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Techniques from the quantum theory of open systems (operations) are applied to the model of a
kicked quantized cavity mode recently presented by Filipowicz, Javanainen, and Meystre [J. Opt.
Soc. Am. B 3, 906 (1986)]. These techniques permit a straightforward discussion of atomic velocity

profile in the model.

I. INTRODUCTION

In a recent interesting paper! Filipowicz et al. have in-
vestigated the classical and quantum dynamics of a
single-mode field interacting coherently with a stream of
two-level atoms under the assumptions: (i) that only one
atom at a time is coupled to the field, (ii) the interaction
times are all equal, and (iii) the atoms arrive at definite
known times. As they point out, this is the quantum op-
tics analog of a coherently kicked harmonic oscillator. In
this paper I present an analysis of the model using tech-
niques from the quantum theory of open systems (as
developed, for example, in the book of the same title by
Davies?). These techniques are also of considerable use in
quantum measurement theory.>* In fact, some aspects of
the model discussed here are examples of general results
in quantum measurement theory (e.g., pointer basis evolu-
tion’).

In order to apply these techniques I assume that the
atoms arrive in the cavity at Poisson distributed times.
The assumption that only one atom at a time interacts
with the cavity mode is retained in that for “sufficiently
small” time intervals At the probability of more than one
atom being present in the cavity is assumed to be zero.
The precise meaning of “sufficiently small” will be ex-
plained in Sec. II. The advantages of the approach adopt-
ed here are (i) one can obtain an evolution equation for
the field density operator, (ii) one can describe the proba-
bility distributions for postinteraction atomic measure-
ments, (iii) there is a simple method to take account of the
atomic velocity profile, and (iv) all essential quantum pre-
dictions of the discrete map dynamics are retained.

The results obtained confirm and extend the predictions
of Filipowicz et al. The interesting prediction that one
may drive the field into a number state by injecting initial-
ly inverted atoms of the right velocity class is upheld.
Unfortunately, when the atomic velocity distribution is
taken into account this does not occur. However, for a
sufficiently small spread in atomic velocities the rate at
which the photon number escapes the ‘“‘trapping” eigen-
state is quite small. Thus this unusual quantum feature
may have observable effects.

The ability to describe the results of postinteraction
atomic measurements enables the predictions of the model
to be expressed in experimentally verifiable form. In a
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realization of the experiment as Rydberg atoms interact-
ing with a microwave cavity, one can directly measure the
final states of the atoms using ionization techniques.

The approach of this paper is generally applicable to a
wide range of kicked dynamical models. In fact, some of
the predictions of the model are special examples of gen-
eral features of kicked quantum systems. These general
features will be discussed in a forthcoming paper.

II. DYNAMICS OF KICKED QUANTUM SYSTEMS

In order to motivate the introduction of operations and
effects, it is helpful to consider some ideas from quantum
measurement theory. In fact, there is a close relationship
between the dynamics of kicked systems and the effect of
measurements; from the point of view of the measured
system, a measurement is just a particular kind of kick.

In the standard description of measurements of the first
kind, the probability to obtain a result a from a measure-
ment of the physical quantity represented by the operator
A with a discrete spectrum is

P(a)=tr[p(t) |a){a]|], (2.1

where |a) is the corresponding eigenstate of A and plt)
represents the state of the system immediately prior to the
measurement. The change in the state of the system is

_tr[|a){a |ptt) |a){a]]
- P(a)

ﬁ(l‘)—»f/_)\a(l‘)

=la)(a| . (2.2)
The interpretation of this transformation is as follows.
One subjects each identically prepared element of an en-
semble represented by p(t) to a measurement of A and
“selects” all those elements which give result a to form a
new ensemble represented by ﬁa.

The above description of a perfectly accurate measure-
ment is easily extended to treat inaccurate measurements.®
The change in p(#) for a selective operation is then

o $aple)
plt)—>pg = P(a)i s

where ¢, is a positive operator on the space of density
operators. Equation (2.3) generalizes Eq. (2.2). The

(2.3)

744 ©1987 The American Physical Society



36 KICKED QUANTIZED CAVITY MODE: AN OPEN-SYSTEMS- . .. 745

are known as superoperators, Liouville
Clearly, one requires that the

operators ¢,
operators or operations.
probability for a result a is

P(a)=tr[¢.p(1)] .

The precise form of ¢, depends on the measurement
model. In Ref. 7 examples are constructed for a particu-
lar system-measuring apparatus interaction.

