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Nonlinear propagation of picosecond pulses interacting with a three-level system
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We study the evolution in time and in one space coordinate of picosecond laser pulses interacting
with a nonlinear medium modeled by three quantum states. This is done by solving numerically the
equation of evolution of the density matrix elements together with the Maxwell equation. The non-

perturbative treatment of the density matrix allows us to understand the contribution of the diA'erent

optical transitions and populations to the pulse deformation during its propagation. We apply the
model to CuC1 where the quantum levels are the fundamental, the excitonic, and the biexcitonic
states. Near the two-photon resonance, the pulse is strongly altered and the excitonic and biexcitonic
levels show a population inversion. A modulation of the amplitude and a superbroadening of the
phase occur during the propagation.

I. INTRODUCTION

When studying the properties of a nonlinear medium,
one is confronted with the problem of how the time evolu-
tion of the laser excitation inAuences the nonlinear process
which is being analyzed. In the case of a short-pulsed
laser source, the polarization of the medium changes the
temporal pulse shape which in turn influences the charac-
teristics of the medium, thus leading to a phenomenon of
nonlinear propagation.

A successful model to describe this propagation in a
one-photon resonant medium is the semiclassical
Maxwell-Bloch set of equations. It has led to the under-
standing of coherent effects such as self-induced
transparency' which is a solitonlike propagation of the
pulse, self-phase modulation which results in a spectral
broadening of the laser pulse, self-steepening of the pulse
amplitude, and self-focusing or defocusing which are
transverse spatial effects. In the case of two-photon reso-
nant media, a similar approach has been chosen by several
authors. In these works, the medium has been
modeled by a three-level system between which optical
transitions occur due to the coupling with the electromag-
netic field. Using appropriate unitary transformations, the
problem has been reduced to the study of a two-level sys-
tem equivalent to the vector model of Feynman et al.
With this model and by using the adiabatic following ap-
proximation (AFA), Grischkowsky et al. have calculated
the polarization of the medium and have shown the im-
portant contribution of two-photon processes to the non-
linear polarization. However, when the temporal width

~~ of the pulse is such that ~~ &~2, the energy stored in
the system through incoherent processes may be very high
and the AFA is no longer valid. ' " This is, for instance,
the case in systems showing a strong absorption or when
being excited at resonance. Though an exact solution of
the three-level problem was given in Ref. 7 in the case of
resonant excitation, to our knowledge no study valid out-
side and at the resonance was made for excitation pulses

longer than the relaxation time ~2. Since analytic calcula-
tions cannot be pursued very far in this temporal range,
the solution of the coupled light-matter equations of prop-
agation needs a computational analysis.

The temporal range we investigate is between the coher-
ence relaxation ~2 and the radiative lifetime ~~ of the
quasiparticles (r~&r~ &rq). The pulse width r~ is then
too short for using a stationary analysis but it is too long
for assigning pulse deformation s to purely coherent
effects. From an experimental point of view, this tem-
poral range, which we will call the intermediate region, is
often considered when studying the optical properties of
semiconductors close to the fundamental gap. The coher-
ence relaxation time is then in the picosecond scale due to
the fast transfer of energy between the carriers. The radi-
ative lifetimes of elementary excitations are in the
nanosecond scale as measured for excitons and biexcitons
in direct gap semiconductors like CuC1 ~

' When usual pi-
cosecond sources like Nd:YAG lasers (r~ =20 ps) are
used (where YAG represents yttrium aluminum garnet),
the intermediate temporal region is reached. On the con-
trary, if the nonlinear material is excited with a
nanosecond laser source of width ~~ so that ~~ =~~, the
sample can be considered to be in a quasistationary re-
gime where the dynamics of the quasiparticles is still im-
portant but where an analysis of the sample response can
be performed via the study of the transient renormalized
dielectric function. ' We will discuss below why this ap-
proach cannot be applied to the intermediate region.

