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Rydberg wave packets in many-electron atoms excited by short laser pulses
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An atomic electron excited to a coherent superposition of Rydberg states by a short laser pulse cor-
responds to a wave packet moving on a radial Kepler orbit. The dynamics of the motion of the wave
packet can be observed in a two-photon process where a first laser pulse excites the wave packet,
which at a later time is probed by a second pulse. In a many-electron atom a single valence electron
excited to the Rydberg wave packet can exchange energy with the atomic ion core (electron correla-
tion), whenever the Rydberg wave packet passes through the atomic core region. We can view this
orbiting of the wave packet as a succession of below-threshold inelastic scattering events from the
atomic ion core. A theory of two-photon absorption with time-delayed short laser pulses is
developed which is based on a "smooth" multichannel quantum-defect Green function.

I. INTRODUCTION

An atomic electron excited to a coherent superposition
of many Rydberg states by a short laser pulse corresponds
to a wave packet moving on a Kepler orbit; at least con-
cerning its radial motion. ' The dynamics of the motion
of the wave packet can be observed in a two-photon ex-
periment where a first laser pulse excites the wave packet,
which at a later time is probed by a second pulse. The
transition probability of this two-photon process as a
function of the time delay will show peaks whenever the
time between the two laser pulses is a multiple of the clas-
sical orbit time of the bound electron; the shape of these
peaks gives information on the width and structure of the
wave packet. '

Interest in wave packets as detected in two-photon pro-
cesses with time-delayed laser pulses derives from several
aspects. First of all, studying Rydberg atoms is funda-
mental as it is one of the problems on the border line be-
tween microscopic and macroscopic physics. Wave pack-
ets have classical features in the sense that their center (as
long as it is well defined) moves like a classical particle on
a radial Kepler orbit; at the same time quantum-
mechanical properties can be observed, like spreading and
revivals of the wave packet and interference phenomena.
Of particular interest is the possibility of destruction of
coherence between two wave packets or within the wave
packet in a system subject to fluctuations introduced by
the coupling to an environment.

A second aspect is the possibility to study the dynamics
of electron motion in an atom in a truly time-dependent
way. In previous work' we have given a detailed analysis
of the motion of the wave packet in a one-electron (alkali-
metal) atom as seen in a two-photon process with time-
delayed pulses. In the present work we extend this inves-
tigation to many-electron atoms. The problem we will
study is an atom with several valence electrons (such as
an alkaline-earth atom, for example), where again a first
short laser pulse excites one of these valence electrons to a
coherent superposition of Rydberg states. Whenever this
Rydberg wave packet passes through the ionic core region

of the atom, it can excite or deexcite the ion core. ' Since
the spatial extent of the Kepler orbit in the atom is much
larger than the size of the atomic core (i.e., most of the
time during one revolution the Rydberg electron sees a
pure Coulomb potential), we can view this orbiting of the
wave packet as a succession of scattering events from the
atomic ion core. These scattering processes correspond to
multichannel scattering events, in the sense that the Ryd-
berg wave packet can exchange energy with the core.
Also note that these are below-threshold electron-ion
scattering processes (or one may call it an internal scatter-
ing process), as the Rydberg wave packet is bound. The
study of wave packets in the many-electron atom will thus
measure a "below-threshold" scattering matrix reflecting
the electron-core interaction (electron correlation) as it
manifests itself in autoionization and perturbation of Ryd-
berg series (configuration interaction).

The natural language to formulate and solve the prob-
lem of Rydberg wave packets in many-electron systems is
multichannel quantum-defect theory (MQDT). ' This
theory allows us to derive simple analytical expressions
for transition probabilities of two-photon processes with
time-delayed pulses which have a straightforward physical
interpretation and are directly related to parameters ob-
tained in the conventional MQDT analysis of spectroscop-
ic data.

The paper is organized as follows. In Sec. II we derive
the basic equations for the atomic Rydberg wave packet
and two-photon transition probability. Section III
discusses wave packets in one-electron atoms, with em-
phasis on a derivation based on a "smooth" quantum-
defect Green function. Section IV generalizes the results
of Sec. III to the many-channel situation. Finally, in Sec.
V we discuss in some detail a two-channel problem. We
study wave packets, which are superpositions of autoion-
izing states, and wave packets obtained by coherent exci-
tation of interacting bound Rydberg states.

II. THE MODEL

We consider an atom where an electron is excited by a
short laser pulse from the ground state

~

i ) with energy
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E; to a coherent superposition of Rydberg states. ' In
first-order perturbation theory in the incident laser field
E,(t)=(, (t)e, e '"a'+c.c. , the perturbed part of the
atomic wave function is

(4 (t))= g (n)e " i/A' f dt'(n )d e, (i)6, (t')

(t ( ct
i (F —E —Ace )t'/A

provided we have short pulses ~, , ~q && T~.
The essential element in Eqs. (2.1) and (2.2) responsible

for the wave-packet structure of
~

4' (t)) is the contribu-
tion of many n states to the sum over atomic states. It is
convenient for the following derivations to replace this
summation by an integration over an energy variable.
This can be achieved by rewriting Eqs. (2.1) and (2.2) with
the help of the atomic resolvent

G(E) =(E Hg —+ig) ' (g~O), (2.4)

(2.1)

where
~

n ) denotes atomic Rydberg states with energy
E„. In Eq. (2. 1) d is the dipole operator.