The above formalism may be used to describe kicked
quantum systems (or classical systems). Let the probabili-
ty of a kick in a sufficiently small time interval At be
given by

P(t)At =y At (2.4)

with ¢ a positive constant. Further, assume the probabili-
ty of more than one kick in time At is zero and that each
kick is an independent event. That is, the probability for
a kick to occur in time At is independent of kicks at all
other times and of the intrinsic dynamics of the system.
These assumptions define the kick arrivals to be Poisson
distributed.® The kick arises from the coupling of the sys-
tem to another system for a characteristic time 7, thus At
though small on the time scale of system dynamics (y ~!)
is large compared to 7. In the model of this paper y is an
externally specified parameter independent of the state of
the system.

Now consider the following selective operation. Let
each element of the ensemble represented by p(#) interact
with the kick apparatus. Select all those systems which
actually are kicked in a time Ar to form a new ensemble
described by pi(z+ At). This is determined by p(z) and a
selective operator ¢, as

p(t)At
pit+At)= _répAL .
tr[y o plt)AL ]

The parameter 7 characterizes an element of a class of
operations, corresponding to different system-kick ap-
paratus interaction times. The complementary selection
procedure—that is, selection on the basis of no kick-
described by an operation ¢,(t), is as follows:

A b (At)p(t)
pi(t+At)= ¢~ A .
tr[d(Ar)p(2)]
Clearly, the probability of no kick in time At is
tr[@(AD)p()]=1—7At . 2.7)

Furthermore, in the absence of kicks the state of the sys-
tem must change according to ordinary Schrodinger evo-
lution. Thus

(2.5)

(2.6)

e —(i/AAyAL . (i/fH A
pe .

dAA)p=(1—yAt)e (2.8)

If no account is taken of whether the system is kicked
or not—that is, both kicked and nonkicked systems are
mixed to form the postinteraction ensemble—this ensem-
ble is described by the density operator

Al +At)=yd.p(2)At + & (AL)p(2) . (2.9)

This is an example of a “nonselective operation.” An

evolution equation for the state of the system may then be

defined by

ap _ lim plt +At)—plt) (2.10)
dt At—0 At ’

Substituting Eq. (2.8) and (2.9) into (2.10), the evolution
equation becomes

étﬁ_’)z%[ﬁo,ﬁ(w]w[@ﬁ(n—ﬁu)]. @.11)

dt

This equation is expected to describe a wide variety of
kicked dynamical problems with different choices for ¢,.
It is similar to an equation recently obtained by Ghirardi,
Rimini, and Weber® to describe the emergence of a classi-
cal phase-space description from underlying quantum pro-
cesses. A similar equation also results from various mod-
els of time continuous measurements.>* It should be not-
ed that Eq. (2.11) describes nonunitary evolution. This is
to be expected as a kicked quantum system is an open
system. The problem now is to calculate ¢, for a specific
model. In Sec. III this is carried out for the kicked quan-
tized cavity mode model of Filipowicz et al.

The formalism presented above enables one to calculate
a number of fundamental probabilities.!® If no kick
occurs in the interval [0,¢], the change in the state of the
system is given by $(¢)p(0) where

é()= lim [$(AD]"

n— o0

Ar—0

and nAt=t. Using Eq. (2.8) this becomes

- —Gi/@Bgt—(y /20 o (i /8 Bgt—(y/2)t
=e of T e of At (2.12)

o(t)p=
One may now calculate, for example, the probability for
one kick to occur at the end of the time interval [0,z]. It
is given by

trly¢,6(1)p(0)]=ye 7" .

Thus the mean arrival time for the first kick is found to be

y~1. This is a typical result for a Poisson process.

III. THE KICKED CAVITY MODEL

In this model the system of interest is a single quan-
tized cavity mode. The kicking apparatus is a stream of
two-level atoms. Each atom interacts with the intracavity
field for a time 7 and enters the cavity at Poisson distri-
buted times. Initially all interaction times will be as-
sumed to be equal. In Sec. V this assumption will be re-
laxed; the interaction times each atom experiences will be
taken to be an independent statistical event described by a
Gaussian distribution. Thus the formalism of Sec. IT may
be applied. On resonance the interaction picture Hamil-
tonian describing the interaction is

Hy=#g(cicia+cica), 3.1)

where a*,a are Bose creation and destruction operators
for the intracavity field, c,i,c,- are Fermi creation and de-
struction operators for the two levels, and g is a coupling
constant. Level |1) is the ground state while |2) is the
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excited state. Let pr(2)®p 4(¢) represent the state of the
total field-atom system immediately prior to an interaction
period. The state of the field at time ¢+ A¢ assuming one
atom has interacted with the field for a time 7 is

