
PHYSICAL REVIEW A VOLUME 36, NUMBER 2 JULY 15, 1987

Quantum theory of a nonresonant two-mode laser with coupled transitions
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The master equation for a two-mode laser in a A-type three-level atomic system with arbitrary de-
tunings has been derived. The effects of the detunings on the laser operation have been discussed.
The asymmetry in threshold conditions for the two modes and the anomalous mutual support be-
tween the two modes in certain circumstances have been revealed. The former is due to the two-
photon Raman-type resonance and the latter is attributed to the ac-Stark-shift effect.

I. INTRODUCTION II. MASTER EQUATION

The two-mode laser is a simple and useful example in
the study of multimode lasers, in which different modes
compete with one another for contributions, resulting
from the same excited-level occupation as well as
Raman-type two-photon transitions. In the two-mode
laser, the two radiation-field modes from stimulated emis-
sion of the same atomic level couple to each other and
thus one mode affects the operation character of the other
to varying degrees.

The two-mode laser in a gain medium consisting of
three-level atoms has been investigated recently by some
authors' within the framework of Lamb's quantum
theory, ' which is capable of taking into account the
quantum nature of the electromagnetic field such as spon-
taneous emission, photon statistics, and intrinsic
linewidth, etc. However, in Refs. 1 —4, the detunings be-
tween cavity modes and atomic transitions were neglected
and subsequently some interesting phenomena resulting
from the detunings has been lost. In this paper we inves-
tigate the effects of the detunings on the two-mode laser
operation in a homogeneously broadened medium corn-
posed of three-level atoms with a common upper level,
through a generalization of the Scully and Lamb treat-
ment for a single-mode laser. ' Starting from the
Schrodinger equation for the atom-field system, the mas-
ter equation for the reduced density matrix of the two-
mode field is obtained. With the aid of the master equa-
tion we analyze the threshold conditions and photon
statistics by using numerical methods, to see the effects of
the detunings on them. Novel phenomena is found that
for certain values of the detunings the two modes can sup-
port each other rather than compete, because of the pres-
ence of the complicated ac-Stark effect.

In Sec. II we derive the master equation for the two-
mode laser action. In Sec. III the steady-state properties
of this laser are discussed. Section IV gives a summary.

H =A'(Ho+ V),

Ho —— g co A A + g II, (a, a)+ —,'), (2)
+=a, b, c j=1,2

V=g]a $ A, Ab +g2a2 A, 3, +H. c. ,

where the rotating-wave approximation has been made; aj
(ai) is the creation (annihilation) operator for the jth cavi-
ty mode; A (A ) are those for level

~

a), and g, is the
atom-field coupling constant.

In the interaction picture, the perturbation V becomes

)b0

FICx. 1. Three-level atomic system.

The atomic model for the gain medium is shown in Fig.
1. The atoms have three levels, of which

~

a) is the
upper level, while

~

b) and
~

c) are the two lower levels.
The transition between

~

a ) and
~

b ) (or
~

c ) ) is mediat-
ed by mode 1 (or 2) with frequency Q~ (or Qz). The tran-
sition between

~

b ) and c ) is forbidden. The energy ei-
genvalues of levels ~a), b), and ~c) are fico„ fico&, and
Ace„respectively, and the same mean decay rate y for all
three levels is assumed. ' '

The Hamiltonian for the atom-field system is'
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—iAlt —ih2t
V =g1e 'a13, A&+g2e a2A, 3, +H. c. ,

(2) —i (C02 —51)(t —t p )

+~nl +1,n

where b, l =Q, l
—(co cob) and b2 ——02 (co—, —co, ) are

two detunings between free atoms and mode 1 and mode
2. For simplicity, in this paper only a pumping to the
upper level

I
a & with pumping rate R, is considered. So

the state vector at time t0 may be written as

(3) —i (A@3 —b, l )(t —tp )+b„+1„e

(1) —i (6) l
—62)(t —tp )

C„l n2+1(t)=cn ln +2le

( lob)

I P(to)& = & F.. .,(to)
I
a nl n2& .

nl, n2

At time t = tp+ r, Eq. (5) develops into

(2) —i (cu2 —62)(t tp )

ft 1,Pt 2 + 1

(3) i (co3 62)(t tp )

n l, n2+ 1 (10c)

lg(t)&= lg(t, +r)&

nl, n2

[a„„(tp+r)
I
a, n, ,n, &

where co1, cu2, and ~3 are the three roots of the following
algebraic equation:

(~1+~2)~ +(~1~2 Vl V2)~+ V1~2+ V2~1

+b„+,„(tp+r)
I
b, n, +l, n, &

+c„„+,(tll+r)
I
c,n„n2+1&] . (6)

Letting the two sides of Eq. (11) be divided by y, we
have

The development of the state vector obeys the Schrodinger
equation,

9 (~1+~2)P +(~1~2 V 1 V 2)P+ V 152+ V 2|31

(1 la)

dt I
P(t)&= iv'I 1—((t)& .

Substituting Eq. (6) into Eq. (7), we obtain

. d —i Alti a„„—(t) = V, e ' b„+, „(t)

+ V2e 'c„, „,+1(t),

. d i Alt
i b„+, „(t—) = V, e ' a„„(t),

(7)

(Sa)

(Sb)

where

@=col@, 5i ——b.i/y, VJ = '3l'n, +1 (j =—1,2) .

The three roots of Eq. (1 la) are p„p2, and p3.
Let pf and p represent the density matrices of the field

(including mode 1 and mode 2) and of the total system in-

cluding the atoms and the field; p„„. and

p „„.~ are their elements, respectively.

The change of pf is caused by (1) pumping to level
I

a &

and (2) cavity losses,

. d
i c„, „,+1(t)= V2e a„, „,(t), (Sc)

Pf Pf+Pf '

Following the procedure of Refs. 2 and 6, we have

(12)

where P n ln 2m 1
m2(p)

V~ =giant+ 1 (j =1,2) . =R, f"dr QPp„, „,t3, ,(to+a)
0 p

Equations (8) are solved (see Appendix A) to obtain Pnl, n2, ml, m2(tll) (13)

( 2 )
—l CO2( t —t p ) ( 3 )

—t CO 3 ( t —t p )
(10a)

With the aid of Eqs. (A18)—(A24) and after integration,
we obtain the following equations for the diagonal ele-
ments:
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—2R,

( — )'p 1
—P2

'
3 (1) 3 (2) p 1 I"3 3 (1) 3 {3)( — )'

(pl —pz) +1 (pl p—3) +1
2

(2) (3)+ 2 An, n An, n Pn, n;n n (tO)
(p p )2+ 1

I' 2 I' 2 I' 2' I, 2

(
' — ')'

g(1) g(2) + g(1) g(3)(
' — ')'

(O'I p2) + 1 (p I p'3) + 1

(
' — ')'

PZ P3+ 2 n), nZ n(, nZ Pn( —I, nZ, n( —I, n&( 0)
(pz —p3) +1

(
lt Ii)2

P1 P2 C(1) ~(2)
Q t tp tt 2 ~ H

] H2 H ] H

IP1 P2) + I

(
II I1)2

C(2) C(3)
(pz' —p3')'+ 1

(
II II )2

(p I' —p3')'+ 1

Pn), nZ —I;n In
—
2

I( O)(t (14)

where p„„.„„(to)=F„„(to)F„*„(to) has been used and A„'„,B„' „,C„", are defined in Eqs. (A22) —(A24). By
using Eqs. (Bl) and (B4)—(B8), the change of the diagonal matrix elements of the field caused by the pumping to the level

~

a ) is obtained,

2 2
g2p'„„.„„(to)=—2R, (n, + l)F, (n, , nz)p(nl, nz) —2R, (nz+1)F2(nl, nz)p(nl, nz)H]npH]H2 a 2

Rz+2R, n, F, (n, —l, nz)p(n, —l, nz)+2R, nzFz(n, , nz —l)p(n, , nz —1), (15)

where

(P I
—&2)(P2 —&2) (P I

—&2)(P3 —&2)
F, (n, , nz)=

(Pl P'3)(P2 P3)l(PI P2) + j (P3 P2)(PI P2)l(P'3 Pl ) + ]

(Pz —&2)(P3 —&2)+ 2
(s 3 pl)(p2 pl)l(pz p3) + 1 j

and Fz(n, , nz) is the same as Fl(n l, nz) with 5) and 52 interchanged; F, (nl —l, nz) or Fz(nl, nz —1) is the same as
Fl(n, , nz) or Fz(nl, nz) with nl or nz replaced by (n I

—1) or (nz —1) for all quantities appeared in F, (n, , nz) or
Fz(n, , nz). Here we must notice that it is through V~ =g~ Iy (n~+1) that F~(n), nz) depends on n I and nz.