6', (t) = f 6', (bco)e ' db, co
2K Qo

is a complex laser amplitude describing a Gaussian laser
pulse of duration ~, reaching the atom at time t„' e, is
the polarization vector of the light and m, the mean fre-
quency of the laser. ' In Eq. (2.1) a summation over the
discrete as well as continuum part of the atomic spectrum
is implied.

The wave function (2.1) corresponds to a Rydberg wave
packet. ' Once the wave packet has been excited, we probe
it at a later time t(, with a second short pulse 6(, (t) of
duration ~~ and mean frequency coq. In perturbation
theory the transition probability for a Raman process
(Fig. I) with time-delayed second pulse to the final state

~ f ) with energy E/ is P~ =
~
M/; ~, with

M/ =i/'1( f dt e (f
~

d ey
~

+'(t)) &~(t)e

(2.2)

TE =vrh/% ( E /A ) = r—r((i/A v', (2.3)

for the energy E =E;+fico, with R the Rydberg constant,

the transition amplitude. %'e have argued in our previous
work' that P~ as a function of the time delay between the
pulses can be interpreted as performing a position mea-
surement of the wave packet near its inner turning point;
thus P~ will show maxima whenever the time delay
t(, t, (»r„—r(, ) is a multiple of the classical orbit time

i5F I

x N, (&E, )e (2.5)

for the Rydberg wave packet and
2

I
Mg; —— f dE 6 (', (6p~)6, (5E, )T(E)

277l —oo

l5E fb + lQE E
~ b a

ge (2.6)

for the two-photon amplitude where

T(E)=(f
~

d e(*, G(E+ie)d e, ~i ).

=g(f(d e(', (n) . (n )de, ~i) . (27}E —E„+ig

(il~O) is the two-photon transition matrix element. In
Eqs. (2.5) and (2.6) 5z = (E —ir(co(, —E/)/p and
oF., =(E —~ —E;)/(rt denote detunings.

Although our discussion will concentrate on studying a
Raman process with time-delayed pulses, an analysis of a
two-photon ionization process where the second step goes
up to the continuum by absorption of a photon Acuq is
rather similar, the essential difference being that one has
to integrate over possible final energies EI=E; +Ace,
+%co~.' Section III will be concerned with evaluating
Eqs. (2.5)—(2.7) for an atom with a single valence electron.
In Sec. IV we generalize these results to an atom with
several valence electrons.

with H~ the atomic Hamiltonian, which leads to the ex-
pressions

i

+x(t)) = — f" dE e ' ' "G(E)d.e.
i

i )

III. WAVE PACKETS IN ATOMS
WITH A SINGLE VALENCE ELECTRON

The wave function of an atom with a single valence
electron outside a closed core (alkali-metal atom) can be
written as '

%~(R,r) = 4&(,(R)F,((r)/r,

FICx. 1. Atomic configuration in the two-channel case: a first
short laser pulse D, (t) excites a Rydberg wave packet at time t,
which is probed at a later time tb by a second short pulse eb(t).

with @(,(R) the wave function of the core including the
angular coordinates of the valence electron (with angular
quantum numbers 1,m(). The radial wave function F,((r)
is a solution of the radial Schrodinger equation
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d
[E—h(r)]F,((r)—:E+

2 dp'

1(1+1)
2

—V~(r) F,~(r) =0 (3.2)

for the energy E =a+I (I is the ionization potential).
VI(r) is a local atomic potential which for r ) ro (with ro
the atomic core radius) is well approximated by a pure
Coulomb potential.

As a preparation of the following derivations we find it
necessary to summarize basic properties of the solutions
of Eq. (3.2). For a given energy e, Eq. (3.2) has two
linearly independent solutions which for r ) ro are linear
combinations of the regular and the irregular Coulomb
wave functions s«(r) and c«(r). ' Asymptotically, the
Coulomb functions s and c behave like sine and cosine
functions of the Coulomb argument for c. &0. Outside
the core (r ) ro) the energy-normalized regular solution of
Eq. (3.2) is

S«(r) =s, 1(r)c os(~ a~)+c,I(r)sin(ma~) (3.3a)

C«(r) = —s«(r)sin(~aI )+c«(r)cos(mal ) . (3.3b)

Wave functions with outgoing wave boundary conditions
are constructed according to &+I(r) =C, (1r) +i S~(r)

which for r » ro behave like @+I(r) =y,+~ (r)e ' with

with aI the quantum defect. The irregular solution of
(3.2) behaves asymptotically like

)+,+&(», ) (E)0), (3.4)

with r & and r & the larger and smaller of r and r'. Drop-
ping the requirement E & 0 in Eq. (3.4) defines according
to Ref. 7 a smooth Green function g«(r, r') (i.e., a Green
function free of singularities). In order to study Rydberg
wave packets we need the Green function for c. &0, which
for r~ m is exponentially decreasing; whereas g'«(r, r')
defined in Eq. (3.4) contains exponentially growing parts.
It is not difficult to construct the Green function below
threshold by adding to Eq. (3.4) a multiple of the regular
solution to enforce the correct asymptotic behavior. Us-
ing well-known properties of the Coulomb function we
obtain [Ref. 6, Eq. (2.60)]:

y,+I(r)=c«(r)+is«(r) outgoing Coulomb waves. The ra-
dial wave functions considered in the context of scattering
theory (photoionization) will be denoted by F+I (r)
[F 1(r)] ' [compare also Eqs. (4.8) and (4.9)]. They are
defined as energy-normalized regular solutions of Eq. (3.2)
with an incoming (outgoing) Coulomb wave and a phase-
shifted outgoing (incoming) Coulomb wave. Furthermore,
we define transition matrix elements d,i, for photoioniza-
tion as matrix elements of the dipole operator between the
initial state

~

i) to a continuum state with radial wave
function F,~(r).