Pr(t+AN=tr,[U(r)p4()prt)U (1], 3.2)
where

U(r)= exp[ —igr(czcla +cTc;aT)] .
The selective operation ¢ is then defined by

bpr()=tr [U(T)p4(DRpF(DOU ()] . (3.3)

Let the state of the atoms injected into the cavity be the
mixed state

Pat)=A | DL +A,]2)(2],

where A; >0 with A;+A,=1. In Ref. 1, A; and A, were
determined by a thermal distribution,

M=(1—Ay)=(14+e A~

(3.4)

(3.5

where B=*%w 4/kT, with w4 the atomic transition fre-
quency. Expanding pr(¢f) in a number-state basis Eq.
(3.3) together with Eq. (3.4) may be used to show

o

¢prit)= 3 0P,,,,,(t)[a(n,rn) [n){(m |
+Bin,ma [n){m|a’
+Bsn +1,m +1)a’ |n){m|a],
(3.6)
where
aln,m)=Acos(Q,7)cos(Q,,7)
+ Az cos(Q, 4 17) cos(Q,, 417) , (3.7)
Biln,m)=2~;(nm)~""?sin(Q,7)sin(Q,,7) , (3.8)
and
Q,=gVn . (3.9)

One then easily verifies that 1=tr[¢,pr(?)] as required.
Equation (3.6) when substituted into Eq. (2.11) fully
determines the field dynamics.

|

Ni(m)=y™ fotdt’" fol"’ dip 1"

Using Eqgs. (2.12) and (3.6), one may show the initial su-
perposition state in Eq. (3.14) does not change, i.e.,

PO=p0)=1(|n )+ |no ) ny | +{ny |) .

Thus coherences between trapping levels do not decay.
Consider now the coherence between a trapping level ng
and the next highest level no+ 1. Using Eq. (3.15) one
may show

J 7 dtid it 10 Bltm —tn 1) - :B(11)500)

The evolution equation for the intracavity field
P(n)=(n|pr(t)|n) is easily found to be the master
equation

iP(n,z‘):a)’L(n —1DPn —1,t)+ow (n +1)P(n +1,t)

dt
—[ot(n)+o~(n)]P(n,t) , (3.10)
where
ot (n)=yAysin®(Q, . 17), (3.11)
o (n)=yA,sin®(Q,7) . (3.12)

This equation has also been obtained in Ref. 11. As dis-
cussed in Ref. 1 a steady state exists if A, < A; and is given
by

n

Ay
-7,

L)

Pi(n)= "

(3.13)

When A, > A, a steady state may not occur; however, as
noted by Filipowicz et al., an interesting situation arises
when A;=1 (A;=0). In this case o " (n)=0 for all n and
only birth transitions are possible. It may then arise that
for suitable interaction times @ *(n)=0 for some n, say,
no, as sin(Q, ,7)=0. The level | no) becomes a “trap”
in the number-state energy ladder in which population
gradually accumulates due to transitions from occupied
lower levels. In fact, there will be more than one level
trap due to the multiple zeros of the sine function. Con-
sideration of P(n,t) in this case permits the conclusion
that the field evolves to either a linear superposition of
number states or a classical mixture of number states. In
order to decide the issue, one must examine the off-
diagonal elements of p(z). Assume that the initial state is
a linear superposition of two adjacent trapping levels, i.e.,

PO)=L(|n)+ | naN)ny | +4{ny]), (3.14)
where 0™ (n;)=w*(n)=0. A formal solution of Eq.
(2.11) may be written as

p=S N,(mplo), (3.15)

m=0
where
(3.16)

(no | p(0) | no+1) = exp{ —yt[1— cos(Qy, 7)1}
X<n0 |f)\(0)]flo+1> ,

which decays to zero in general.

It would appear that the system evolves towards a
coherent superposition of number states at the trapping
level numbers. This is a uniquely quantum feature due to
the discrete nature of the intracavity energy-level spec-
trum.
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The decay of off-diagonal coherence in a particular
basis is characteristic of the evolution of systems subject
to measurement. Zurek® has shown that the existence of
such a basis, called the “pointer basis,” is essential in es-
tablishing unambiguously what physical quantity is mea-
sured and further prevents macroscopic pointer superposi-
tion states from occurring. More generally, the rapid de-
cay of off-diagonal coherence provides a mechanism for
the appearance of classical behavior in open quantum sys-
tems, as the initial states of the system approach a suitable
macroscopic limit.>'> The situation of a periodically
kicked quantum system exhibits this effect. However,
there is an important additional feature. As shown above,
certain coherences in the number-state basis are “‘im-
mune” to the effect of the kicks. This is due to the deter-
ministic nature of the kicks. Similar features arise in oth-
er models of kicked quantum systems and examples will
be given in a future paper. The presence of these special
coherences is likely to lead to observable quantum effects
as the macroscopic level is approached despite the decay
of off-diagonal coherence typical of open quantum sys-
tems.

