situated at a point z = —R on the
negative real axis and that R is the radius of convergence
of the series. Second,

i b„~ satisfies the inequalities

1/n & ib„~/(2ib2
~

)" '&n" In!,
implying that R obeys the constraint
(2e

~

b2
~

) '&R &(2
~
b2

i
) '. With z = —R assumed to

be an isolated algebraic singularity of p (z) with exponent

Model Reference

sc lattice
bcc lattice
sc lattice, dimers
Parallel hard cubes
Hard spheres
gaussian

11
11
12
7
7
8

1.07(2)
1.08(2)
1.08(l)
1.04(5)
1.04(5)
1.09(1)

6
6

33
4

35
5,20

TABLE II. Estimated values of P for three-dimensional sys-
tems. M denotes the number of cluster integrals employed.

P, the limiting behavior of p (z) is described by' "
Pp~C[(z+R)~ —I]/P (z~ —R) .

Invoking Darboux's theorem' it follows that the leading
asymptotic behavior of b„ for large n is given by

b„—( —1/R)" '[CR ~/1 (/+1)]n '~+",

where the numerical value of P must be determined for
each separate model. We are claiming that P is universal,
and thus, if its value is known for a particular model the
same value of P applies for all other models (with ex-
clusively positive two-body interactions) of the same spa-
tial dimensionality.

We remark that in contrast to the universal behavior of
P associated with the singularity at —R, the exponent Pt
corresponding to the physical singularity z] is definitely
model dependent. ' ' In fact, for some systems the ac-
companying transition is of first order, while for others it
is of second order. Finally, it is appropriate to briefly jus-
tify the fact that our entire discussion relates to systems
with exclusively positive two-body interactions. There is
considerable evidence suggesting that the structure of a
fluid as well as the nature of the fluid-solid transition is
determined primarily by the short-range repulsive com-
ponent of the two-body potential. The long-range attrac-
tive component is relatively weak, and as far as the struc-
ture of the fiuid is concerned, can be treated as a perturba-
tion. ' ' As a result, a great deal of effort has been made
in studying the equation of state and the properties of the
melting transition for a variety of continuum fluid models
as well as less realistic, yet mathematically simpler, lattice
models based exclusively on repulsive two-body interac-
tions.

In Sec. II we summarize the few cases where the exact
value of P is known. This enables us to test the idea of
universality of P, for if this idea is correct, all systems
(with a positive two-body potential) of the same dimen-
sionality must have the same value. In addition,
knowledge of exact values of P aids in the task of con-
structing the functional form of the universal function
P(D). Numerical results for P are provided in Sec. III for
an assortment of models. In Sec. IV we provide a discus-
sion of our results and its potential implications for the
problem of obtaining improved estimates of both the
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physical singularity z& and the corresponding critical ex-
ponent P~. Finally, in the Appendix we derive the value
of P for the hard hexagon model.

II. EXACT RESULTS

The exact values of P can be calculated for a few

specific models for the special dimensionalities D=0, 1,2.
We summarize these cases in this section.

The notation of a system in a zero-dimensional space
can be realized by analytic continuation of results derived
for D & 0. One can show' that if D=O the exact value of
b„ is given by b„=(—1)"+'/n for any model featuring a
two-body potential which diverges to + ~ for r~0. In
particular, for this choice of D the quantity

~
b„~ /(2

~

b2
~

)" ' assumes the lower bound, I/n, in the
Groeneveld inequality (3). The radius of convergence of
the Mayer series is given by R= l. It follows from (1)
and (2) that for these systems

Pp =ln(1+z),
p=z/(z + 1),
p = —k~ Tln(1 —p) .

(6)

(7)

(8)

Comparing either (6) with (4), or the present result for b„
with (5) yields P(0) =0, corresponding to p,p~ —m. The
physical singularity of (6) occurs for z~ co, corresponding
to p= l,p~ op.

For D= 1 one can readily show that P= —,
' for lattice

models featuring an arbitrary yet finite number of ex-
clusions, as well as the continuum fiuid of impenetrable
lines. The simplest way to derive this result is to use Eq.
(10) of Ref. 18, giving z as a function of p, so as to show
that p (z)~p ( —R)+ C(z +R)'~ for z~ —R.