Therefore, the master equation of the two-mode laser in a A-type three-level atomic system with arbitrary detunings is
obtained,

p(nl, nz)= —A, (n, +1)F,(nl, nz)p(nl, nz) —Az(nz+ 1)F2(n l, nz)p(n, , nz)+ A lnlF, (n, —l, nz)p(nl —l, nz)

+ AznzF2(n, , nz —l)p(nl, nz —1)+C,(n, + l)p(n, + l, nz)+Cz(nz+1)p(n, , nz+1)
—C, n, p(n, , nz) —Cznzp(nlnz), (17)

where

p(nl, nz)=p . (to) A~=2R g~. /p (j=1 2)

(18)

and the cavity losses have been included in the usual way
through,

p '(n, , nz) =C, (n, +-1)p(n, + l, nz)

+ Cz(n z+ 1 )p(n I, n 2+ 1)

—C, n Ip(n, , nz) cznzp(n), —nz) .

I

as probability flows which can be expressed by arrows in a
two-dimensional probability-flow diagram as done in Refs.
1 and 2.

From the master equation the following equations can
be obtained:

P (n))= gp(n), nz)
Hp

= —A, (n, +1)g Fl(nl nz)p(n I n2)
H2

+ A, n, QF, (n, +nz)p(n, —l, nz)

The physical meaning of Eq. (17) is very clear. The
terms on the right-hand side, as usual, can be interpreted

Hp

+ Cl(n I + 1)p(n I + 1)—Cl n Ip(n I ), (19)
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p(nz)= yp( n], nz)
n&

= —Az(nz+1) y Fz(n], nz)p(n], nz)
nl

+ Aznz g Fz(n], nz —1)p(n, , nz —1)
n2

+Cz(n2+ 1)p(n 2+ 1)—Czn ]p(nz) . (20)

(ri ] ) = A 1 g n]F](n, —l, nz —1)

These two equations can be interpreted by using two
one-dimensional probability-How diagrams as done in Ref.
2.

From Eqs. (19) and (20), the equations for the average
photon number, (n;) =g„„n;p(n],nz), can be deduced,

sical theory. It is apparent that the semiclassical-theory
results can be viewed as the results of quantum theory
under the conditions of g; (n; )/y «1 and decorrelation
approximation.

III. STEADY-STATE OPERATION

C,p(n ] ) = A
1 g Fl(n, —l, nz)p(n, —l, nz),

n2

Czp(nz)= Az QF (2n„n —
2 1)p(n, ,nz —1) .

ni

(29)

(30)

In the steady state, p (n, ) and p (nz) are independent of
time, p(nl }=p(nz)=0. From Eqs. (19) and (20) and the
principle of detailed balance, two equations for the
steady-state operation which are equivalent to Eqs. (19)
and (20) can been obtained,

nl, n&

Xp(n, —l, nz —1)—C] (n, ),

(riz) = Az y nzF2(n] —l, nz —1)
nl, n&

XP(nl —l, nz —1)—Cz(nz) .

If we neglect the correlations, ' i.e., we assume

& n ]'n",' & = & n, &"'& n, )"',

(21)

(22)

These two equations usually cannot be simplified fur-
ther except for some special cases, and they are the basis
of our following discussion. We emphasize effects of the
detunings in the discussion.

For the resonant situation, 6&
——6z ——0, the three roots of

Eq. (1 la) become

Pl 0 Pz P3 (V 1+ V2)2 2 1/2

and then

F] (n l, n 2)=Fz(n ],n 2)

then Eqs. (21) and (22) read

(ri ] ) = A] (n] )F]((n]—1),(nz —1) ) —C] (n] ), (23)

B) Bp
1+ (n, +1)+ (n, +1)

A2

& n, & = A, (n, &Fz((n] —1, (nz —1&)—C, (n, ), (24)
where

where ( n; ) ~& 1 has been assumed. Expand
F; ( ( n ] —1 ), ( n z

—1 ) ) into Taylor series and only keep
the first and the second terms. Then we have