It is now straightforward to construct a Green's-
function solution of the radial Schrodinger equation (3.2).
The Green function for energies in the continuum a ~0
with outgoing wave boundary conditions is '

g'«(t, r') (e & 0),
I

F+~(r)[F,I (r')]*
g«(r, r')+2vri (8&0, pi 0),

exp( 2@iv) —exp[2m—i (a~ +iP~ ) ]

(3.5a)

(3.5b)

with v defined by e= —%/v . Note that the second term in Eq. (3.5b) has singularities at the bound-state energies
e„&=—A/v„& with v„~=n —ai and n =1+1,1+2,. . . . Equation (3.5) implies a two-photon matrix element of the
form

T'(s) (E & 0),
T(E)=

T'(E)+2~i g (d, im )' d, i (E &0),
exp( —2~i v) —exp[2~i (aI +iPI ) ]

(3.6a)

(3.6b)

with p~~O [corresponding to the g~O prescription in Eq. (2.4)]. The two-photon matrix element for energies E & 0 [Eq.
(3.6b)] thus consist of two parts. The first term T'(E) is the two-photon matrix element aboue threshold, smoothly extra-
polated to the below threshold region. The second term T„,(c) is a resonant term which has singularities (resonances)
when the E coincides with one of the Rydberg energies. The parameters d, i and (d I )' are dipole matrix elements
from the initial state ~i ) and final state

~
f) to (energy-normalized) continuum states of energy E, which again are

smoothly extrapolated from the above threshold (E & 0) to the Rydberg region (E & 0)." Near a resonance the two-photon
matrix element is

T(E Enl )

1/2

&f
I

d.eb I S«+~~ & (E —E.~ )
—1

1/2

(3.7)

with (dE/dv)' S &b~«(e=E& ) a normalized bound-state eigenfunction. Equation (3.7) clearly shows the familiar
(de/dv)' =v„i ~ scaling of dipole transition matrix elements to and from Rydberg states. ' ''
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What has been achieved in Eq. (3.6b) is to separate analytically the rapid-energy dependence associated with Rydberg
resonances [the resonance denominator in Eq. (3.6b)], while T'(e), d,~-, and (d, I )' are slowly varying functions of ener-

gy across the Rydberg threshold (which for our purposes can be taken as constant). This separation is vital for evaluat-
ing the energy integrals in Eqs. (2.5) and (2.6) in a stationary-phase approximation, which requires a separation of the in-

tegrand into parts with rapid- and slow-energy dependence.
Expanding the denominator in Eqs. (3.5a) and (3.6a), the first-order wave function becomes

—ict/R+i6 t+ (R, r, t)= —i/fige&1. ,(R) f dE f"dr g', I(r, r')/rF;(r')8, (5;;)(Ni.
~

d e,
i
@~m.)„e

27Tl —oo o
I, m

m=] f 0 + g gaia d
—(Et/'+2~i(m —1)a'+i mv+'s„',

(3.8)

f dE[Ã*(5" )Ã (5')T'(e)]
27Tl

and a similar result for the two-photon transition amplitude,
2

1
1Vp ———

m=1 lm,
(3.9)

with Pi-0. Equations (3.8) and (3.9) essentially agree
with our previous results in the one-electron case, derived
with the help of the Poisson summation formula. ' If
many states contribute to the sum in Eqs. (2.1) and (2.2)
the integrals in Eqs. (3.8) and (3.9) can be evaluated in a
stationary-phase approximation (treating the expression in
square brackets as a slowly varying function of energy),
which leads to the following interpretation of the various
terms. '

(i) For times t —t, & T~ /2 (with T~ E;+fico, the-—
classical orbit time) only the first term in Eq. (3.6) con-
tributes. It describes a radial wave packet moving on a
Kepler orbit

+ M/I i(r')dr'=t —t, —mTE (m =1,2, . . . ),
r& n

(3.1 1)

where the minus sign holds for (m —
—,')T~ &t —t,

& m TE- and the plus sign has to be taken for

mT~ &t —r, &(m-+ —,')T~ . According to Eq. (3.10), the

m =1,2, . . . terms in Eq. (3.5) correspond to the first,
second, etc. , return of the wave packet to the inner turn-
ing point. Similarly, the two-photon transition probability
P~ will show peaks for tb —t, =mTE- since, as discussed

n

in Ref. 1, absorption of the probe photon occurs near the

M/J~(r')dr'=r r, (r ot. ), — (3.10)

with pi(r) the (classical) radial momentum of the electron
and r~ the inner turning point. We emphasize that al-
though we have a bound wave packet, its motion is
governed by the continuum propagator (or smooth propa-
gator) g', ~(r, r'). This is not surprising because for times
t —t, & TE-/2 the electron does not "know" that its radial

n

motion is bounded, as it did not have time to "see" the
potential barrier near the outer turning point. Similarly,
in the two-photon amplitude, only the first term involving
the extrapolated continuum amplitude T' contributes for
t —t, & TE-/2. This corresponds to the absence of inter-

n

mediate resonances in a two-photon process (tb ——t, ) with
spectrally broad pulses in the sense that fi/~, ,
A/~b )&A/TE .