The hard hexagon model is unique in that an exact
solution applicable for all densities has been obtained by
Baxter. ' In particular he derived a parametric represen-
tation of the fugacity and the grand partition function per
lattice site of an infinite lattice ~ and showed that there
exists a singularity on the positive real z axis at the point
z~ ——(2 cosa/5) =(11+5&5)/2= 11.090 17. . . , and the
corresponding exponent of the pressure series is P~

———,'.
This singularity is associated with a second-order transi-
tion from a homogeneous fiuid phase to an ordered inho-
mogeneous phase. By contrast, the singularity of ~ deter-
mining the radius of convergence of the Mayer series is
situated' on the negative real-z axis at the point z = —R,
where R = I/z~ =(5&5—11)/2=0.09016994. . . .
Starting from Baxter's parametric representation of ~ and
z and using standard properties of theta functions we find
that the leading nonanalytic term contributing to p (z) for
(z+R)~0 is of the form (z+R) ~, so that P= —'„. The
details of the derivation are given in the Appendix.

first M cluster integrals b„. For the various lattice models
typically 10 to 20 cluster integrals are known, whereas
M(7 for the continuum models, with the exception of
the Gaussian model for which b8 has been derived recent-
ly by one of us. Estimates for the location of the singu-
larity of the Mayer series on the negative real-z axis and
its corresponding critical exponent P can be obtained by
applying standard ' numerical methods to the known
cluster integrals. In particular, we have applied the ratio
method to the series (1) and (2) as well as to the quantity
zBp/Bz for a variety of lattice gas and continuous space
models. We have also utilized the methods of Fade and
Levin approxjmants for these models.

In Table I we list our best estimates of P for various
two-dimensional systems, mostly lattice gas models as
well as three continuum models, specifically the system of
hard disks, parallel hard squares, and the Gaussian mod-
el. The quantity M in Tables I and II is the number of
cluster integrals used. For each listed value of P we have
included our estimate of the uncertainty of the last digit
and this is enclosed in parentheses. In the case of the
hard disk system our estimate also rejects the current un-
certainties in the values of b6 and b7. Note that the in-
teraction potential ranges from spherically symmetric
(hard disks, Gaussian model) to highly anisotropic (di-
mers). Nevertheless, in all cases the results are consistent
with the exact value P(2)= —,

' =0.8333. . . for the hard

hexagon model. Furthermore, as stated earlier, this value
is somewhat larger than Poland's proposal, P(2) = —', .

In Table II we list our estimates for P for various
three-dimensional models. As for the two-dimensional
systems, it appears that P is independent of the details of
the potential and depends only upon the dimensionality of
the system. As remarked in the Introduction, the func-
tion P(D) = —', —( —,

'
)

' correctly reproduces the exact
values of P for D=0, 1,2 whereas for D=3 it gives the
value —,", =1.0555. . . , which is generally consistent with

the data in Table II. In any event, all of our numerical
estimates for P in Table II are consistently larger than
Poland's proposed value P(3)= 1.

Finally, in Table III we provide estimates for P in the
range 0(D (6 for both the Gaussian and the parallel
hard hypercubes (PHH) models. For the smaller values
of D the estimates for the two models are in good agree-
ment, whereas there is a steadily increasing deviation be-
tween the estimates as D increases. We cannot rule out
the possibility that this is evidence for the lack of univer-
sality. A more likely explanation, however, is that for in-

creasingly larger D our estimates for P are simply unreli-
able, for the following reason. Standard Darboux
analysis ' of (4) shows that a rigorous value of P(D) is
given by limg„(D), where

P„(D)= —1+n [I—R (D)
I
b. (D)

I
/

I
b. —~(D)

I 1

III. NUMERICAL RESULTS

In contrast to the solvable models described in the pre-
vious section, for the remaining continuous space and lat-
tice models of a Quid considered in the literature, our in-
formation concerning the equation of state consists of the

and the limit is taken for n~oo while D is held fixed.
We are, of course, at present limited to values of b„ for
n (8 in the case of the Gaussian model and n (7 for the
PHH model. As D is increased while n is held fixed the
behavior of b„will very rapidly become dominated by
the contribution of the Cayley tree diagram, i.e.,
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TABLE III. Estimated values of P for the Gaussian model
and the model of parallel hard hypercubes as a function of
dimensionality D.

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.50
4.00
4.50
5.00
5.50
6.00

Gaussian

0
0.1491(1)
0.279(1)
0.396(1)
0.500(1)
0.595(1)
0.680(2)
0.760(3)
0.835(2)
0.905(2)
0.969(2)
1.029(2)
1.086(3)
1.180(5)
1.269(5)
1.332(2)
1.381(1)
1.418(1)
1.444(1)

Hypercubes

0
0.150(2)
0.283(4)
0.396(1)
0.500(1)
0.592(1)
0.676(3)
0.755(5)
0.830(10)
0.888(4)
0.950(10)
1.000(10)
1.045(10)
1.122(5)
1.200(20)
1.260(30)
1.300(50)
1.350(60)
1.410(60)

