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In weakly, off-resonantly pumped multilevel systems gain is usually observed at the transition fre-

quencies (line-center lines) and at the pump-offset-dependent frequencies (Raman lines). Modes de-

veloping at these frequencies are subject to strong mutual competition due to several coupling mecha-
nisms. A general six-level system is investigated in this paper. Line competition effects are studied in

particular in the simplified basic four-level cases comprising parallel, cascade, and V-A subsystems.
We predict the type of transitions which survive and ultimately remain active. A comparison with

experimental results using far-infrared lasers is made.

I. INTRODUCTION

In off-resonantly pumped systems it is possible to clear-
ly distinguish Raman-type emission from line-center emis-
sion. The two processes are also sometimes referred to as
parametric or laser-like processes, respectively. Since both
emission types are generally able to grow, it is of great im-
portance to be able to predict which one dominates.

A definition of such line-competition problems, and the
conditions under which these occur, will be formulated in
this paper. The interaction mechanisms between lines and
the possible means to influence their mutual competition
will be discussed. We shall ignore all resonant-cavity
effects. The system is either allowed to choose its own os-
cillation frequencies or else these are simply imposed as
external-boundary conditions.

The main peculiarities of the systems pumped by off-
resonant coherent light are certainly due to the coherence
of the pump and coupled Doppler effects. Both arise
from the fact that the active medium is at least a three-
level system interacting with two classica1 fields. In the
homogeneously broadened regime, when the spectral
mode density is high enough [cf. Fig. 1(a)), the coarsest
level of oscillation competition would occur in line selec-
tion between line-center and stimulated Raman emission.
On a finer scale several competing cavity eigenmodes can
appear within the gain bands of the two above-mentioned
lines (especially when inhomogeneity is added).

The osci11ation competition situation described above
arises in most pulsed optically pumped far-infrared
lasers. ' Often it is of particular interest to obtain
single-mode Raman emission since it is tunable by pump
tuning. Indeed, tunable fir emission from 100 to 1200 pm
has been obtained. This has enabled, for example, the
development of notch filters which are important to
suppress parasitic stray light in collective Thomson
scattering experiments. In several applications (e.g., plas-
ma diagnostics, high-resolution spectroscopy) it is desir-
able to have single-mode operation in addition to tunabili-
ty. Another stimulus for research in this field is offered

by the challenge of efficiency enhancement which, in
principle, may also be posed as a line-competition prob-
lem.

The present investigation is also of relevance for the
new coherently pumped systems in the mid-ir region '

and for visible and uv dimer lasers. ' Recent experiments
on four-wave mixing" have demonstrated the importance
of line competition in these devices.

The paper is divided as follows: Sec. II defines the
line-competition problem considered, Sec. III briefly sum-
marizes the theory, Sec. IV presents the analysis of the
basic three-level case, Sec. V treats the more complicated
four-level configurations, and Sec. VI reviews some exper-
imental results which are compared with our theory. Sec-
tion VII finally gives a discussion and conclusions. The
Appendices contain some lengthy formulas for the benefit
of particularly interested readers.

II. LINE COMPETITION

The novelty of the present study is the consideration of
line competition, which occurs between different sets of
modes in an off-resonantly pumped laser. To illustrate
our concept of line competition let us consider the gain
spectrum of a simple three-level system. In the homo-
geneously broadened regime two conditions are required
to have two distinct gain peaks as in Fig. 1, one at the Ra-
man frequency, and the other one at the line center:

(i) To create the Raman gain the system must be
pumped off-resonantly.

(ii) The pump should not be so intense as to induce ex-
cessive ac-Stark shifts. (If this were the case, the peaks
would tend to occupy symmetric positions around line
center and their nature would become mixed rendering
the problem more complicated. )

For convenience we also assume that the resonator does
not favor any particular oscillation type. We concentrate
on the study of the combined effects due to the modes un-
der the Raman line onto the line-center modes or vice ver-
sa. The interaction between modes within the two reso-
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governing such a complex system, we will not study it
with all transitions active simultaneously. However, a
range of interesting subcases —A, V transitions, cascades
and parallel configurations —will be treated in detail
which provide considerable insight into the mechanisms
governing the full system.

The polarization induced by the fields is calculated with
the standard density matrix formalism' which will only
briefly be outlined below. The density matrix p obeys the
equation of motion,

/ A ( 8 t + U c}g1p = [H p ]+ i 'f28 gp I pe1 g„ (2)

GAIN
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where B,p „]„includes incoherent pumping and relaxa-
tion of the levels. The Hamiltonian contains the unper-
turbed part Ho and the dipole-interaction term
p g, 8;, (z, t) Wi.th the rotating-wave approximation we
are allowed to assume that the amplitudes
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FIG. l. (a) Mode and line competition under the gain curve
of an off'-resonantly pumped laser. (b) Model for line competi-
tion adopted in this work.

nance lines will be neglected. Hence the competition situ-
ation is described by the effective two-mode model of Fig.
1(b).

Within these approximations we have been able to ex-
plain the dominance of Raman emission in fir lasers' and
also found some exceptions to this rule. ' Here we will
present a more detailed account of these problems, esti-
mate the influence of several parameter dependencies, re-
lax some of our assumptions, and investigate in a more
systematic way the basic level configurations. We shall
generally ignore space-dependent effects: we treat only
unidimensional propagation in an amplifier because the
evolution of the field in a cavity obeys similar equations
when the validity conditions of a mean-field model are
satisfied. ' Our results hold for cw lasers and pulsed
lasers with a pulse length much longer than the medium
response time. We shall show that this approach yields
interesting general information despite its restrictive as-
sumptions which do not account for transient effects, ex-
cessive ac-Stark shifts, inhomogeneous broadening of the
signal transitions, and transverse effects, for example.