(ii) For times t —t, & TE /2 the wave is refle-cted from
n

the outer potential barrier. This periodic motion on a
Kepler orbit is described by the infinite sum in Eq. (3.8)
with

0 I

2 t [ 3 4
b a

FICx. 2. Two-photon Raman transition probability (in arbi-
trary units) vs laser pulse time delay (in units of the classical or-
bit time) in the autoionizing energy region. The parameters are
'7 =7b =12 ps, nz=85, and Tz ——94 ps. The dashed line corre-
sponds to an autoionizing wave packet 2mP=O. 15; the solid line
shows the wave packet for P=O. The lasers are tuned to exact
resonance E; +~, =EI+i6cL)b.



68736 RYDBERG WAVE PACKETS IN MAN Y-ELECTRON ATOMS. . .

oint of the Kepler orbit. Explicit expres-m
i i E (36) 1 c1isions for the integrals appearing in q

roximation are given in e .
2 5 b

'
der resented in Fsgs.p p p

inte rating the energy in eg
~ ~

h 1 of
a function of the time e ay

lassical orbit time between
h 1 1=~ =12 ps, w ic exci e

1 bt t '
94 ThThe classica or iaround v=85.

E +%co, =EI+Acub.lasers are tune d to exact resonance

P

(a)

0.5 2
tb- tet

P

P

0.5 10
t

15
t

2.0

P 0.5.

1

tb- t~

n Raman transition probability (in arbi-p
r ulse time delay (in units oftrary units) vs laser pu se

'
h I —Il =4.4878 && 10d erturber witp

.286, A/I =36 ps, Tl =108 ps (nl ——(

(b) fi/I =243 ps and q =q'=

0.5 1.0
tb -t~

1.5 2.0

(c)

P

P 1

I
I
I
I

I
I
I

I
I
I
I
I

I
I
I

I
I
I
I

I
I
I
I
I
I
I
I
I

I
I

I
I
I

I

I
I

tb- f
5

Q
0.5 1.0

b
2.0

n Raman transition probability (in arbj-o-p
ulse time delay (in units o t e c as

'
trary units) vs laser pu se

'
h I —Il =4.6668)& 10o-channel case wit&)

e a ex lained in the text.'- —7). The labels (m l, m 2) are exp ain(q =0, q'=—

n Raman transition probability (in arbi-
ser ulse time delay (in units o t e c a

i hl bo h (iol d)
h Rdb 1 I

rst laser is tuned slight y a ove
r re ion, where t e y eturber to the energy g'

1 he wave packet is stabi-idistant. As a result t e wave
arison with the case of no perturber

e arameters are ~, =~b = ps,(solid line). The pa
s being the same as in' =3 the other parameters eiA/I =4 ps, q =q =

Fig. 4.



688 W. A. HENLE, H. RITSCH, AND P. ZOLLER 36

IV. WAVE PACKETS IN MANY-ELECTR&)N ATl3MS with

N
O' F(R,r)= g &PJ(R)F~~(r)lr,

j=1
(4.1)

with Ã the number of relevant dissociation channels and
F~~(r) the radial wave function of the Rydberg electron.
This generalizes Eq. (3.1). The Schrodinger equation de-
rived from Eq. (4.1) is

The results of Sec. III are readily generalized to many-
electron atoms. The situation we have in mind is an atom
with several valence electron atoms (an alkaline-earth
atom, for example). ' Again we assume that one of the
valence electrons is excited by a short laser pulse to a su-
perposition of Rydberg states. The new aspect in the
many-electron situation is that the ion core can exchange
energy with the Rydberg electron, allowing the ion core to
be excited into diA'erent core configurations. We denote
these ionic core configurations by &Pi(R). The index j
(j =1,2, . . . ) identifies different dissociation channels of
the atom. Thus there will be Rydberg series converging
to each of these possible ionization threshold s Ij
(j = 1,2, . . . ). Due to electron-correlation effects these
Rydberg series will interact (configuration interaction).
The wave function of the atom for energy E with one
electron excited to a Rydberg state is

qJ(r)=0 (r &ro) . (4.7)

For a given energy E a dissociation channel can be open
(r. ; &0) or closed (e; (0). Equations (4.6) must be solved
under the boundary condition that asymptotically F; (r) is
an outgoing wave in the open channel and is exponential-
ly decreasing for closed channels. In solving Eq. (4.6) we
distinguish three cases depending on the given energy
value E: (i) all channels open, (ii) some channels open
(i EP) and some closed (i Hg) (autoionizing region), and
(iii) all channels closed (bound region).