IV. DISCUSSION

In this work we have provided numerical evidence for
the universal character of the critical exponent P associat-
ed with the dominant mathematical singularity of the
Mayer series, for a fluid with positive two-body interac-
tions. The value of P depends solely on the spatial dimen-
sionality of the system and P(D) is a monotonic increasing
function of D ranging from unity for D=O to —,

' for
D~ oo . The simple analytic expression P(D)
= —,

' —( —,') ' correctly reproduces the known exact values
of P for D=0, 1,2, and it provides results in close agree-

b„-(—2bq)" 'n" In!. Therefore, if we use the values
of p„(D),n & 8 to estimate p(D) for larger D the resulting
values can be expected to be misleading, i.e., excessively
dominated by the Cayley tree diagram. Note, however,
that for D=4 the analytic expression P(D)= —', —( —,')
suggested above equals 1.2037. . . which is consistent with
our estimate for the PHH model.

It is of interest to consider the question of the value of
P( oo ). As D is increased from zero the value of

~
b„~ l(2

~
b2

~

)" ', for fixed n, increases from I/n to-
wards n" /n t. These are the greatest lower bound and
least upper bound in the Groeneveld inequalities (3). We
conjecture that in the limit D~~ the Cayley tree ap-
proximation is strictly valid and in particular that
p( oo ) = —,'. A proper proof of this conjecture is, however,
required. Using the exact formal expression for P given in
the previous paragraph it is clear that calculation of P( oo )

requires taking the limit n ~ oo folio+ed by the limit
D~ ao . If reversal of the order of the limits were
justifiable then the result would be p= —,'. In the absence
of any information concerning the large-n behavior of
b„(D) for fixed D we are of course unable to justify such a
reversal.

It is a pleasure to thank S. Baer of the Hebrew Univer-
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and James H. Luscombe of the Ames Laboratory for
helpful suggestions concerning the manuscript. The
Ames Laboratory is operated for the U.S. Department of
Energy by Iowa State University under Contract No. W-
7405-Eng-82. This work was supported by the Office of
Basic Energy Sciences.

APPENDIX

In this appendix we derive the value of the exponent p
associated with the singularity of the Mayer series for the
hard hexagon model ~ Baxter has shown that the fugacity
z and the grand partition function per lattice site,
~=Z, can be expressed in terms of a variable x, with

1/N

~

x
~

& 1, according to the formulas

z = —xg'(x), a(x) =g (x)g) (x)ho(x)h ) (x),
where

(A1)

ment with our numerical estimates for other values of D.
Furthermore, our data for P suggests that universality
occurs for any, exclusively positive, two-body potential.
In particular, we find that there is no justification for
Poland's restriction of universality to hard, approximate-
ly spherical particles.

It is important to note that the universal behavior of P
breaks down if the restriction to an exclusively positive
two-body interaction is relaxed. We have shown this ex-
plicitly for a lattice gas model due to Fisher, describing
particles on a ' square lattice with nearest-neighbor ex-
clusions and weak second-neighbor attractions between
selected lattice sites. We have found that for this model
the limiting form of p(z) for z~ —R =(1—&2)/2 is
p(z)~(z+R)ln(z+R) so that /=1. We attribute this
deviation of P from the value P(2) = —,

' to the presence of
the attractive interactions incorporated in the model.

Ultimately, the primary practical significance of the
universal behavior of P is its potential utility in eliminat-
ing the debilitating eff'ects of the small radius of conver-
gence of the Mayer series. A judiciously conceived con-
formal mapping, embodying sufficiently accurate estimates
of R and t() should aid in suppressing the effects of this
spurious singularity. The radius of convergence of the re-
sulting transformed series would then be determined by
the physical singularity, as long as under the mapping the
singularity of the Mayer series is transformed to the exte-
rior of the new circle of convergence. One can use stan-
dard methods of series analysis ' to exploit an accurate es-
timate (or exact value) of P so as to improve estimates of
R. We are currently pursuing such a study of several
models of fluids and our results will be reported else-
where.