Before describing the three-level system, we must point
out that we are going to treat equations of evolution in
time and one space coordinate numerically. This restric-
tion is made to avoid excessive computation time. Our
purpose here is rather to give some new results concerning
the propagation in a two-photon resonant medium than to
give an exhaustive study of all coherent effects that may
occur in a real experiment. For instance, observation of
diffraction, self-focusing, or defocusing cannot be repro-
duced with our approach. We refer the reader to the in-
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teresting work by Mattar et al. ' ' who have studied
these transverse effects in the case of a two-level system
using nonuniform computational grids in their numerical
integration of propagation equations. Concerning trans-
verse effects, we also mention the study of three-level
superfluorescence by Mattar and Bowden. ' In this work,
the influence of a high-intensity pump pulse on the tem-
poral shape of the superfluorescent pulse generated by a
nonlinear three-level medium is studied. It gives interest-
ing results concerning the pulse-shape control of a beam
by another one. Here, we will rather be interested in
self-shaping of the pump pulse due to a two-photon reso-
nant nonlinear process. To treat completely this two-
photon process, the selection rules are chosen adequately
(see Sec. II).

In Sec. II we describe the theoretical background of the
model. In Sec. III we discuss the results obtained with
CuC1 modeled by a three-level system (fundamental, exci-
tonic, biexcitonic levels) when the medium is excited close
to the biexciton resonance.

II. MODEL OF THE INTERACTING
THREE-LEVEL SYSTEM

where co and k stand for the pulsation and wave vector in
the vacuum of the electric field. Loudon ' has shown that
the limit of high numbers of photons is reached when the
amplitude 6 satisfies

eoV ))1, (2)

where eo is the vacuum dielectric constant and V the ele-

mentary volume. In Sec. III, we show that the parame-
ters of CuC1 fulfill the inequality (2). As for the dipole
approximation, it is valid as long as the electric field is lo-
cally uniform over a spatial range covering the electric di-

poles, i.e., when the wavelength of the laser excitation is
long compared to the distance between the charged parti-
cles of the dipoles. For instance, in most of the direct gap

The theory of a three-quantum-state system, interacting
with a time-dependent electromagnetic field, can be ex-
pressed with different formalisms. We use here a semi-
classical formalism where the electric field is described
classically by Maxwell's equations and the medium by the
density matrix' in a dipolar interaction with the field.
This approach has been used by several authors and is
particularly powerful in nonlinear coherent optics. How-
ever, we have to recall the physical limits within which it
can be applied. In the quantum theory of light, ' the elec-
tric field is described in a basis of coherent states in which
the operators, representing the number of photons and the
phase of the field, follow the Heisenberg inequalities.
Therefore the phase P and amplitude 8 of the field cannot
be known simultaneously as for a classical electromagnet-
ic wave. In the limit of high numbers of photons, howev-

er, the uncertainty about these two quantities is small
enough to consider that the electric field E(r, t) is well de-
scribed at time t and space coordinate r by the classical
expression

E (r, t) = v (r, t)cos[cot —k r+ P(r, t)],

p&z p&3

p = pal 0 p23

p» p3z

E) 0 0

Ho —— 0 E2 0

0 0 E3

(4)

E; is the energy of the level ~i ). It must be noticed that
in CuC1, p]3 ——p3i ——0 because of the selection rules and
that E3/2 is close to E2. Therefore the two-photon tran-
sition between levels

~

1 ) and
~

3 ) is enhanced due to the
presence of the excitonic resonance at energy E2. The
equation of evolution of the density matrix p in the
Schrodinger representation is given by

pjii
[p,HO p—E(r, t)]~)——

Bt fi

a

re]ax

The relaxation terms (Bp;~/Bt)„,~,„account for a damping
of coherent transitions (terms p;J with i~j ) and popula-
tions (terms p;;). In the case of an exponential damping,
it can be linearized to I,~p;, where I/I;~ (1/1;;) is pro-
portional to the transverse (longitudinal) relaxation time
of the system. In highly nonlinear pulsed regimes, how-
ever, the dissipation of energy or thermalization of quasi-
particles is also nonlinear and I";~ is no more constant.
For this reason, we consider here that the damping vari-
ables I;~ depend on the populations p;; and p~~ on levels

Ii) and
I
J).