III. THEORY MODEL

@12812( ~ z)t
CX =

2A
exp[ —i (K12z —Q12t)],

P016'O1(z, t )p=
2A

exp[ i (Ko1z —II—01t)],
@23623(z» t)

2R
exp[ —i (K23z —Q23t )],

P34634(z t)

2A
exp[ —i (K34z Q34t)],

1M25 @25(Z t )

2A
exp[ i (K25x ——Q25t)] .

(S)

(6)

vary slowly compared to the combination frequencies
0;, „+ski . For the central frequencies 6;~o and corre-
sponding wave numbers K;~ o we can pick one of the pairs
appearing in (1).

We will now outline the method of solution for the spe-
cial case where the pump field is single mode and the sig-
nal fields are multimode. A more general case has been
considered in Ref. 17. Inserting (1) and (3) into (2) we
find the equations of motion for the 21 matrix elements of
interest (see Appendix A). In these equations, relaxation
terms of the form I;(n, p;;) a—nd y,~p,~

have been added,
and the detunings 6;~ are equal to co;j —0,;j+K;~U where
co,z is the frequency the molecular transition i~j. The
Rabi frequencies corresponding to the fields 8;~ coupling
the levels I i ) and

I j& of Fig. 2 have been denoted by

The classical field is composed of the pump mode and
the discrete set of signal modes,

6',&(z, t)= —,
' g E;, „exp[i(K;, „z fI;, „t)]+c.c, —

where 8;J(z, t) is the amplitude of the electric field near
resonant with the transition i~j. The active medium is
described in terms of a six-level model (shown in Fig. 2)
which corresponds to a configuration often encountered in
experiments. ' Although we give the basic equations

The Doppler shifts will always be neglected for the sig-
nal transitions; only in one example the effect of the pump
Doppler shifts K]zU will be included. Similarly the spatial
dependence of (S)—(9) will be ignored since we confine the
study to corunning waves.

Each one of the signal fields of (6)—(9) can be developed
in its mode components [recall the rotating-wave approxi-
mation when reducing (S)—(9)]. If the modes are equally
spaced in frequency, we get
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P= g P„exp( —in5t),
n=0

(10)

pj(t) = g pj(m) exp( im5—t) . (12)

The substitution of (12) into (2) leads to recursion rela-
tions between the coefficients p,j(m). We will not present
these here because of their length. Only for the simple
case of a three-level system, the details are provided in
Appendix B.

The polarization of the medium is given by Tr( —ittp).
With the aid of Eqs. (3) and (12) we obtain for the polar-
ization

Pj (z, t) = —,
' g P& „exp[i (Kj „z fl;j „t)]+—c.c. (13)

with

Pijn= 2, pij pji(n) (14)

Inserting (13) into the Maxwell equations in which we
make the slowly varying envelope approximation, and in-
tegrating over the beat period 5 ' we find for the signal
amplitudes

d
dz / Eij, n

2fiG;j p;j (n )'Im '
~Z,, „~

Pij ij, n

(15)

and for the signal phases

d
dz

+tj, n = 2fiG;j p;, (n)
Re

Eij, n

where the gain factors are defined as

g e'„exp( i—n6t),
n=0

and so on. This is, for instance, applicable to the situa-
tion of line competition where the line spacing 6 is dictat-
ed by the pump detuning b2~ [cf. Fig. 1(b)].

Assuming that )t3„,e„, etc. do not vary appreciably
within I; ', y;,

' we obtain a stationary solution of (2) as a
Fourier series,

IV. THREE-LEVEL SYSTEM

The general configuration of Fig. 2 simplifies to a
three-level model when only one of the fir transitions
shows appreciable gain. In the following we shall concen-
trate on the A configuration comprising the levels 1, 2 and
3. The V configuration 0, 1,2 is completely analogous.
The superposition of these three-level cases provides some
insight into the full system. The validity of the simple su-
perposition will be checked later on in this paper when the
interference effects between A and V transitions will be
studied.

The free parameters of the model include the pump in-
tensity a

~

and its detuning b, , and the intensities
(

~ Po ~, Pi
~

) and detunings of the two fir modes as-
sumed. Of special interest is the case where one of the fir
lines is intense and the other one is a weak tunable probe.
Small-signal-gain considerations suggest that the intense
mode appears either in the vicinity of the line center or
the Raman resonance where initially the highest gains are
observed. The pump detuning is assumed such that

~

a ~, ~P ~
&&

~

b.
~

which implies that the fir emission
lines still have a clear Raman or line-center character.
For large values of u or Po(Pi) the fir gain spectrum rath-
er reflects ac-Stark effects. The gain resonances are then
due to heavily dressed states for which the terminology
Raman or line-center emission is meaningless [a more de-
tailed investigation of probe spectra in these cases is given
in Ref. (18].

We have recently proved' that intense-enough Raman
oscillation is able to suppress line-center gain through
nonlinear interactions between the two lines in the medi-
um: strong line-center absorption appears because of the
combined action of population effects, population pulsa-
tions, and off-diagonal coherence contributions. The re-
verse case is not observed, i.e., intense line-center oscilla-
tion only splits the Raman gain, but does not invert it (for
details see Figs. 2 and 3 of Ref. 12). So the main con-
clusion is that only Raman emission survives asymptoti-
cally in the three-level system. In the following we shall
discuss more details of the competition between the line
center and the Raman line and relax some approxima-
tions made in Ref. 12.