Ãote added in proof. A. J. Guttmann [J. Phys. A 20,
512 (1987)] has very recently obtained the numerical esti-
mate /=0. 83337 for the hard square lattice gas and he
conjectures that p= —,

' is the exact value. This provides
important additional evidence supporting our claim of the
universal behavior of P.
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oo (1 5n —4)(1 5n —1)
g(x)=

( 1
5n —3)( 1 5n —2)

oo
( 1 5n)2

g((x) =
( 1

5n —3)( 1
5n —2)

00 (1 6n —3)
hp(x) =

(1 6n —1)(1 6n —5)

oo
( 1

6n —4)( 1
6n —2)

h((x)= Q (1—x ")

(A2a)

(A2b)

(A2c)

(A2d)

Each of these functions is analytic in x for
i
x

~
& 1 and

the circle ~x i
=1 is a natural boundary. As we shall

presently show, the singularity of the Mayer series occurs
for z = —R = —(5&5—11)/2, corresponding to the point
x= l. We can derive the value of (t( by establishing the
dependence of the pressure p =k~Tln~ on the variable z
in the immediate vicinity of z = —R and comparing with
(4). This will be achieved by eliminating x between z and

The required calculations become straightforward
when we exploit the formula derived by Baer which ex-
press the functions in (A2) in terms of theta functions.
The dominant behavior of these functions for x~1—is
established upon using what is known as the Jacobi imagi-
nary transformation.

Defining a quantity o. by x =exp(isa ), Baer has
shown that

g(x)~1(3/51)eE /(513/5e4n /(5E)+) (A6a)

3e/5

g((x)~ [1—e ' '3/5(3/5+ 1)], (A6b)
5e cos(~/10)

hp(x)~2(I+3e n ~ )e

( ) (33/2/ )ee
—2o/3( 1 +3e —2vr /(3o)

) (A6cl)

In the process of obtaining some of these formulas we
used the trigonometric formula for the golden mean,
2 cos(n/5) =(3/5+ 1)/2. Substitution in (Al) leads
directly to the following limiting behavior of z as @~0+
(x~ 1 —):

For each of the theta functions in (A3) the value of the
second variable is of the form ~=c2o.=ic2el~, where c2
is a real positive number. It therefore follows that
e '" '=exp[ vr—/(c2e)] is an extremely small real posi-
tive number. We may therefore approximate the series
expansions (p. 464 of Ref. 29) of the theta functions on
the right-hand side of (A5) as

B2(y, q)=2q' [cosy+q cos(3y)+0(q )],
B3(o,q) = 1+2q +0 (q 4),

B4(o,q)=1 —2q+O(q ) .

One thereby obtains the following limiting expressions for
x~1—:

g( )=B4(3 o/4
~

5 /2)/B4( /4
~

5 /2),
g, ( ) =-,'[e', (O

i
5~/2)/e, ( /4

~

so/2)]

X exp( —5mcri /8),

hp( )=B4(0
~

3 )/B (
i
3 )

(A3a)

(A3b)

(A3c)

z(x)~ —R (1 —53/5e " ' '), (A7)

«(x )~«p( 1+6e '"') (A8)

where R =(53/5 —11)/2, and we recall that x =e
Likewise, we obtain the following limiting form of ~:

h((x)=2[e (mc7/2
i
3(T)/e', (0

~

3a)]exp(3~oi/4) . (A3d)

The quantities 6] and 64 appearing in these equations are
0 functions. We employ the notation and properties of
these functions as given in Chap. 21 of Whittaker and
Watson. (As a word of caution, Baer utilizes a
different notation. ) We also note the identity (p. 470 of
Ref. 29)

where

Kp=33/3(3/5 —1) /[locos(m/10)] .

Eliminating e between (A7) and (A8) yields

K(z) —+«pal+6&& 5
—'"[(z/R)+ 1]'"I

Finally, the pressure is given by

(A9)

(A10)

e'(0[ )=e (0[ )e (0[ )e (0/ ) . (A4) 13p (z) =in«p+6)& 5 / [(z/R)+ 1] (A 1 1)

To investigate the behavior of the functions in (A3) and
(A4) for real values of x in the limit x~1—,we set
cr=ie/m where e is a small real positive number so that
x =e '. The limiting form of each of these functions for
a~0+ is easily obtained by exploiting Jacobi s imaginary
transformations (pp. 474—476 of Ref. 29),

B2(0
i
~) =( i~) ' B—4(o, e ' '),

e,(o ir)=( —ir)-'"e, (o,e ™/'),
(A5a)

(A5b)

B4(z
i
r)=( —i~) ' exp[ —iz /(2')]B2( —z/2. , e ' ') .

(A5c)

In particular, if we compare (All) with (4) we have the
claimed result P= —', . In closing, we remark that this
derivation shows that z = —R is indeed a singularity of
p(z) on the negative real-z axis. Consider the narrow
strip ilmx

~
&21, where 21 &&1, with —1 &Rex & 1.

Within this strip the functions z (x) and K(x) are analytic
functions of x. Furthermore, one can show that z'(x) is
nonzero within this strip. It therefore follows that a is an
analytic function of z in the immediate vicinity of the real
z axis between —R and z&. We may therefore legitimate-
ly identify R with the radius of convergence of the Mayer
series.
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