0 (i) (j)I;~ =I,~+a j p;;+a;~ pqq, (7)

where I";~ is the damping constant in the low-excitation
regime and a;~' (a;~J') are the coupling parameters which
take into account the collisions on the different levels. We
want to stress that the value of these phenomenological
parameters can be deduced from experiments but they
have not been studied extensively up to now. In Sec. III,
we discuss these values in the case of CuC1. Instead of re-
lation (7) another possibility would be to take damping
variables proportional to the electric field amplitude D.
However, since the damping due to collisions is directly
related to the density of quasiparticles and since this den-
sity does not follow in time the electric field amplitude (as
will be demonstrated by our numerical results in Sec. III),
relation (7) is more appropriate for the description of the
dynamics. A nonphenomenological study of the popula-
tion dependence of dampings would require a full treat-
ment of collisions in the nonlinear medium. Several-

semiconductors, excitons have a spatial extension of less
than 100 A [ —10 A in the case of CuC1 (Ref. 20)] and
therefore the dipole approximation is completely justified
when the semiconductor is excited with visible laser light.

The dipole Hamiltonian of interaction is then

H =Ho pE—(r, t),
where p is the dipole operator and H0 the Hamiltonian of
the three-level system in the absence of light. In the ma-
trix notation, they are given by
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particle interactions can be considered by adding an extra
term in Eq. (3) which would consist of a screened poten-
tial seen by a given particle in the presence of the other
particles. Although such processes have been con-
sidered ' in a stationary regime of excitation, their
theoretical study under pulsed excitation is not well
known up to now. Their consideration is beyond the
scope of this paper in which we will discuss only qualita-
tively the influence of a;~

' and a;~~'.

To take into account the longitudinal propagation of
the amplitude and phase of the pulse, we use the Maxwell
equations in the slowly-varying-envelope approximation,

aa(z, t) l eb ~ ae(z, t)
3z m g2 k 9t+ —+ CO

, P&(z, t),
2k Epc

ay(z, t) k eb ~ ay(z, t)

CO

Pi(z, t),
2keoc

where eb is the background dielectric constant of the
medium and Pi(z, t), P2(z, t) are the real and imaginary
parts of the polarization P(z, t) which is determined by
the density operator p(z, t) and the dipole operator p„ac-
cording to

P(z t) P( t) i(rut —kz)

ReP(z, t)=tr[p(z, t)p] .
(9)

The set of equations (6)—(9) describes the three-level sys-
tem in interaction with the classical field E(z, t). Some
approximations are usually introduced. The system (6)
contains the rotating part cos[cpt —kz +P(z, t)] of the
field. It can be eliminated to avoid unnecessary computa-
tion time. Indeed, if we integrated Eq. (8) numerically,
we would require a temporal discretization less than the
period of the electric field. For a pulse of 10 ps duration
at a wavelength of 0.4 pm this would lead to about 10
iterations.

We first write (6) in the more convenient form

ap(z, t)
i3t

= [Xp+X,E (z, t) ]p(z, t), (10)

where p, Xp,X) are 3&&3 matrices, Lp and L) being time
independent and obtained from Eq. (6). We then make
the following ansatz:

—[(t —t )/~j6'(O, t) = @pe (13a)

(t(O, t) =2ir,

p,", (O, t) =pj(O, tk i) for tk ) & t & ti, .

(13b)

(13c)

In (13a) 2r is the width of the gaussian pulse. tp has
been chosen equal to 2~ and the integration is performed
between t =0 and 4r In (13c.), ti, is the kth temporal
mesh point. The choice of condition (13c) is motivated by
the slow decay of the probability transitions p;j with
respect to the temporal mesh size At with b, t «(r), ~i),

being the relaxation times discussed above. We
have, however, checked that the solution converges to the
same value when taking

pj(O, t)=0 for (i&j and i =j&1)b'n,

pii(O, t) = 1, p) i(O, t) =0, n~ 1

(14a)

(14b)

for each step of temporal integration. In this case, howev-
er, the computational time is a bit longer. At z =l, where
l is the sample thickness, the partial differential system is
not bound.

As for the initial conditions, we have assumed the fol-
lowing relations for the amplitude of the electric field 6
(at t =0, 0&z &l):

nant multiple photon transitions are kept. We have
shown in a previous, publication that in the stationary
case (ap"(z, t) /at =0), all the components of order n with

~

n
~

& 2 have a minor inhuence on the nonlinear dielec-
tric function (changes of less than, ' of the absorption
and dispersion were reported). We will therefore truncate
the system at order

~

n
~

=2. This restriction is not a
perturbative theory with respect to the electric field since
only the nonresonant n photon transitions are neglected.