Fl(&n] I & &n2 1 & }
2 +pl &n1 & +0]2(n2 &

1+&',

(25)

Fz ( ( n, —1 ), ( n 2
—1 & )=,+p,'( n, ) +0'„(n, ),1+5,'

(26)

where PI, Pz, 0', z, and 02] are constants and
F;((n, —1),(nz —1) )

~
„„o=1/(I+5&), which is

easy to prove, has been used. Substituting Eqs. (25) and
(26) into Eqs. (21) and (22), we have

p(n, —l, n, )
C,p(n, )=A, g B) B21+ n + (nz+1)

Ai A2

p(n„nz —1)
Czp(nz) = Az g Bi B21+ (n, +1)+ nz

1 2

(31)

(32)

A. The case of equal detunings

For equal detunings 6& ——62 ——6, the three roots of Eq.
(11) are

Bq. ——4 A~r'
is the self-saturation coefficient for the mode j. Thus Eq.
(17) is reduced to the previous result, Eq. (33) of Ref. 2 or
Eq. (19) of Ref. 1, and Eqs. (29) and (30) are reduced to

—C 1 Il + (P]I 1 + 0]2I2 )I],1+5',

2
—Cz Iz+ (P2I2+ 02]I])I2,1+6',

(27)

(28)

co]=0,coz 3= —,
'

I D+[5 +4( V]+ Vz)]' I

and then

F, (n], nz) =Fz(n], nz)

where the correspondence I;~(n; ) has been made and
P, , Pz, 0]z, and 0z] are constants. The two equations are
consistent with the equations deduced from the semiclas-

Bz1+,+ (n, +1)+ (n, +1)
(33}
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Let
2

2+F2

further, nor can Eqs. (29) and (30). However, we can use
two H parameters to write Eqs. (29) and (30) formally as

C&p(n &
) = A &F&(n &

—1,Hz(n & )(nz ) )p(n
&

—1), (39)

(34) Czp(nz)= A zFz(H)(n z)(n) ),nz)p(nz —1), (40)

p(n, —l, nz)
C,p(n, )= A„g B), B2,1+ n, + (n, +1)

(35)

B,, =B,X

Substituting Eq. (34) into Eq. (33) then into Eqs. (29) and
(30), we have

where H, (nz) and Hz(n&) are the two parameters, and
depend on n j and n2, respectively. With the aid of these
two equations, we can study some properties of the laser
operation, such as the relation of the threshold of the
mode 1 (or 2) to 5~, 5z and (nz) (or (n, ) ) and photon
statistics.

1. Threshold for mode 1

p(n, , nz —1)
Czp(nz)=Az, g Bi, B2,1+ (n, +1)+ nz

(36) The threshold can be obtained from Eq. (39) by using
the condition p (1)=p (0),

Equations (35) and (36) are the same as Eqs. (31) and
(32) with the replacement of A~ and B~ by their effective
quantities AJ, and B~, . Therefore, all the discussion made
in Ref. 1 and 2 is valid under this replacement.

The threshold conditions can formally be expressed as,
by using p (0)=p (1),

A, =C~ 1+ XH (0z)(n )zX for mode 1
B2

(37)

A2 ——C2 1+
B)

XH~(0)(n, ) X ' for mode 2, (38)

(., &+(., &=——-1-
B C y2

Near the threshold, the effect of the detu ning s on
( n

&
) + ( n z ) is very significant, while as the pumping rate

rises it goes down. If the pumping rate is high enough,
3/C»1+6, /y and then (n &) + (nz) = 3 /BC, the
dctunings have almost no effect on ( n

&
) + ( n z ) .

The effective gain coefficient A~„which reAects the
linear response of the atoms to the light, is L ' times less
than Az, while the effective self-saturation coefficient B~„
which reAects the nonlinear response of the atoms to the
light, is X times less than B&. Near the threshold, the
gain coefficient dominates, hence the detunings have great
effect. As the pumping rises, the saturation coefficient in-
creases its influence, and then the effect of the detunings
coming from the saturation coefficient offsets that coming
from the gain coefficient. Consequently, the net effect of
the detuning falls down as the pumping rate rises.

B. Unequal detunings 5l+5q

where H, (0) and H, (0) are constants, and Eqs. (34) have
been used.