(i) Above all thresholds: For energies E above all thresh-
olds (r.; &0, i = 1, . . . , N), the homogeneous part of Eq.
(4.6) has N-independent solutions. These solutions can be
taken to satisfy scattering boundary conditions

Ff~, (r)= —,'[q, (r)6,» g,+(r)y—p]
(r &roj, k =1, . . . , N) . (4.8)

(4.6b)

as a source term. On the right-hand side of Eq. (4.6b) in-
tegration over all coordinates except r is implied. It is im-
portant to note that the source term (4.6b) is zero for r
outside the core region

N

g [ei6~» —hi»(r)]Fr»(r)=0 (j =1, . . . , N),
Jc =1

with c.; =E—I; and Hamiltonian

(4.2)
Alternatively, in studying photoionization one considers
solutions

FJ» (r)= ,'[g, (r)—6i» g, (r)X,*~]—

dh»(r)=
2M dr 2

l, (l, +1)
&,»+ Vi»(r) .

y2
(4.3)

lj is the angular momentum number of the Rydberg elec-
tron and Vi»(r) the atomic (multichannel) potential. In
agreement with MQDT we assume

e

r

T(E)= (f ~

d. eb k(E) ), (4.4)

for r ) ro where ro is the core radius of the atom. The
nondiagonal elements Vi»(r) of the potential matrix de-
scribe the short-range coupling due to electron correlation
between the dissociation channels j and k.

The rest of Sec. IV will be concerned with the generali-
zation of the expression (3.11) for the two-photon ampli-
tude to the many-channel situation. Instead of using the
Green's-function approach adopted in Sec. III, we prefer
to calculate T (E) [Eq. (2.7)] by the Dalgarno-Lewis
method. We write

d» = g f" rdr[FJ»(r)]*(4~ d e, ~i)„.
j=1 0

(k =1, . . . , N) . (4.10)

Here d~ is the transition amplitude for ejecting an elec-
tron in a photoionization process in the kth channel. It is
essential for the derivation below, that both 7jq and dj
are slowly varying functions of energy. The proper solu-
tion of the inhomogeneous equation (4.6) has outgoing
Coulomb waves in each dissociation channel. It is not
difficult to show that the asymptotic amplitude of the
first-order perturbed wave functions in the jth dissociation
channel is proportional to the dipole amplitude dj
defined in Eq. (4.10), '

(r &roj, k =1, . . . , N) . (4.9)

The first index j in Eqs. (4.8) and (4.9) labels components
of the solution vector in (4.6), while the second index k
distinguishes the N-independent solutions. The wave
functions (4.9) allow to calculate a set of N dipole-matrix
elements "

where
~

A, (E)) is a solution of the inhomogeneous equa-
tion

Fz (r)= —cripes+(r)dJ (r & ro, j= 1, . . . , N) . (4. 1 1)

(E HA) ~~(E))=d ea ~i) (4.5)

Adopting for
~

A, (E) ) an ansatz of the form (4.1), we find

N

g [eJ5,» —h,»(r)]F»(r)=q, (r) j(=1, . . . , N), (4.6a)
k =1

The solution FJ (r) defines a two-photon transition ampli-
tude T'(E) which, as in Sec. III, is a smooth function of
energy and can be extrapolated to the autoionizing and
bound region.

(ii) Au toionizing region: For energy values E where
some channels are open (eJ & 0 for j HP) and some closed
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N

G~(r)=F)"(r)+2rti g Fg(r)Li, (j =1, . . . , N)
k=1

(4.12)

and determine I k using the properties of Coulomb func-
tions, so that G, (r) contains outgoing waves in open
channels and is exponentially decreasing in the closed
channels. We obtain

(sj &0 for j&Q), the solution FJ (r) defined in Eq. (4.9) is
no longer physically acceptable, as it contains exponential-
ly growing terms in the closed channels. It is not difficult
however to construct the solutions with the correct
asymptotic behavior, to be denoted by G~ (r), by adding to
FJ (r) regular solutions Fjg(r) of the homogeneous equa-
tion. We write

T(E)= T'(E)+2mi g di, [(e "—X) ']kid(

(4.18)

Equations (4.15) and {4.18) are the central results of this
section.

With some effort one is able to show that for energies E
near one of the bound-state eigenvalues E„[as determined
by (4.17)], the two-photon amplitude (4.18) takes on the
form

(4. 18a)

LJ =0 (jEP), where
(4.13a

L, = g [(e '""—X«) '),kdk (j&Q),
keg

(4.13b) iP„= g Z~C&, (R)P, (v)lr (r &rp) (4.19)

with

[(e ' —X„)]&k=e '51k —gji (j,k HQ), (4.13c)

and effective quantum number v& defined by si = —A/v~.
G~ (r) as given by (4.12) and {4.13) has the asymptotic
form

Gz (r) = —rtigj+(r) d~ + g Xjk [(e "—7«) ']ktdt
k, Ieg

( r & rpj EP), (4.14a)

is a bound-state wave function of the Schrodinger equa-
tion (4.2) with Pj(r) an exponentially decaying Coulomb
function for r & rp (Ref. 6) and ZJ admixture coefficients
as defined by Seaton [Ref. 6, Eq. (6.46)]. In view of the
theorem of residues, Eq. (4.18) proves the equivalence of
integrating over the energy variable E in Eq. (2.5) and the
explicit summation over the bound part of the atomic
spectrum (assuming that the laser spectrum does not ex-
cite continuum states) Equ. ation (4.19) generalizes Eq.
(3.7) in the one-channel case.