Another approximation made by Grischkowski et al.
is the adiabatic following model. This approximation has
the great advantage to lead to an analytical expression for
the polarization P(z, t) but it is not appropriate for sys-
tems which show a strong absorption or when working in
the intermediate temporal region ~& & ~~ ~~& defined in
the Introduction. For these reasons, we will instead make
a numerical analysis of the system (12) simultaneously
with Eqs. (8).

We have used a central-difference method of integration
for space-dependent variables. For the temporal integra-
tion, we used a fifth-order predictor-cor rector Adam
method. As for the boundary conditions, we have used
the following relations (at z =0):

n( t)ein [cut +&b(z, t)] —az —(t /x)
( (z, O)=r(6(O, t))@pe (15)

Then (10) becomes

ap(, t) . ay(. , t)
at

in to+ ' Iq —Xp p" z t
at

+X,A(z, t)[p" '(z, t)+p" +'(z, t)], (12)

where Id is the 3)&3 unity matrix. The infinite set of
differential equations (12) is now truncated, but all reso-

where a is the linear absorption of the field inside the
medium and r(8) its reAection coefficient. r(6) is com-
puted at each temporal step tk with the renormalized
quasistationary dielectric function e(tp, tk ) according to the
model developed in Ref. 13. In the case of CuC1, when
we excite a sample close to the two-photon resonance, the
re(lection r(( ) does not change very much the temporal
shape of picosecond pulses. This was checked by compar-
ing the results of Sec. III with those obtained with a con-
stant value of the reflection. This is no more the case
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when we come very close to the one-photon excitonic res-
onance where the intensity dependence of the reflection is
very important.

For the phase P, the probability transitions p,", , and the
populations p,";, we have (at t =0, Vz)

$(z, O) =2',
pj(z, O)=0 for (i~j and i =j&1), Vn

p)((2, 0)=1 and p))(2,0)=0, n&l .

(16a)

(16b)

Expression (15) is motivated by the fact that, at very low
intensity, the medium is completely linear with an absorp-
tion coefficient a known from experiments. This condi-
tion is possible since we consider that, at the initial time
t =0, the laser pulse is mainly outside the sample with
only its tail interacting with the medium. We have tried
different values for the absorption coefficient a. The sys-
tem always converges to the same value but it requires
more CPU time when we start with a value of a different
from the one obtained at low intensity in a stationary re-
gime.

With the initial and boundary conditions given above,
we obtain the value of the different variables (D, g,p") at
z =I inside the medium. The reflection on the back sur-
face of the sample is not considered here since our pur-
pose is to study the change of a picosecond pulse shape
during its way through the sample. We will see in Sec.
III that, for CuC1, the profile of intensity in the direction
of propagation is steep enough to neglect the influence of
the backward wave on the temporal pulse shape if I ) 5
pm. The coupling of forward and backward waves must,
however, be accounted for if one is interested in the
switching dynamics of thinner samples placed in a Fabry-
Perot cavity. Such considerations led Haus et al. to
good predictive results concerning the switching times in
biexcitonic bistability far from the resonance, where the
nonlinear absorption is sufficiently small.

III. NUMERICAL RESULTS
FOR THE THREE-LEVEL SYSTEM IN CuCl

CuC1 is a direct gap semiconductor with Td point
group symmetry (blende structure). Et is possible to
create excitons and biexcitons by dipole interaction with a
laser beam propagating in the transparent region of the
crystal. The group symmetries of these excitonic and
biexcitonic quantum states and the r & symmetry of the di-
pole operator are such that only the transitions from the
ground state (unexcited crystal) to the I 5 exciton level
and from the I 5 exciton level to the I

&
biexciton level are

allowed. The one-step transition from the fundamental
to the biexcitonic level is forbidden and therefore biexei-
tons can only be created by two-photon transitions. The
I 5 exciton level is split into I 5T and I ~l by exchange in-
teraction, but the longitudinal mode I 5L cannot be excit-
ed directly by a transverse electromagnetic field. The
crystal is therefore well modeled by the three quantum
states: fundamental, excitonic, and biexcitonic. Due to
the coupling between the electric field and the excitonic
states, the dispersion in wave vector k of laser photons of
energy Ace~ is no longer linear when we approach the exci-