The threshold is almost (7 +6 )/y times higher than
that at resonance. If 3

&
/C

&

——3 2 /C2 ——3 /C and
8&/2, =Bz/Az B/ I——,rwe have

T, = = I/F&(O, Hz(0)(nz))
Ci

= 1/F~ (0, (nz ), ) for mode 1

where (nz ), =
4 (Bz/Az)Hz(0)(nz ) and Hz(0) is a con-

stant. Since F
~

is a function of 5~, 5z, and ( n z )„ the
threshold is related to 5~, 5z, and (nz), . We discuss the
changes of the threshold with respect to 6~, 62, and
(n, ), .

The thresholds for mode 1 versus 62 at different values
of 6& are shown in Fig. 2. The threshold curves are asym-
metric when 6&&0, and symmetric when 6&

——0. There is
a maximum at 6& ——62, where the inAuence of mode 2 on
mode 1 is strongest because the condition of two-photon
Raman-type resonance is satisfied. As 62~~, the
influence falls away gradually, so the threshold ap-
proaches its minimum.

The threshold for mode 1 versus 6& with different
values of 62 are shown in Fig. 3. It is noticed that there is
an extreme maximum value at 6& ——62 and the minimum
is not at 6&

——0. If there were no mode 2, the curve of the
threshold for mode 1 versus 6& would be hyperboliclike
with a minimum at 6~ ——0 and would have no maximum.
Now there exists mode 2; its influence on mode 1 is
strongest at 6&

——62 because of the two-photon Raman-
type resonance, which brings about an extreme maximum
or a protrusion on the hyperboliclike curve and shifts the

thresho1. d

Ai/C, '

8

=-2
I

p=o

In the case of 51~5z, the three roots of Eq. (11) ex-
pressed by Eq. (A5) and F, (n, , n z ) cannot be simplified FIG. 2. Threshold for mode 1 vs 52 at different values of 61.
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threshold ( t)i)e = ( 2. Photon statistics of mode 1

P--f
=-2

2

FIG. 3. Threshold for mode 1 vs 61 at different values of 6~.

minimum from 5&
——0 to HI&0. At minimum threshold,

5& and 62 have opposite signs.
The threshold for mode 1 versus ( n 2 ), are shown in

Figs. 4(a) and 4(b) at different 5& and 52. It is very obvi-
ous that when 6& and 62 have the same sign, the threshold
for mode 1 usually increases with the increase of (n2), .
For the case of the opposite signs, sometimes it decreases
with the increase of (n2 ), , such as the case of 5& ——2,
52 ———1. Such a feature is also very distinct for the
change of the photon statistics of mode 1 against (n2), .
The reason for this strange feature is discussed below.

thy'echo& d

The photon statistics of mode 1 can approximately be
obtained from Eq .(39). The region where p (n

&
) has

significant value is around (n& ) and very small. In this
region the change of Hz(n, ) with n

&
is small and can be

neglected, so that H~(n, ) can be treated as a constant,
H~=Hz((n~)). Apart from this region, p(n&) is quite
small. Therefore, litter error will be brought in, if H2(n

& )

is replaced by the constant H~ in Eq. (39). For a fixed
value of (n~), = —,'(B2/A2)Hq((n, ) )(n2), all values of
p (n, ) can be obtained from Eq. (39).

Figures 5 and 6 present the curve of photon-statistical
distribution for mode 1 versus ( n z ), (the change of
(n~), can be realized by varying C2). For 5~ and 52 hav-
ing the same sign (Fig. 5), the peak position of photon-
statistical distribution goes rapidly to zero, when (n2),
increases. For 51 and 5q having the opposite signs (Fig.
6), the peak position of the photon-statistical distribution
first increases and then decreases, when ( n 2 ), increases.
Such a phenomenon, which seems a little strange, can be
viewed as a joint effect of ac-Stark shift and competition
between mode 1 and mode 2.