GJ (r)~0 (r~ oja&,Q) . (4.14b) V. DISCUSSION: THE TWO-CHANNEL PROBLEM

The term in large parentheses may be identified with the
dipole amplitude for photoionization in the energy region
where autoionizing resonances are present. '" In view of
Eq. (4.12), the two-photon transition amplitude in the au-
toionizing region has the form

T(E)= T'(E)+2iri g (di )'[(e '"—X«) ']&kdk .
j,k E'Q

(4.15)

(iii) Bound region: In the bound region all channels are
closed (e, &0, j=1, . . . , N). The arguments analogous
to those presented in the derivation of Eqs. (4.12)—(4.14)
allow us to relate the physical solutions G~ (r), with
boundary condition G~ (r)~0 for r~ oo to the solutions
F)~(r),

Gj (r)=F& (r)+2mi g Fg(r)[(e "—X) ']ltd'
k, l e g

(4.16&

Note that the second term in Eq. (4.16) has poles whenev-
er

det(e "'"—X)kt =0, (4.17)

which determines the bound-state energies E„of the
atom. " Finally, the two-photon matrix element in the
bound region is

2m'(5+i p)Xi] ——e

i(a+sj.
X]2——X2] ——1 e

1+&
(5.1)

2~i'(~+ ip)
w22 =e

with ir6 and ~a the (unperturbed) scattering phase shifts
of the first and second channel, respectively, and
r=tanh(irf3), a measure of the coupling strength between
the two channels (configuration interaction). Further-
more, we have a set of dipole amplitudes, d ] and d2,
describing photoionization from the ground state into the
first and second dissociation channel, which can be ex-
pressed in terms of real matrix elements di and d2 ac-
cording to

In this section we discuss in detail the transition proba-
bility of a two-photon process with time-delayed pulses
when the intermediate state (the Rydberg wave packet) is
described in a two-channel approximation [Eq. (4.1) with
N =2]. The atomic parameters entering our problem are
most conveniently introduced in the energy region above
the two thresholds I~ and I2 (for a discussion of the two-
channel MQDT problem see, for example, Seaton '' and
Giusti and Fano' ).

(i) Aboue both thresholds (Ii &I~ &E): Following Seaton
we parametrize the scattering matrix 7 as
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1
d )

—— —ie™5 (d)+iv rdp),1+7
~ 1

dz = ie—' (iv'rd)+d2) .1+~

(5.2)

Analogous expressions hold for (d ~
)' and (d q )', the

transition matrix elements to the final state
~ f ).

(ii) Autoionizing region (Iq &E&I2): In the energy re-
gion with autoionizing resonances the (1 X 1) scattering
matrix S for elastic scattering in channel 1 is'

277l p (5.3a)

with

1 1
p(x) =5——arctan —,

7T X
(5.3b)

and

x =tan[sr(v. +a)/r] . (5.3c)

S has poles at the complex resonance energies E =I2
—%/(n —a iP)—with n = l + 1, l +2, . . . . Thus one
calls a+iP the complex quantum defect. " According to
(4.15a) the dipole amplitude d for photoionization into
the autoionizing region is ""

—
( ) 'd 17Tjtl(x) +q

( 1+ 2)1/2
(5.4)

which shows the familiar Fano profile with q = —d2/
d~v'r the Fano q parameter. Again a similar expression
holds for (d )'. Near an isolated autoionizing resonance
E„we can approximate x in Eqs. (5.3) and (5.4) by

x =(E E„)/—,'I „,— (5.5)

with I „=4Pfg/(n —a) the resonance width.
(iii) Bound region (E&Iq&I2): The bound states of the

two interacting Rydberg series appear at energies E =I]
—.8 /V~ =I2 —A/Vp, With

1 1
v~ = —5+ —arctan —mod(1) .

77 X

The parameters 6 and u may be identified with the unper-
turbed quantum defects of the first and second series, re-
spectively.

B. Rydberg wave packets moving on two bound orbits

We assume a short laser pulse to excite coherently
many bound Rydberg states in both channels 1 and 2
(E;+Pm, +Pi/r, &I~ &I2). In this case the wave packet
will split in two parts: one moving on an orbit with clas-
sical orbit time

dv]
T] —27TA

dE E =E; +Re~
() )'rg)

and the atomic core in state N] and the other with orbit
time

dV2
T2 ——27rA

dE E =E; +tuna
(»~. )

and the ion core in the configuration 42, with T] & T2.
We emphasize that these two Rydberg wave packets cor-
respond to a single Rydberg electron. Whenever the wave
packet in the first channel, for example, returns to its
inner turning point it can scatter inelastically into the
second channel, exciting the ion core from 4~ to 4&2 (as
described by the scattering matrix element X2&), i.e., there
is a hopping of the electron between the two possible
bound orbits. According to Eq. (4.18) the resonant part
of the two-photon transition amplitude is

the possibility of the Rydberg electron to autoionize (the
Rydberg electron being ejected in channel 2) whenever the
wave packet passes through the atomic core region. This
is consistent with the modulus of the scattering matrix
element Xq2 being smaller than 1,

~
+22

~

=e "
& 1.