The basic formulas required for calculating the evolu-
tion of fir modes are given in Appendix B. Reasonably
simple analytical expressions are obtained when we as-

2.p;~NO;~. p
G

2%roc
(17)

and N is the density of the active atoms.
It should be noted that Eq. (13) contains beat notes

which act as drivers for new signal modes separated from
the original one by multiples of 6. When solving for
p;j ( n ) all the modes should be taken into account self-
consistently. In the present line-competition problem it is,
however, possible to truncate the infinite system of
Fourier coefficients (12). This allows us to include self-
consistently a finite number of modes in the analysis.
Moreover, it is often possible to discard from the outset
the modes which will be asymptotically extinguished.
However, this cannot always be guessed correctly a priori
as will be demonstrated below.

l5

i2)

13

lt)

FIG. 2. General six-level configuration considered in this
work. The transition

~

1)~
~

2) is pumped.
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op23(1)= i—
z

n ] 1— +2 +I 2 I 3/31 /31/21

(18)

sume a weak probe and detuned pump. The probe gain
near the line center is obtainable from

2
po, ]h= Y3] Y2]

2/21 —1
I2

2/31 +1
3

(21)

and near the intense Raman oscillation from

op23(0)=i n] . (19)

[Notice that in (7) we have assumed cop] co23 —Qp] 0/3
which implies that in (10) the mode n =0 corresponds to
the Raman resonance and the mode n =1 to the line
center]. If the strong line is at resonance, the probe gain
near the Raman peak is given by

. Ial Po o 1
pp3(0) = i n ]r 3] 1+

I
P]

I
'~Y3]Y2]

(20)

The results (18)—(20) are valid to order 6 . The novel
feature as compared to Ref. 12 is the possibility of consid-
ering unequal relaxation rates. According to (18) the
threshold for suppression of line-center oscillation is

which shows that po, h increases with the transverse relax-
ation rates y31 and y21. As the pump incoherence can be
roughly described by including an additional contribution
to Y2] and Y3] (see, e.g. , Refs. 19 and 20), the expected re-
sult follows that the importance of Raman emission de-
creases also when pump incoherence grows (note that this
applies to phase fluctuations only). On the other hand,
when the final level lifetime is long (I 3~0) the threshold
(21) is very low; the same happens in the limit I ]~0 if
simultaneously Yq] ~—,

' I 2 (no phase-changing collisions).
If the intermediate level 2 is long lived (I q~O), the
threshold becomes large and the line-center oscillation is
not suppressed.

Under some circumstances Doppler effects are not
negligible. Doppler broadening is easily included numeri-
cally. In the special case where Ku &&6 and all relaxa-
tion rates are equal, a particularly simple analytical ex-
pression can be obtained,

. o p]
I
a

I
', I

po I

'
Y

Y 2]u

'2

Z r +2R, , X Z, r
E21u E21u E21u

(22)

Here Z is the "plasma-dispersion function ' and Z its
derivative. A comparison of (22) to numerical results is

given in Fig. 3. The basic effect of Doppler broadening is
an increase of the threshold for the inversion of the line-
center gain. The physical interpretation is that only one

velocity group sees a Raman resonant pump. It should
also be noted that only the Raman peak is Doppler
broadened (see Fig. 3), as expected.

Another effect which may alter the simplified line-
competition situation treated in Ref. 12 is a nonzero equi-
librium population difference between the fir levels. If

I
n2 —n]

I
» (23)

it is possible to consider also in a simple way the absorp-
tion on line center and the dispersion to order y/A.
However, already a modest pump intensity

~2 Q2
n1

(24)

30

Frequency

FICx. 3. Influence of Doppler broadening on the linear gain.
The quantity g shown is ( l /y )Imp23( & ). ~2i =~23 = 3op&
a=0. 1Y, p]]=0.1, 1, 1.5Y in order of decreasing peak value.

p] =0.1Y, kq]u =5Y, n q n] =1, n q—nf =0. The analytical —re-

sults [Eq. (22)] are represented by crosses.

is able to overcome the linear absorption. Even when Eq.
(24) is satisfied intense Raman oscillation is able to
suppress the line-center gain. The inequality (23) is usual-
ly well satisfied in fir lasers. If this is not the case one has
to include many additional terms which all tend to favor
line-center oscillation.

Finally, we relax the assumption p, a «
I

b,
I

and show
some curves illustrating the power of the numerical
machinery used for solving the full Eqs. (B2j—(B6) of Ap-
pendix B (for more details see Ref. 17). Figure 4 gives an
example of a strong probe. The line-center gain disap-
pears even when P] approaches saturation which suggests
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V. FOUR-LEVEL CASES

Frequently combinations of three-level systems of the
type considered above are encountered, especially in fir
lasers. ' %'e will now apply the techniques of Sec. III to
the basic four-level configurations consisting of the three-
level system above and one additional level. As already
described in Sec. II our main interest is on competition
effects where the transitions considered can be coupled by
several field modes. An extensive study on single-mode
effects is given Ref. 22. The simplest case is the addition
of a cascade transition because we do not need to intro-
duce a new multimode field (to order 6 ).

A. Cascade

W W

Frequency
16

In the case of a cascade transition an additional field
denoted by e couples the 3~4 transition (see Fig. 2). In
the approximations n 2 = n 3 =n 4 =0 and

I
b

I
» y, the

small-signal-gain spectrum of the cascade transition con-
tains only one peak of the order of 1/6 at line center.
Resonant single-mode emission on the cascade transition
is therefore expected and assumed.

The evolution of the various fields is governed by

1
CV

C)
(c)

I Pp I

'
dz

= —621
I
a

I
I+ I+

I Pi I

'+
I

&
I

' (25)

Frequency

FIG. 4. Strong-probe numerical results. (a) h2& =623 =4@,
a =0. 1 y, p13= y, pl =0.5y, k21u =0, n 2 ll 1

= —1 n 2
—ll 3 =0.