According to the perturbation and experiment results,
the ac-Stark shift is proportional to the light strength and
inversely proportional to the detuning between atom and
the light field. When 5& (or 5z) is positive the shift 1 (or 2)
of the upper level which is caused by mode 1 (or 2) is neg-
ative, while 5& (or 52) is negative, the shift 1 (or 2) is posi-
tive. With (n2), (or (n, ), ) increasing, the ac-Stark shift
2 (or 1) increases, too. When 5~ and 5z have the same
sign, shifts 1 and 2 have the same sign; while 6& and 6z
have opposite signs, shifts 1 and 2 also have opposite
ones. If 6I and 62 have opposite signs, shift 2 reduces the
detuning which mode 1 really sees from the atoms in-

t hreshold

$;=o s'

Ap

Bp
—Hp Cn2) 2.0

boa

p.ol 5

1.6

(b) &n, p,

FIG. 4. Threshold for mode 1 vs ( n q ), , (a) 5~ =2, (b)

51 ———1.
FIG. 5. Photon statistical distribution for mode 1 where the

detunings have the same sign.
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g.otf

3oo

5)
~~2» 1,~~D02

2 &n2) )6Sp
k2

10

Novel phenomena appears in the nonresonant operation
of this laser which cannot be found in the resonant opera-
tion. These new and interesting phenomena are the asym-
metry in the threshold condition and the anomalous mu-
tual support between the two modes in certain cir-
cumstances. The asymmetry reveals the obvious fact that
the two-photon Raman-type resonance makes the
influence between the two modes maximum. To explain
the latter, we need to take into account the ac-Stark-shift
effect of the upper level. At resonance, including two-
photon resonance, an increase of one mode's strength is
always at the expense of a decrease of the other mode's.
Off-resonance, not only the competition resulting from the
same population of the common upper level, but also the
ac-stark-shift effect, needs to be considered. When the
two detunings have opposite signs, within a certain inten-
sity range, as one mode becomes stronger, it causes a
stronger ac-Stark-shift effect which reduces the detuning
of the other mode, i.e., brings gain to it to overcome the
eff'ect of competition.

Although we have obtained analytical formulas, they
are so complicated that we can not directly see the above
effects from them. Therefore, numerical analysis has been
used to show these effects.

FIG. 6. Photon statistical distribution for mode 1 where the
detunings have opposite signs. APPENDIX A: THE SOLUTION OF EQS. (S)

teracted with mode 2. If 6& and 62 have the same sign,
shift 2 widens the detuning which mode 1 really sees.
Smaller detuning for mode 1 brings about a larger average
photon number of mode 1, while larger detuning brings
about a smaller average photon number. Besides, an in-
crease of (nz ), will reduce the average photon number of
mode 1 because of the competition of mode 2 against
mode 1 for the population of the upper level.

Therefore, the increase of t, nz), has two actions: (1),
changing the detuning which mode 1 really sees, and (2),
strengthening the competition of mode 2 against mode 1.
If 6& and 62 have the same sign, the two actions all cause
the average photon number of mode 1 to decrease, so that
the peak position of photon-statistical distribution de-
creases rapidly to zero, as shown in Fig. 5. If 6& and 62
have opposite signs, the first action causes the average
photon number to increase while the second decreases.
The joint eff'ect in some situations (some combination of
5, and 5z) may cause the average photon number of mode
1 to increase as ( n z ), increases from zero, as shown in
Fig. 6. Of course, when (nz), is large enough, the com-
petition of mode 2 against mode 1 will become dominant
and the average photon-number of mode 1 will eventually
goes down as shown in Fig. 6.

Let

a„„(t)=g a„„(ru)e

b„+, „(t)=g b„+i „(co)e (A 1)

c„ „ +, (t) = g c„ „ + )(co )e

cuba„„co e

—i (i~+2 z)(t —ro)+ V, g c„„+)(co)e (A2)

g cob„+, „(co)e

= V, pa„„(co)e

Substituting Eqs. (Al) into Eqs. (8) in the text, we have

IV. CONCLUSION cue „+& co e

We have studied the properties of the two-mode laser in
a homogeneously broadened medium composed of three-
level atoms with arbitrary detunings, through generalizing
the Scully and Lamb quantum theory for a single mode.

—i (QJ —62)(t —tQ )= Vz g a„„(cu)e

and then
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cuba„„(a])= Vlb„+1 „(a] t3,—]) ( 1 )
—1 c]l

1
( t —t p )

( 2 )
—1 col 2 ( t —t p )

+ V2c„„+](a3—A2),

~b. , +] ., (~)= V] a. . .z(~+ 131),

a]c„, „,+](e3)= V2a„, „,(a]+ 2) .