tonic resonance, leading to the well-known polariton
dispersion. Up to densities of 10' photons/cm, this
polariton dispersion is almost intensity independent.
When increasing the density of exciting photons,
multiple-photon processes become more and more impor-
tant, leading to a nonlinear dielectric function which
sho~s an anomaly around half the biexciton energy
Eb;/2= 3.186 eV. The resulting dispersion is therefore re-
normalized by the high density of photons and it can be
ealcu1ated by a nonperturbative model of the dieleetrie
function. This has been performed with different tech-
niques in case of a stationary excitation: Green's func-
tions techniques, " density matrix formalism, and
operator technique in the Heisenberg representation.
Concerning these different techniques, the density matrix
formalism allo~s us to consider particle lifetimes and
therefore the intermediate time range discussed here in an
easy way. In addition, the density matrix p is analogous
to a distribution function which allows us to deduce aver-
age values of any operator 0 [the polarization P in our
case, see Eq. (9)] when calculating the trace tr(Op).
Therefore, the knowledge of the evolution of the density
matrix elements is not an information particular to a
given operator but it concerns all expectation values of ob-
servable quantities. Although it is well adapted to fit ex-
periments in which a spectral analysis is performed as in
hyper-Rarnan scattering or four-wave mixing, the sta-
tionary excitation model was found to be insufficient to
explain experiments in which a temporal analysis was per-
formed. For instance, in optical bistability experi-
ments, ' dynamical effects were reported which can
alter dramatically the hysteretic response of the device. A
memory effect was found which is characterized by a
time-dependent nonlinear absorption in the medium
which does not follow instantaneously the pulse en-
velope. The model was then extended to the dynamical
regime of excitation and the dielectric function was calcu-
lated in the quasistationary approximation. ' This ap-
proximation is valid only for pulse envelopes of temporal
width much longer than the relaxation times of the coher-
ence term p,~

since it assumes that the amplitude of the
electromagnetic field varies slowly during the polarization
variation of the medium. In CuCl this relaxation is of
some picoseconds for excitons and biexcitons at low inten-
sity of excitation. For pulse excitations of some pi-
coseconds, one must therefore abandon the quasistation-
ary approximation. The second important feature in pi-
cosecond experiments is the influence of spatial effects.
For instance, if one assumes that polaritons travel in the
crystal with a constant group velocity U =10 c, c being
the light velocity in vacuum, the time required to cross a
sample of 30 pm thickness is about 10 ps which is of the
order of the temporal pulse width. One cannot therefore
assume a mean field inside the sample.

We first give the whole set of partial differential equa-
tions and the value of the parameters for CuCl and we
then discuss the results.

We use the following definitions:

pij =pip+(pij ) ~ qij = —t
~ pji—(p;j)

uiij =(pii pjj ) +(pii —pjj)—
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Z j = —11(P 'Pjj ) (P 'Pjj )

(E— E—;) —n 03—a

a6,"=—n
dt

E1 ——0, E2 ——3.2025 eV, E3 ——6.372 eV,
1/2

e0eb (El ET )—
01.602X 10

2ETP12 =

ij =f, ex, bi

(fundamental, excitonic, and biexcitonic levels),

n

n n n ~ ' n —1 n+1
dt r23p 23 i1'23q 23 + ( 23 +z 23

2A

1 ex~ n —1 n+1+q13

d n

n n n ~ ' n —1 n+1
dt

r23'q 23 + ~23p 23 ( w 13 +w 13
2A

Pex~+ (P13 +P13

dW 12 = —rll(W12 W05n ) 62(Z12 Z06n )
dt

+ (
n —1+ n+1+ —n+1+ —n —1)Pbl 4

(17)

excitonic dipole element (mksA unit),

p, 23 = &3ooj2 12

biexcitonic dipole element,

EL ——3.208 eV, ET ——3.2025 eV

longitudinal and transverse excitons,

eb ——5

background dielectric constant,

0=4X 10 m

unit cell volume. The transverse dampings I;J (i&j) are
given by the relation (7) with

AI 12 ——2X 10 eV, a'12' ——a13' ——0,
Ar23=2X10 eV, a'12' ——a 23' ——a 23' ——a'13' ——10 eV,

mr13=4X10 eV,

tl~ (Kronecker symbol) .