(b) Same as (a) with a =y. (c) Same as (a) with a=y, pl =y.

d
I Pp I

dz

d IPif
dz

(26)I+
I Pi I

'+
I

&
I

'

(1+4
I pi I

'+ 41~1')(I+
I pi I

'+
I
~

I

')

X I —3fPpf + fpi f
+4f&f

that the suppression mechanism is also efFective during
the initial transient period when both modes grow at the
same rate (see Ref. 12 for competition dynamics).

An interesting phenomenon is observed when the pump
intensity is increased. In Fig. 5 we show a strong-pump
case. The two gain peaks are now due to the large ac-
Stark effect and no line suppression occurs. As already
pointed out these kind of resonances (representing heavily
dressed states) are not treated here.

I+
I
Pll'+

I
~

I

'

d fef
( 1+41»

I

'+ 41~1')(I+
I » I

'+
I

&
I

')

Pp f

2+3
I Pi I+

I pi
I

'+
I

&
I

'

(27)

(28)

2.5.
C)

—2.Q,
-&6 -8 0 24

where the dimensionless field amplitudes a,P, e are all in
units y. The stability analysis for single-mode emission
on the 2~3 transition is readily performed by analyzing
the sign of the line-center gain: according to (27) the
threshold for line-center attenuation is

1 (I+
I pi I

'+ 41&
I

')(I+
I pi

I

'+
I
~

I

')
3 1+

I
P11'+21~1' 3

(29)
F r equency

FIG. 5. Numerical results for a strong pump and a strong
pIObe. 621 =623 =4y, a =10y, pO —3y, p1=y, k2I0 —0
n) nP1= —1, n—)=0.

This result indicates that both the line-center oscillation
(pi) and the cascade oscillation (e) increase the threshold.
When

I
e

I
»1 stable single-mode Raman osculation is

expected for
I pp I

& 2
I

e
I

/3. On the other hand, the
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same stability analysis can be performed on (28) for E .It
shows that cascade oscillation can also be reabsorbed pro-
vided that

dz "1+4IP, I'

3 I/3i I'(I+ I&~ I'+
I

& I')
I/3) I

' —2(1+
I
e

I

') (30) X 1+

and that
I

/3~
I

exceeds the critical intensity

I P~ I

=2(1+
I

e
I

). Recall that the Rabi frequencies /3, e

must be kept below 6/y to preserve the conditions of off
resonance, but may, in fact, exceed unity by a consider-
able amount (for more details see Appendix B).

x[3(1+ I/I I')+ I/ I']

d N GO1 G23=2 2+

(35)

dz
1+—[~( I/ o

I

'+
I
&o

I

'&

—4
I / oil/3oll/ ill/3i

d luo I Ia I'
dZ

[~l po I

— p~ll~~ I
cos(@)

I ~o I ]

(32)

d I/3o I

dZ
I pall/3& I

cos(C')
I po I ]

(33)

d ls il =GO1 1+4 I/ i
I

'

x (
I / o I

' —
I /3o

I

'&

x [3(1+
I / i I

'&+
I
&i

I

'] (34)

B. V —A configuration

In some experiments ' the two three-level transitions
of types V and A appear simultaneously. Such a case,
comprising, for instance, levels 0 to 3 (cf. Fig. 2), is a
good example of a more general system with multimode
fields in the additional transition. It has been shown'
that its nontrivial behavior can still be analyzed rather
easily because for a detuned pump the medium response
is fortunately analytically tractable. We present in this
section a summary of the results of Ref. 13 and give more
details about the peculiar behavior of this system.

The refilling oscillation (the fiipping rate is denoted by

p, expressed in units of y) occurs on the 0~1 transition
(Fig. 2) simultaneously with the transition 2~3 represent-
ed by /3. We shall again restrict ourselves to the case
where the populations at thermal equilibrium satisfy the
relations n o = n 1

= n and n 2 = n 3 =0. This approxima-
tion greatly simplifies the analytical expressions. One can
show' ' that the evolution of the fields is governed by

(36)

As expected the equations are symmetric with respect
to [Pp, /3~ j, [po, p~ ). When one of the pairs is neglected,
the three-level expressions of Ref. 12 are recovered.
Despite the approximation of a detuned pump, the field
gain factors still contain considerable saturation and mode
coupling.

A novel feature is the high-order dispersion represented
by the global phase N=P(/3p) —P(P~) —P(pp)+P(p~). Its
physical origin is the interference between the two "three-
photon-resonant paths" [po, a,P~ ] and [p~,a,PpI bringing
the system from level 0 to level 3. Another new feature is
the appearance of IPpl in Eq. (34). It is partly due to
population refilling and partly due to a coherence effect. '

When
I po I

& I/3p I, the dominance of Raman oscilla-
tion Pp typical of the pure three-level case disappears [cf.
Eq. (18)]. The competition between the Raman modes pp
and Pp (i.e., the sign of the factor

I pp I

—
I Po

I
) deter-

mines which line-center mode will survive in the presence
of the Raman oscillations.

According to Eq. (36), the phase 4 tends to lock to a
value 4&„=~ (&P„=O is unstable). Therefore asymptoti-
cally cos(4) turns negative and the two Raman modes
assist each other according to Eqs. (32) and (33). The Ra-
man mode having the higher linear gain (Gp~ or G23) will
grow faster even when saturation sets in. According to
(34) and (35) the ultimately suppressed line-center mode
will be p~ in the case

I pp I
&

I Pp
I

and /3~ in the case
I go I

& IPo I

in the limit
I go I, I/3o

I
»1. We may

thus conclude that asymptotically the four-level system
will oscillate on both the Raman and line-center modes at
the transition with lower small-signal gain, and only on
the Ram an mode at the transition with higher gain.
Whether this asymptotic solution is realized in an experi-
ment will depend on the length of the amplifier as com-
pared to the two gain lengths involved. It is also
worthwhile noticing that this asymptotic solution, chosen
by the system, is a compromise between the single-mode
Raman-Raman solution expected from the superposition
of two three-level systems, and the single-mode line-
center —Raman solution expected from energy conserva-
tion (without relaxation) between the initial and the final
level.