Before considering the description of postinteraction
atomic measurements, it will be useful to derive some re-
sults for the mean photon number of the field. It follows
directly from the identification of Eq. (3.10) as a master
equation that®

d{n)
“ar ¢

where {n) is the mean photon number for the field. Us-
ing Egs. (3.11) and (3.12), it is clear that

d{n)
—VMST';—SVM .

otn)—(o= (), (3.17)

(3.18)

If all the atoms are injected in the ground state, the mean

¢V p() = i Pum (D[A1c08(Q,7) cos(Qp7) | n){m | +Ba(n +1,m +)a’ |n){(m |a],

n,m =0

@5 = S Pam(D[A2c08(Qy 4 17) cOS(Q 17) | 1) {m | +B1(n,m)a [n){m |a'|].

n,m =0

Not surprisingly,

br=d" 107,
which says that the operation ¢, is the sum of the mutual-
ly exclusive possibilities for selection according to atomic
measurements.

The probability for detecting an atom in state (i) per
unit time (i.e., atomic detection rate) is

(4.4)

Pi,t)=y tr[¢p(2)] . 4.5)
Using Egs. (4.2) and (4.3),
P4(1,)=yAi{ cos’(Q, 7)) + 71, (sin®(Q, . 17)) , (4.6
P4(2,)=yM{sin (Q, 1)) +y A2 cos?(Q, 7)) . (4.7)

photon number decays in such a way that
(n(t)) >{(n(0)) —yt .

If all the atoms are injected in the excited state, the mean
photon number grows in such a way that

(n(t)) <{n0))+yt .

(3.19)

(3.20)

IV. ATOMIC MEASUREMENTS

As pointed out in Ref. 1, the model discussed here may
be experimentally realized by injecting a low density beam
of Rydberg atoms into a high-Q microwave cavity. In
such experiments measurements are usually made directly
on the atomic systems after interaction rather than on the
intracavity field. The formalism of operations is ideally
suited to describing such measurements.

In Sec. III the operation ¢, was defined. This opera-
tion determines the change in the state of the field when
no attempt is made to monitor the postinteraction atomic
states. To take account of atomic measurements, one
must decompose ¢, into selective operations with selection
based on whether the atom is found in the excited or
ground state upon leaving the cavity.

Assume that the atomic measurements are ideal, that is,
the atomic measurements project the atom into either the
excited state or the ground state. The selective operations
describing selection according to the results of such mea-
surements are

6 pr=tr4[ 1) | O(r)pa0prOT (0], @.1)

where i =1 describes selection if the atom is found in the
ground state and i =2 describes selection if the atom is
found in the excited state. Using Eqgs. (3.4) and (3.6), one
finds

—

These equations may be put in a more useful form using
Eq. (3.17) for the mean photon number:

d{n)

PA(I,I)—’)/}H—*}- dr R (4.8)
d{n)

PA(Z,I)—’)/}Q— dt . 4.9)

Thus P,4(1,8)+P4(2,t)=y =P 4(t), the atomic detection
rate regardless of atomic state.

There are three cases of interest.

(i) A;=0 (all atoms excited):

d{n)

P, (1,t)= (4.10)

4.11)
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Equation (3.18) indicates that P 4(2,¢) will be always posi-
tive as required. If a level trap occurs at some photon
number {7 )—0 and P,(1,)—0 with P,(2,t1)—y. This
indicates that in such a situation all the atoms will be
found in the excited state upon leaving the cavity. This is
due to the fact that for the initial state |no)® |2) where
| ng? is the photon trapping level, the Rabi frequency is
of just the right size to return the atom to the state |2) in
an interaction time 7.
(ii) A,=0 (all atoms in the ground state):

., d{n)

Py(l,t)=y+ dr (4.12)
_d{n)

P(2,t)=— a (4.13)

Once again Eq. (3.18) indicates that P4(2,7) and
P 4(1,1) will be always positive. As the system evolves to-
wards the steady state, the rate of detecting atoms in the
ground state approaches y, indicating that the atomic sys-
tems feel no effect from the cavity.