(A3)

(3) —lct)3(t tp )

+an, , n e

(1) —i (col —&1)(t —tp )b„+, „(t)=b„+,„e
(2) —i (cu2 —61)(t —tP )+I nl+1, n

From Eqs. (A3) we find that a] can take three values,
which are the three roots of the following equation:

~]+~2)~ +(~]~2 V] 2)~+~]V2+~2V]

(A4)

This algebraic equation is similar to Eq. (5) in Ref. 9 and
is expected to have three real different roots. They are

(3) —I (cg)) 61)(t —tP )+b„+1, e

(1) —i (col —5
l )(t —tp )

Cn], n]+1(t) =Cn
]n ]+le

(2) —i (co2 —A~)(t —tP )+C& 1'112+ 1

(3) —i (co3 —b, 2)(t —tP )+ n i,n2+1

(A7)

C01 = —
~ X1 +X4COSXg

f02 = —T~x 1+xgcos(x3 + ] ]7)

cd3 = —T~x
1 +x icos(x3 + 3

']7)

where

(A5)

According to the initial condition, Eq. (5) in the text,

b„+, „(to)=c„„+1(to)=0,

a„„(to)=F„„(to),
we obtain

(A8)

x, = —(b, ]+t]]2),

x~ ——A1A2 —V1 —V2,

x3 ——61 Vq +A2 V1,2 2

xg ———,(x, —3x2)=2 2 1/2

(A6)

(1) (2) (3)
~n

1
+1,n2 +~n

1
+1,n2 +~n

1
+1,n2

(1) (2) (3)
Ctl

1 n2+1 +Cll
1 n2+ 1 +Ctl

l 112+ 1
—0

From Eqs. (A3) and (A7), we have

(A9)

x5 = 3arccosI
9X1X2—2X 1

—27X33

2(x —3x ) 1l l, 112 (A 10)

For some special cases, they can be simplified, for ex-
ample, the following.

(1) One-photon resonance, b, ] =6,2=0,

co] ——0, co2 3 ——+( Vl + V2)'~

(2) two-photon resonance, 13, ] ——t3, 2 b, ,
——

() V2 () ~

n 1,712+ g 11 l, fl2
1

Solving the Eqs. (A9) —(Al 1), we find that

(A 1 1)

2

cuz 3 ———,
' 6+ + V1+ V22

1/2 X (a]; —&] )(a], —b )/2D, (A12)

b„'+, „=V]F„„(to)(co; ]
—a];+])(a];—b, 2)/D,

(3) the case of V, , V2 »
~

b, ] ~, ~
62 ~, approximately

~] ( ~]V2 +~2 Vl )/( Vl + V2 )

a323 = T~( ~]V] + ~2 V2 )/l Vl + V2 —( Vl + 2 ) 1

(4) the case of
~

1I]; && V;, approximately

(A13)

c„"„+1——V2F„„(to)(co; 1
—cu;+])(c3;—5])/D .

(A 14)

where i =1,2, 3 and i =0 is i =3 and i =4 is i =1, and

C01 =61, C02 =A2, C03 =— V V

~2

D =(co]—a]2)(co2 —cu3)(co3 cl]])

From Eqs. (A13) and (A14), we obtain

(A15)

(5) the case of b, ]/b, 2 ———V, /V2,

~] ——0, a]2 3 ———,(6]+A2)
b„' „=,F„,„(t]])(a],' ]

—cu,'+ l l(a],' —A2), (A16)

1/2
(b. ]

—b, 2)+ +V +V
4

VI I

CnI' n~
= » Fn n —](tO)(a]I —1

—CgI+] )(a]I —~2) ~ (A17)

Thus, the solutions of Eqs. (8) are where the quantities with a superscript of one prime (or
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two primes) are those corresponding with nI (or n2) re-
placed by n, —1 (or n2 —1).