The analysis of Eqs. (32)—(36) reveals that the Raman
modes are strongly coupled while the line-center modes
are weakly coupled. The Raman —line-center coupling is
asymmetric as discussed in Ref. 12, i.e., line-center modes
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are strongly coupled to the Raman modes whereas Ra-
man modes are weakly coupled to the line-center modes.
The form of the gain equations for the Raman mode sug-
gests that the coupled Raman modes behave as bi-
chromatic modes. ' In Appendix C it is shown that
further insight into the behavior of the system may be
gained using this picture. We simply recall here that the
properties of the bichromatic Raman-Raman modes en-
able us to show rigorously that the dominant Raman
component of the more strongly amplified bichromatic
mode (with the largest eigenvalue A, +) is on the transition
where the small signal gain is larger. Estimates of the dis-
tance to steplike phase locking have also been obtained.

Finally, some comments are worth making on the limi-
tations of our present study. Firstly, the introduction of
cavity losses and external dispersion may considerably
alter the results. The latter effect is interesting because a
"constant" term is added to the phase equation (36). Un-
1ocked solutions of the system are obtained if the constant
term exceeds the coe%cient of the sine. In this case the
phase N rotates and the competition between the Raman
modes alternates between mutual enhancement and
suppression. The coefficients in (36) depend, however,
also on the intensities which complicates the problem.
Self-pulsing and chaos are not unlikely to appear when
the saturation (to higher orders than b, ) of the Raman
mode is taken into account.

Another point worth mentioning is that phase noise
may be important in the asymptotic stage where one of

the line-center modes has decayed back to noise level.
Phase fluctuations can be modeled by a Langevin force
acting on the right-hand side of the phase-locking equa-
tion. It is possible to show that the Raman-mode phases
are adjusted on the invariant line-center mode phases (no-
tice that dispersion vanishes at line center) in order to re-
call the global phase. Therefore phase noise at the at-
tenuated line-center mode frequency will trigger phase
fiuctuations on the Raman modes. This "amplified"
phase noise is expected to be inversely proportional to the
Raman-mode intensity as is the restoring force in the
phase equation.

C. Parallel transitions

The last and mathematically most complicated case is
the parallel configuration formed by levels 1 —3 and 5 in

Fig. 2. The additional field coupling the parallel transi-
tion 2~5 is denoted by g, again in units of y. Even
stronger phase dependencies than in the previous example
are expected because the two-mode transitions share a
common level. Stable simultaneous single-mode Raman-
Raman operation is intuitively expected, but interference,
population transfer, population pulsations, and coherence
effects may alter this picture.

Lengthy calculations lead to the following result for the
evolution of the modes (within the same approximations
as before):

G211~
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where the function E is defined by the expression

&(Pi,g»=(3 —7 IPi I

'+ l310i
I

' —41Pi I
'+414i

I

') .
(43)

(The global phase N stands now for [p(pp) p(pi)——P(gp)+P(gi )].} These equations are considerably more
complicated than in the previous cases. For instance,
there are additional contributions to the line-center gains.
In fact, from the evolution equation of the relevant densi-
ty matrix element,
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p23(1) =&polz3(1)D23(1)+&p)lz3(1)D23(0)

i—a/23(1)p3&( —1) —i(&123(1)p53(0), (44)

FICs. 6. Sign of the function E(P~, g~) defined by Eq. (43).
The dashed part of the figure corresponds to the symmetric ex-
pression E(g~,P~) appearing in (41). In the central region where

l
p&

l

=
l g& l

the terms containing the function E in Eqs. (40)
and (41) contribute to mutual assistance between the line-center
modes [if cos(C&)= —I]. Outside this region the terms contrib-
ute to competition and the weakest line-center mode is favored.

we see that a direct coupling with the parallel transition is
introduced via the p53 coherence. Although a deeper
analysis of the difterent contributions to the result above
is beyond the present scope, it is still possible to distin-
guish some features of these equations.

Features similar to the V-A configurations include the
following:

~The global phase locks to ~.
~The two Raman modes enhance each other.
~Strong Raman oscillation tends to suppress line-center

operation on the same transition via the processes
discovered in Ref. 12.

New features include the following:
~The strongest line-center mode now slightly favors the

Raman oscillation on the other transition, e.g. , due to the
factor (1+

l g, l

') in (38).
~Simultaneous Raman and line-center oscillation on a

signal transition strongly assists line-center oscillation on
the other transition, e.g. , due to the factor
2

I (, I

'
I g, I

'( S + ) in (40).
~Strong coupling between the line-center modes now

exists, as expected. Strong competition or mutual
enhancement can occur in (40) and (41), depending on the
sign of cos(N) and the function E.

According to (42), cos(N) tends to —1. Therefore its
sign will not be discussed any more. The sign of the
remaining expression E appearing in (40) and (41) is
shown in Fig. 6 as a function of

l
p~

l
and

l g~ l

. We
can deduce from this figure that, except for a narrow band
around

l
p&

l

=
l g~ l, the strongest line-center mode is

enhanced and the weakest one is attenuated due to the
terms containing the function E.