The set of Eqs. (12) is given by

n
P 12 n n n P12 n —1 n+1
dt

= —r12P12 —612q12+ (z12 +z12 )
2A

+ (q13 '+q13+'),

d"
n n n l n —1 n+1

dt
= —r12q 12+a12p 12

— (w 12 +W12 )
2A

2~ (P13 '+P13+'),

d"
n n n ~b' n —1 n+1

dt r13p 13 ~13q 13 + (q 12 +q 12
2A

„(q23 '+q23+'),

n

n n n ~b n 1 n+1
dt r13q 13 +~13p 13 (p 12 +p 12

2A

+
2&

(P23 '+P23+'),

n —1+ n+1+ —n+1+ —n —1)

dz 12 n 0 n n 0= —r, 1(Zn12 —Z06 )+62(W 12 —W06„)
dt

b&
2A

(P23 +P23 P23 P23

+ P'e"
(

n —1+ n+1 —n+1 —n —1)

dW 23 = —I 22(W23 —w05„)—53(z23 z05„)
dt

n —1+ n+1+ —n+1+ —n —I
)

Pbi@

dz23 == —r22(z23 —z0'5„)+a3(w23 W06 )
dt

n —1+ n+1 —n+1 —n —1)u, „D
2A

P 12 P 12 P 12 P 12

b&+ (P23 +P23 P23 P23

In (17) we have used the conservation property of the di-
agonal elements of the density matrix: g3 1P;;=1.

As discussed in Sec. II the system (17) was truncated
such that

~

n
~

&2. It was solved simultaneously with
Eqs. (8) and with the initial and boundary conditions
[(13)—(16)]. The parameters which were varied are the
photon energy Ace of the exciting laser, the maximum am-
plitude D0 of the incident pulse, and the lifetimes 1/I;; of
excitons and biexcitons.

In Fig. 1(a) we have represented the evolution of a
Gaussian pulse of 20 ps temporal width. The laser pho-
ton energy is slightly below the two-photon resonance, at
3.1855 eV. The maximum incident intensity is 20
MW/cm'.

In the first few micrometers, up to 5 pm, the pulse ex-
periences only a global attenuation. When it propagates
deeper in the crystal, its temporal shape is strongly altered
and it presents a double structure. When we look at the
time evolution of the difFerent density matrix elements p;~,
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FIG. 6. Temporal and spatial evolution of the phase P of the
electric field corresponding to a Gaussian pulse of At =5 ps
duration with a photon energy Ace& =3.1855 eV and maximum
incident intensity I; =40 MW/cm .

temporal region could be affected, for instance, when we

try to switch an optical bistable device with a picosecond
pulse.

In a two-beam experiment, one should keep in mind
that the picosecond pulse is subject to a deformation
which is inhomogeneous in space and time. Therefore the
switchings of the device can be inhomogeneous too, lead-
ing to a complicated transmission of the holding beam.

IV. CONCLUSION

FIG. 5. Propagation of a Gaussian pulse with maximum in-

cident intensity I; =40 MW/cm' and ht =20 ps for different
photon energies near the biexciton resonance (Eb;/2=3. 186 eV).
(a) Aco~=3. 182 eV, (b) Aco~=3. 1855 eV, (c) Aco~=3. 186 eV.

tion and maximum intensity Io ——40 MW/cm . The pho-
ton energy is 3.1855 eV. Except for the first picoseconds,
the phase increases linearly in time. It corresponds to a
spectral broadening of the laser pulse which occurs at the
very beginning of the pulse after some femtoseconds and
which remains constant after 1 ps. This superbroadening
increases with Io, i.e., the slope r)rtp(z, t)iBt is steeper for
higher Io. An experimental analysis of the spectral width
of the laser should show such a broadening. A detailed
numerical analysis of the phase has still to be made in the
case of a femtosecond excitation. Then, as it is well
known, the pulse is not monochromatic but at least
transformed limited. Although taking into account such a
natural linewidth presents no major dim. culty, it is beyond
the scope of this paper.

Beyond their fundamental interest, the propagation
effects reported above have a practical interest since they
show that nonlinear devices working in the intermediate

We investigated numerically the interaction of a three-
level system with a laser pulse situated in the intermediate
temporal region (r~ & rp )72). In the case of CuCl the
model shows that the dynamics of excitonic and biexci-
tonic populations does not follow the pulse envelope and
that an inversion between the exciton and biexciton levels
shows up. Following previous calculations and experi-
ments in the nanosecond time scale, this inversion should
express itself through a gainlike transmission. We have
also shown the existence of a superbroadening which
should also be seen experimentally. Finally a temporal
modulation of the pulse envelope is reported.
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