Figure 2 shows a plot of the Raman transition probabil-
ity as a function of the time delay b, t = tb t, (i—n units of
the classical orbit time T~-=94 psec) between the two

pulses of duration ~, =~b ——12 ps, which excite energy
levels around v2=85 with 2m/3=0. 15 (for comparison also
the case P=O is shown). Note the increasing width of the
single peaks due to a spreading of the wave packet, which
gives rise to an interference pattern when the different
peaks start to overlap.

A. Autoionizing wave packets
T, (E)=2mi[(d )'] (e "—g) '.d (5.7)

When the first laser pulse excites a coherent superposi-
tion of autoionizing resonances, the resonant part of the
two-photon amplitude T„,(E) contributing to the integral
in Eq. (2.6) for times tb —t, »~, is

T„,(E)=2vri(d2 )' 1
d2—2~i v2 27).i(a +i /3)e —e

(5.6)

Analogous to our derivation in the one-channel case (Sec.
III), an expansion of the denominator in Eq. (5.6) leads to
an expression of the form (3.11) with 13 finite. The essen-
tial difference in comparison with the one-channel prob-
lem is the reduction of the two-photon amplitude by a fac-
tor e ~ every time the wave packet returns to the inner
turning point. Physically, this decrease corresponds to

Here we have adopted a matrix notation with d a two-
dimensional vector containing the dipole-matrix elements
d~ and dq, with a similar definition for [(d )'] (T
denotes transposition): e ' is a diagonal 2&&2 matrix—27Tl v

1
—2771 vp

with diagonal elements e ' and e '. g is the
scattering matrix (5.1). Generalizing (3.9) we expand the
inverse matrix in Eq. (5.7) and obtain

T„,(E)=2mi g [(d )'] .e' '".(X.e '
)

' d . (5.8)
m =].

Writing out the first few terms of the series (5.8) we get
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T„(E)=2iri {(d~
)'d

~ e '+(d2 )'d2 e +(d i )'+~~d
~ e

47Tl V2+(d2 )'X22d2 e '[(d
~ )'X»d2 +(dq )'X2~d~]e (5.9)

277-t[m[Vl+ m2V2]which is a double series in exponentials e
with m i, m2 =0, 1,2, . . . . Inserting Eq. (5.9) into Eq.
(2.6) and evaluating the resulting integral in a stationary-
phase approximation with arguments and assumptions
similar to those of Sec. III, we are led to the following
conclusions: In a two-photon process with time-delayed
pulses, there will be maxima in the transition proba-
bility whenever tb —t, =m

~ T]+m2T2 with m ~, m2
=0, 1,2, . . . , i.e., when the wave packet has made mi re-
volutions on the first and m2 revolutions on the second
orbit. This is true, of course, only to the extent that these
peaks are well resolved, i.e., for the first few mi and m2
values. The amplitude of each of these peaks is propor-
tional to excitation and deexcitation dipole-matrix ele-
ments multiplied by scattering matrix elements. The term
(d~ )'X~qd2 in the third line with m~=1 and mq=1, for
example, describes excitation of a wave packet in the
second channel according to d2, inelastic scattering from
the second into the first channel according to g]2, and,
finally, deexcitation to the final state by (d ~

)'. There is a
second-quantum path contributing to this amplitude de-
scribed by (d2 )'X2id

~ which has a similar interpretation.
Note that these two quantum paths interfere and the sig-
nal strongly depends on the relative phases of the contrib-
uting amplitudes. Quite generally, we expect that for
larger time delays contributions corresponding to different
(m~, mi) values tend to overlap. Thus, depending on the
relative phases these amplitudes will interfere construc-
tively or destructively, giving rise to a complicated line-
shape pattern. As an example, Fig. 3(a) shows the two-
photon Raman transition probability for ~, =~b ——14 ps,
v)=89, r=0.02, Ii I) ——0.00046—67%, dp/d)=d2/di
=1 (corresponding to q =q'= —7) and to T2/T& ——0.63.
Note that in the present example the peaks corresponding
to (m~ =2,mq=O) and (m~ =0,mq=3) interfere destruc-
tively and cancel each other for time delays
bt =2Ti =3Ti. In Fig. 3(b) we have chosen 12/d~
= —d 2/d ]

——1, so that the peak corresponding to
(mi = I,m&=1), which is proportional to (q+q') disap-
pears, while the (mi=2, m2=0) and (m~=0, mq=3)
peaks add constructively. Figure 3(c) shows the signal for
d2/d~ ——0 d2/d] ——1 where initially the laser excites a
wave packet only in channel 1, which is then scattered
into the other channel.