Let us now address the important question whether the
asymptotic state is a multimode state. In the affirmative

case we would also like to know how many modes are in-
volved. When pump absorption is neglected, Eqs. (38)
and (39) reveal that the Raman modes are amplified. A
single-mode asymptotic state can, therefore, only be such
that

I k I I po
I
»»nd

I P~ I I
p~

I
«I with 4=m. In

this case it is easy to show that

dz dz

= —9 IP, lip. I
(

I 4llg, I

—IP, IIP, I

)'&0 . (4s)

From this we conclude that one of the line-center modes
is amplified as well. Let us therefore assume that the
asymptotic state is such that three modes oscillate simul-
taneously. For example, we assume that only the mode
p~ is weak (

l p~
l

&&1). Equation (40) reveals immediate-
ly that this situation is unstable since d

l
p~ /dz is posi-

tive because the function E(p~, g, ) is now positive (cf. Fig.
6). The asymptotic state is therefore a multimode state
with all the modes oscillating simultaneously.

VI. RELATED EXPERIMENTAL RESULTS
IN THE FAR INFRARED

In numerous experiments Raman emission in the
three-level configuration has been observed. ' ' '

Generally also the cascade emission has been reported as
resonant and nontunable. ' ' On the other hand, ap-
parently contradictory observations have been made on
the V-A case and much less detailed experimental work
has been carried out in the case of parallel transitions. To
test if our theory is applicable we will first review some re-
sults for the VA case which seem to contradict our
theory. We will then show that the asymptotic state pre-
dicted in Sec. V has been observed by De Martino, Frey,
and Pradere ' in the HF molecule.

Woskoboinikow et aI. have demonstrated that the
385-pm line of D20 is definitely a Raman line and that
the "refilling" oscillation at 239 pm is resonant. The
measurements and conclusions are quite convincing. It
should, however, be noticed that the measurement at 239
pm is close to the noise level and that the spacings in the
Fabry-Perot scan are not perfectly regular. Therefore, it
is difBcult to exclude the possibility of a simultaneous Ra-
man oscillation which should take place according to Sec.
VB. Of course, some approximations of our model are
perhaps not justified in the experiment (e.g. , quasista-
tionarity).

Petuchowski et al. have established that the 50 and
66-pm lines of DqO forming a V-A configuration are Ra-
man transitions. Their method of measurement was,
however, insensitive to a simultaneous line-center oscilla-
tion at 50 or 66 pm.

Woskoboinikow et al. ' observed that the 257-pm
emission in NH3 is tunable while the coupled emission at
2.14 mm is resonant. In this case, however, the system
comprised a Fox-Smith mode selector which influenced
the competition.

We now discuss an experiment performed under condi-
tions close to our theoretical hypotheses. ' The results
reproduced in Fig. 7 display indeed a simultaneous
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FIG. 7. Details of the experimentally measured tuning curve [reproduced from De Martino, Frey and Pradere (Ref. 31)]. Near the
pump wave number of 4112 cm simultaneous Raman and line-center oscillation is observed on one signal transition [Q(3)], but on
the other one [Q(4)] only the Raman line oscillates.

Raman —line-center oscillation on the same signal transi-
tion. A detailed study is necessary to show that the hy-
potheses of our theory are reasonably well satisfied for
these particular conditions. Near the jumps between two
g (J) transitions, two four-level configurations are in com-
petition (Fig. 8). In the four-level configuration related to
one Q(J) transition (cf. Fig. 9) the Raman gain is propor-
tional to

PJ J+1PJ+1,J PJ J —1PJ—1,J
AC01 AC02

2

2PJ J + 1PJ + 1 JPJ J IPJ
AC0156) 2

2
PJ,J+1PJ+1,J PJ,J —1PJ—1,J+

EC01 Aco2

2

(46)

Jm5 .~(1,5)
Il

Q (&)

The last term results from an interference between the
two paths bringing the molecule from level J, v=O to lev-
el J, U =1. When the pump is close to resonance in one
subsystem the contribution of the other one is negligible
because

(3)
ACE] ))AC02 (47)

or vice versa. Hence in each four-level configuration one
of the three-level subsystems is negligible and the result is
a four-level V-A configuration (see Fig. 8).

Ja5
J 2

Ja4

Q(

3 ———
X

&(0,$
Q(3)X

~(o, z)

i V=O

FICx. 8. Relevant level configuration near the jump between
two successive Q (J) transitions.

FICy. 9. Level configuration corresponding to one Q(J) pump
transition in HF.
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In Fig. 7 the structure of the tuning curve near the
jump is shown in detail with the identification of the oscil-
lating lines. Near 162.5 cm ' the Raman modes are ex-
tinguished bemuse of the rotational absorption band in
v=O, J=3~J=4. When the pump is near the reso-
nance R (3), we notice that the system oscillates only in
the Raman mode in agreement with Ref. 12. Near this
point the detuning changes sign and, according to (46),
the interference term hinders the coexistence of the Ra-
man modes beyond the resonance. However, the interfer-
ence term is very small because condition (47) is verified
and should not influence the position of the jump as ex-
plained in Ref. 6 in the case of 8 (J) pump transitions.
Indeed one sees on the detailed tuning curve (Fig. 7) that
for a pump-laser detuning near 4112 cm ' the asymptotic
oscillation state predicted by our theory is observed: Ra-
man line and line center are simultaneous on one signal
transition and on the other one only Raman line oscil-
lates.

It is also possible to verify that practically all the condi-
tions of our theory are satisfied because of the following.

~There is no lethargic gain (see, e.g. , Refs. 34 and 35);
at 60 Torr rR ——,

' nsec « 2. 5 nsec (pulse duration).
~The envelopes are slowly varying: 6&„'~ ——,', nsec

«2.5 nsec.
+There is no dynamic Stark effect which would mani-

fest itself as a curvature in the tuning curve. "
Only the hypothesis no=n ~ does not hold very well;

this probably contributes to the extinction of the line-
center mode on the lower signal transition. If we read off
the gain of the fir fields in Fig. 2 of Ref. 31 in the region
of the jump at 4112 cm ' we find that simultaneous line-
center —Raman operation occurs on the transition with the
smallest small-signal gain in agreement with our theory.
With a detailed modeling it should be possible to predict
the exact shape of the tuning curve since HF is a simple
and accurately known molecule.