Let =F„„,(til)c„"„ (A21)

c„"„=V2F„„,(to)(p,",—p,". +, )(p,
". —5, )/D"

5, =b,, /y, V~= V, /y=g, Qn, +1/y, j=1,2
p; =m;/y, i = 1,2, 3

D =D/T

(A18)

where

(A22)

(A23)

Equations (A12), (A16), and (A17) can be rewritten as

I2.'. ,..=F;,. (to)(P, —i P+—
I )(P —5i)(p; —52)/D

(A24)

=F„„(to)A„' „

b„"„=V,F„,„(to)(p,', —p,'+, )(p', —6, )/D'

=F„,„,(to)B„",„, ,

(A19)

(A20)

APPENDIX B: SOME MATHEMATICAL
DETAILS FOR EQ. (14)

By using Eqs. (A22) and (A19), the expression in the
first large parentheses in Eq. (14) in the text equals

(P I
—P2)'+1

~n
nI&

~n nI&(PI P3)(&) (3)

(PI —P3) +1 (p2 —P3) +1

(PI 61)(P I 62)(P'2 61)(P2 62) (P3 61)(P3 62)(PI 61)(P I 62) (P2 61)(P2 62)(P3 61)(P3 62)
2 + 2 + 2[(Pl P2) + ](P2 P3)(P3 PI ) [(P3 O'I ) + ](P2 P3)(P'I P'2) [(P'2 P3) + ](P'3 Pl )(PI P2)

=I) +I2+I3 (B1 )

From Eqs. (A4) and (A18), we have

PIP2P3 ( V 162+ V 251)» 61+62 Pl +P'2+P3

&i&2 —~
&

—~2 —P]P2,+P&3+PiP3 .2 2=

(pl 51)(pi 62) V I+ V 2+P2P3» (p2 61)(p2 52) V I+ V 2+plp3

(P I 61)(P I 62)(P2 61)(P2 62)

OI( V I+ V '2+P2P3)(P2 61)(P2 62)(PI P2) P2( V I+'V 2+PIP3)(pl 61)(PI 62)(pl P2)

[ V lp1+ V 2PI ( V 162+ V 261)l(P2 61)(P'2 62)(PI P2)

[ V IP2+ V 2P2 ( V 162+ 261)l(pl 61)(PI 62)(p I P2)

[ V 1(PI 62)+ V 2(PI 61)l(P'2 61)(P'2 62)(P'I P'2)

—[ V i(p2 —52)+ V 2(P2 —6i)](pl 61)(PI 62)(P'I P2)

1(P'I 62)(P2 62)(P2 Pl )(PI P2) + 2(P'I 6'1)(P'2 61)(P2 P'1)(PI P2)

[ V 1(PI 62)(P2 62)+ V 2(pl 61)(P'2 62)]

(B2)

(B3)

By using Eq. (B3) we obtain

V I(S i
—62)(P2 —52) V z(pi —5i)(P2 —6i)

Ii —— +
(P2 P3)(pl p3)[(PIP2') + 1 ] (P2 'P'3)(PI P'3)[(PI P'2) + 1 ]

With the same deduction, we have

1(PI 62)(P3 62)+ V 2(PI 61)(P3 61)
I2 ——

(P3 P2)(P'I P2)[(P3 P'I)'+1]

(B4)

(B5)

V I P2 62)(P3 62)+ 2(P'2 61)(P3I3-
(P2 Pl)(P3 —P i)[(P2 P3)'+ 1]



36 QUANTUM THEORY OF A NONRESONANT TWO-MODE LASER. . . 759

By using Eqs. (A19), (A23), (A20), and (A24), the expressions in the second and third large parentheses in Eq. (14) are,
respectively,

[(P'1 —P2)'+ 1] [(Pi —P3)'+1][(P2 P3)'+1]

( V 1) )(P 1 ~2)(P2 ~2) ( ~ 1) (P 1 ~2)(P3 ~2) ( ~ 1 ) (P2 ~2)(P3 ~2)
B7

(Pl P'3)(P2 P3)[(P1 P2) + l (P1P'2)(P3 P2)[(P1 P3) + ] (P2 Pl )(P3 Pl)[(P2 P3) + 1]

(P '1' —P2 )'+1 (P 1' —P3')'+ 1 (p2' —p3')'+ 1

( +2 ) (pl I31)(p2 I31) ( ~2 ) (pl ~1)(p3 ~1) ( ~ 2 ) (P2 ~l)(P3 111)

(Pl p3 )(P2 p3 )[(Pl P2 ) + 1] (Pl P2 )(P3 p2 )[(pl p3 ) + 1] (p2 pl )(p3 P 1 )[(P2 P3 ) + 1]

(B8)
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