C. Wave packets in a perturbed Rydberg series

We assume that the first laser pulse excites a coherent
superposition of Rydberg states in the first channel and at
the same time a single isolated interloper. Near the per-
turber the energy-dependent quantum defect is

P =6 —1/m. arctan [—,
' I „/(E E„)]—

with I „ the resonance width and E„ the energy of the in-
terloper. The timescales in our problem are the laser

—277[ vp —+22
d2 (5.10)

with x =(E E„)/I „/—2 and [d (x)]', d (x) Fano
profiles defined (for the autoionizing energy region) in Eq.
(5.4). The first term in Eq. (5.10) is reminiscent of Eq.
(3.6b) in the one-channel case, with the exception that
near the perturber the quantum defect p and the dipole
amplitudes show a resonance behavior. The second term
in Eq. (5.10) corresponds to a direct excitation of the per-
turbing state. It has a resonance denominator
(E E„)+i~ I—„and thus decays on a time scale fi/I „; it
contributes to the two-photon signal for time delays
b, t =m a( x, r, re'/I „). Provided r, , rb « T~ and
A'/I „«T&, the energy integral (2.6) can be evaluated
again in a stationary-phase approximation, treating both
the dipole amplitudes d (x) and [d (x)]' and the per-
turbed quantum defect p as slow functions of energy. In
this way we find that the two-photon amplitude will show
peaks whenever

t, tb =m ( T i +—2irfid p/dE)

(with E =E; + fico, and m =0, 1,. . . ) which corresponds
to a wave packet which is time delayed by the perturbing
resonance (as it is well known for resonant-potential
scattering' ). Figure 4(a) shows the Raman signal for
lasers with ~, =~b ——12 ps and tuned to states around
n = 89.5, where we have chosen q =q' = 3 and ~= 10
(corresponding to A/I „=36 ps). In the present case we
have r„rb & A'/I „. The form of the two-photon signal as
a function of time delay (the wave packet) will thus show
a long-time tail, decaying with the lifetime of the reso-
nance R/I „(Fig. 4). In Fig. 4(b) we have r, =rb =14 ps,
q =q' =0. 1, and r = 1.3 && 10 (corresponding to a width
of I, =0.4 in units of the spacing of energy levels around
n) Aremar. kable feature in Fig. 4(b) is the breaking up of
the wave packet into two parts. This may be readily un-
derstood by noting that it is the product of the spectral-
pulse density 8, and the Fano profile d (x) (and similar-
ly Bb times [d (x)]') which enters Eq. (2.6). Energy lev-
els near the Fano minima of the dipole amplitudes are
thus not excited by the laser light; as a result, these miss-
ing energy components lead to the appearance of a hole in
the two-photon signal as a function of the time delay.

Quite generally, wave packets will tend to spread dur-
ing their time evolution (compare Fig. 2). Near a per-
turber, there is the possibility to stabilize the decay of the

pulse durations ~, , ~b, the lifetime of the perturber A/I „,
and the classical orbit time T] of the Rydberg wave pack-
et in the first channel. The resonant two-photon ampli-
tude (3.5) is conveniently rewritten in the form

T„,(E)=2rri [d (x)]' . d (x)
1
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wave packet. Mathematically this stems from the fact
that the Rydberg levels above the perturber are pushed
upwards in energy. Thus there is the possibility to obtain
for a certain energy range a series of (nearly) equidistant
energy levels as for a harmonic oscillator, E„-+,—E„-

E— E—
&

~ This possibility might prove useful in ex-
periments investigating coherence properties of such wave
packets, when the atom is coupled to an external heat
bath (e.g. , blackbody radiation), since most of the calcula-
tions in these directions have been performed for harmon-
ic oscillators. In Fig. 5 we demonstrate this effect by
comparing the two-photon transition probability for a sta-
bilized wave packet (solid line) with the signal when no
perturbing state is present (dashed line). The parameters
in this figure are r=0.01 (A'/I „=4 ps), r, =rb =7 ps,
and q =q

' =3. The laser is tuned to the state with
v~ ——91, the perturbing state is at v~ = 88.

VI. CONCLUSIONS

We have studied the process of two-photon absorption
by time-delayed short laser pulses. The first laser pulse
excites a coherent superposition of Rydberg states, which
corresponds to a Rydberg wave packet (of a single elec-
tron) moving on radial Kepler orbits. The motion of this
Rydberg wave packet is probed by a second short pulse at
a later time. In a many-electron atom the wave packet
can scatter inelastically from the ion core, every time it re-
turns to its inner turning point. The two-photon signal as
a function of the time delay thus monitors directly this se-

quence of (below-threshold) scattering events into different
dissociation channels of the atom. This provides a mean
to study the dynamics of a (single) Rydberg electron mov-
ing in an atom in a truly time-dependent way, as reflected
in a below-threshold electron-ion scattering matrix. In
the present paper we have formulated a theory of two-
photon processes with time-delayed short pulses using a
smooth multichannel quantum-defect Green function.
We have studied in detail the problem when the inter-
mediate Rydberg state can be described in a two-channel
approximation. The results discussed include wave pack-
ets as superpositions of autoionizing Rydberg states, wave
packets moving on two bound orbits (which are associated
with different ionic core excitations), and, finally, motion
of wave packets when there is an isolated interloper per-
turbing the Rydberg series. We expect the results of this
paper to be valid not only for atomic Rydberg states, but
more generally for systems involving excitation of in-
teracting Rydberg series by short laser pulses. A particu-
larly interesting wealth of phenomena can be expected for
molecules.
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