Several experiments on similar systems are currently
under way in a number of laboratories. ' Some of them
could allow a more detailed comparison with our theory.

VII. DISCUSSIDN AND CQNCLUSIONS

The study of line competition in off-resonantly pumped
systems carried out in this paper is feasible only as long as
the concept of a line is well defined. The requirements for
this were postulated in Sec. II.

Because there are close similarities between the case of
an oscillator and an amplifier, only the latter case has
been considered. In an experimental system the approxi-
mation of a quasi-steady-state can sometimes break down
during the build-up phase of fir oscillation. However, our
assumptions would still hold during the main part of the
pulse. Some transient effects, like the one described and
explained with simple population arguments by Wiggins
et al. , would require modifications of our theory.

We have first investigated in Sec. IV the influence of
additional effects in a basic three-level case to check the
generality of the results obtained in Ref. 12. We have
shown that pump laser incoherence, various relaxation

rates, and Doppler broadening generally increase (recall
the exception I ~, I 3~0) the threshold for line-center-
oscillation suppression but do not change the main phys-
ics discussed in Ref. 12. Numerical examples valid for
strong probe fields and nonzero equilibrium population
differences (n 2&n 3) on the signal transition, have shown
that the validity range of the results is even larger than
expected.

In Sec. V, the effects of coupled transitions have been
investigated. Among the numerous possible
configurations, we have isolated three different four-level
configurations which appear as basic elements of the more
complicated oscillation schemes frequently encountered in
experiments. In order of increasing complexity, we have
considered the cascade, the V-A, and parallel transitions.

We found that cascade emission is not a major perturb-
ing factor. Its main effect is to increase the stability
threshold for single-mode Raman oscillation.

The coupling in the combined A and V system was
found to be quite strong. The different contributions to
the signal gains can be identified analytimlly, and the im-
portance of nonlinear dispersion has been shown. The
system is driven into Raman-Raman oscillation but it also
sustains line-center emission on one of the transitions.
Further insight in the physical behavior of the system has
been enabled by the use of the bichromatic Raman-
Raman modes (Appendix C).

The case of parallel transitions resulting from the cou-
pling of two A or two V configurations turns out to be the
most complicated one, despite its apparent simplicity. A
new feature is the strong coupling of the line-center
modes. We have been able to show that the asymptotic
state of the system is again a multimode state. This non-
trivial result demonstrates the importance of all the con-
tributions of the various intertwined effects discovered
previously (populations, population pulsations, coher-
ences, interferences).

The general line-selection problem can be summarized
in the following way which is more a presentation of in-
tuitive guidelines than of general prescriptions:

~Raman emission is strongly favored on all transitions
coupled to the off-resonantly-pumped ones.

~Raman oscillation tends to suppress line-center oscilla-
tion on the same transition.

~Raman oscillation may strongly assist line-center os-
cillation on another transition.

~Cascade oscillation is generally expected to be reso-
nant.

~Interference effects are associated with closed paths
within the system of active transitions. As a consequence
a phase equation has to be added to the set of evolution
equations. In this case transverse effects may become ex-
tremely important since Raman and line-center fields can
have different directions of propagation because of disper-
sion (conservation of momentum). The calculation of the
local response of the atoms presented here would still ap-
ply. Only the field-propagation equation must be
modified.

The discovery of several unexpected effects suggests
that both analytical calculations and numerical codes are
required to solve each special case. Computer codes
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designed for algebraic manipulations would be very
eScient tools for deriving the laborious analytical expres-
sions.

A variety of different experimental results has been re-
viewed. Some experiments under conditions close to our
theoretical treatment have been found. They agree quali-
tatively with our results. Many experimental situations
remain, however, out of reach of a detailed theoretical
line-competition study.
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P41 = —(y41+ l ~41)P41 —«*P31

+ipp40+i ap24,

P25 (3 25+1~25)P25+4(P22 P55)

i—aP51 i/3P—s3,

p4p = —( y4p+I 640)P40 —l e p3p —1p, p41
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pso = —(yso+ i~so)pso —1 g*p20+ i/2*P51 .

Here the dot stands for the convective derivative.
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(A18)

(A19)

(A20)

(A21)

APPENDIX A

From Eqs. (2), (3), and (5)—(9) we obtain the 21 equa-
tions for the density matrix elements. These are given
here for the reader's convenience,

APPENDIX B

We calculate the matrix elements only for the basic
three-level case to order b, . The insertion of Eq. (12) as
well as

p =I (np —ppp) —21m(p*p01),

p11=I 1(n1 —p11)+21m(/2*P01+a*p21),

p22 I 2(n 2 p22)

—21 (map21+/3 P23+0 p25)

P33 = 3("3 P33)+ 2 Im(~ P23 P34)

p44=1 4(n 4 —p44)+21m(e*p34),

pss= I 5(n 5
—pss)+21m(g*p25),

pol — ( j 01+ 1 ~01 )pol +1@(poo p11)+ lap20

P21 (l 21+1~21)P21+la(P22 Pll )

1/3P31 1 F51+ lltlP20

P23 ( y23+ 1 623)P23+1/3(P22 —P33)

lap31 l gp53+ 1 E p24

P34 = (y 34+i 15—34)P34+i e(P33 —P44)

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

/3 =PP+/31 exP( —i 6t) (B1)

D23(p) = iL2(p) [a*p21(p)—ap21( —p) l

+i [L2 (P ) +L 3 (P ) )

X [POP23(/1) /30P23( P)