(iii) A{A1; A1,A2540 (a steady state occurs):

PA(I,I):‘}/)\.l s
PA(Z,I)Z’}/}\,Z .

(4.14)
(4.15)

The detected atoms in this case duplicate the statistics of
the injected atoms.

Other interesting questions may easily be answered by
the formalism. For example, what is the probability that
one atom is detected in the interval (0,¢) and that it is in
the excited state? The result is

P4[2:(0,0]=—v [uld:(t —11)¢'8 (1 )p10)]dr

=ylte "' —[{n(2)) —(n(0))]e """ . (4.16)
Equations (3.19) and (3.20) indicate that this remains pos-
itive for all time.

V. INCLUSION OF ATOMIC VELOCITY PROFILE

In Sec. II the operation ¢, was introduced. There it
was assumed that the interaction times experienced by
each atom were equal. In an experiment this is an un-
reasonable assumption. The interaction times for each
atom are determined by its velocity while passing through
the cavity and these velocities may vary from one atom to
the next in a completely random fashion. Ultimately, the
distribution of atomic velocities is determined by the
Maxwell-Boltzmann distribution of atomic velocities in
the atomic source, and thus is Gaussian. If we assume
that the distance traveled by each atom in the cavity is the
same, this would imply a Gaussian distribution for the in-
teraction times. Of course, the actual velocity distribution
of the atoms entering the cavity is open to some experi-
mental control. However, for the purposes of this discus-
sion, I will assume it to be Gaussian and that the interac-
tion times for each atom are an independent statistical
event.

To treat this situation in the context of the formalism
presented here, one may regard ¢, as a selective operation

for a selection procedure based on the interaction times .
For the reasons discussed above, however, the interaction
times 7 for each atom are not usually known to the exper-
imenter and are thus not available for use as a selection
procedure. (If they were known, questions such as ‘“What
is the probability for a postinteraction atom to be found in
the excited state and with a particular velocity v?” may
reasonably be asked.) A typical experiment may then be
described by a nonselective operation ¢ formed by sum-
ming the selective operations ¢, with appropriate weights
determined by the distribution of interaction times. The
decomposition of ¢ into selective operations ¢, is analo-
gous to the decomposition of ¢, into the selective opera-
tions ¢! as discussed in Sec. IV. Thus

¢= [~ I(ng.dr,

where I(7) is the probability distribution for interaction
times. The evolution equation for the state of the field is
then given by

(5.1

B L1f0,p1+76p—P)
dt #

One can now proceed to derive an equation of motion
for, say, the photon number distribution. As in Sec. III, a
master equation results but the transition probabilities are
modified to

@ (m)=yAy [ * I(r)sin¥(Q, 7)dT,

(5.2)

(5.3)

- (m=yAy [* I(r)sin¥(Q,7)dT . (5.4

The inclusion of the distribution of atomic velocities
through the distribution of interaction times 7 prevents
the possibility of “level trapping” in the photon number
dynamics as @ (n) cannot be zero unless the support of
I(7) is the set {k7m/Q, 1}, k=0,%1,... . However, for
sufficiently narrow velocity distribution, a ‘‘bottleneck”
could occur at a trapping level which may be observed as
a decrease in the detection rate for ground-state atoms
[see Eq. (4.10)].

VI. CONCLUSION

In this paper techniques from the quantum theory of
open systems have been applied to the model of a kicked
quantized cavity mode. This example demonstrates that
such an approach may be useful in elucidating the dy-
namics of periodically kicked quantum systems. The
main advantage of this approach is being able to work
with a continuous evolution equation while retaining the
essential features of the discrete map dynamics.

In the case of this model, the formalism provides a
direct method to calculate experimentally accessible quan-
tities such as the rate of detecting postinteraction atoms in
the excited state. Of course, there may be other ways to
obtain these quantities but the method used here is of
quite general utility. Similar techniques have been used to
discuss photon counting experiments, for example.'®

The kicks have two effects on the dynamics of the
kicked system. Firstly, they cause a general decay of off-
diagonal coherence in the photon number-state basis.
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This is typical behavior for open quantum systems.’

Secondly, due to the deterministic nature of the kicks (and
despite their Poisson distributed times of application), cer-
tain coherences in the number-state basis do not decay.
This second feature is expected to be characteristic of
kicked quantum systems. The destruction of off-diagonal
coherence in open systems ensures that they behave like

classical systems at the macroscopic level. The presence
of coherences which do not decay in kicked systems may
lead to observable departures of the dynamics from that
expected classically, even at the macroscopic level. Fur-
ther investigations of these features will be presented in a
forthcoming paper.
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