(B2)

+01P23V +1) Plp23( —p +1)], (B3)

P21(p) = l al» (P )D21(p) —i/3pl21(p)p31(p)

—ipl 121(p)p»(p —1),
P23(P ) 1/30123 (P )D23 (P ) + 1P1123(P )D23 (P —1 )

(B4)

into the equations of Appendix A (for p =@=/=0) leads
to

D21(p) = —n 16~ 0+i [L2(p) +L1(p)]

X [a*p»(p) —ap21( —p)]

+lL2(p)[/3op23(P) PQP23(
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—lal23(p)P31( p)

p31(p) = 1 al31(/2)P23( P) —1/3o l31(p)P2—1(p)

—ip1 !31(p)p21(p + 1),
where we have used the following definitions:

D;, (p) =p;;(p) —pjj(p),

L, (p) =(I, ip6)—
ljk(p) = [yjk +1(~jk p6)]

(B5)

(B7)

(B8)

(B9)
1 jp54+ 1 ep23, —

P53 = —(y53+ l 653)P53 —lg P23

1PP25+ «*P54-

P30 — (y30+ i~30)P30 i/3*P20

—&&P40+&P P31

(A14)

(A15)

(A 16)

As outlined earlier we assume the following:
~The mode with index 0 is at the Raman resonance,

~Z3=~2i =~ .

~The mode with index 1 is at line center
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~The detuning is large,

») I i, yak, a,P

The last assumption allows us to expand in ( I /6). The
Lorentzians are all of first order except 131(0),121(1),123(1)
which are of zeroth order. From the examination of the
infinite linear system (B2)—(B6) it can be inferred that the
order of the matrix elements is the following:

D23(1)=ta*L2(1)p21(1),

p21(0) =1al21(0)D21(0)—1po/21(0)p31(0)

p23(0) = —ial23(0)p31(0)

p»(1) =ial2, (1)D» (1)—ippl21(1)p31(1)

—i P1121(1)p31(0),

(B13)

(B14)

(B15)

(B16)
~Zeroth order: D»(0),
~First order: p»(0), p„(1),p31(0),
~Second order: p»(0), p»(1),

D„(+1),p„(+1).
D„(0), D„(+1),

p23(1)=1pol23(1)D23(1)+1p1123(1)D23(0)

—ial23(1)p31( 1) (B17)

—2I, (0)Im[po p23(0)+P1 p2, (1)l, (B10)

All other elements are of higher order.
The full system (B2)—(B6) can now be truncated to

second order which gives the following self-consistent set:

D21(0)= —n1 —2[L2(0)+L1(0)]Im[a'p21(0)]

p„(0)—,al„(0)p2, (0) &Po l»(0)p»(0)
—i pse*131(0)p21(1),

p31( 1 ) = —
1pp 131(1 )p21( 1 )

p»( —1)= —ip1131( —l)p21(0) .

(B18)

(B19)

(B20)
D21(1)=ia*[L2(1)+L1(1)]p21(1),

D23(0) = iL2(0)Im[a*p21(0)]

(B1 1)

+1[L2(0)+L3(0)][ppp23(0)+p1 p23(1)], (B12)

After some substitutions and elimination of the higher-
order terms, the linear system above becomes (when
r, =r)

I 1+
l P1

l
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l Po 131(0)121(0)]Ip21(0) =ia!21(0)D21(0)
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(B21)
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a
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(B22)
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~
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i Pl

~
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(B24)

B = iP1123(1), (B25)

C = —i
~

a
~

p1123(1) 131(—1)121(0)— ~
/3p

~
131(0)121(1)121(0)

(I —ifi)[1+
~
P1 t

131(0)121(1)]

131(0)123(o)E= —iapp P1131(0)121(1)121(0) 1+
1+

~

P'1
~

131(0)121(1 )

2 a ~'l„(1)x +
~
P1 i

131(0)121(1)+
~
pp

~
131(0)121(0)+

~
p11 i

l„(1)1,1(1)+ I—i6
(B27)
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If we now suppose that all the relaxation times are
equal y~k ——I ~- =y. we obtain the simplified results

p2)(0) = —n) —1+i —1+pa . y IPol

y

. p/3o
I
a

I

'
1

I+
I &~ I

')"

(B28)

(B29)

(B30)

These expressions are discussed in detail in Ref. 12 to-
gether with the different contributions to the matrix ele-
ments which are straightforwardly obtained by back sub-
stitution.

APPENDIX C

As described in Sec. VB we show here how to obtain
information on the asymptotic state from the bichromatic
Raman-Raman mode picture. The details of steplike
phase locking are also studied.

To define the bichromatic Raman-Raman modes we
must return to the original complex evolution equations
and recast them in the form

properties:

~They have no dispersion because A.+ are both real.
~They are always amplified because k+ & k & 0.
oTheir global phase is well defined: N+ ——m, N =0.
~Their components obey the specific relationships

po(z) =0 Po(z) =0
obtained from (C3),

(C6)

ln
Cp

Cp+
(C7)

Gol & G23 - -.
I go+ I &

I &o+I and
I
vo-

I
&

I Po

The last property allows us to conclude that the dominant
Raman component of the more strongly amplified bi-
chromatic mode (with the greatest eigenvalue A, +) is on
the transition where the small signal gain is greater. In
the long run, the state of the Raman modes tends to the
bichromatic state for which the global phase is ~ in agree-
ment with the phase locking equation (36).

Finally, the special case (4=0), not investigated
analytically in the previous letter, ' is easy to treat in this
picture. Without restriction of generality let us assume
that pp, p~, Pp, /3~ are real. To simplify, we will also sup-
pose that p~ and /3~ will not change with distance z. The
initial conditions (pp, p~, Pp, P~) at z =0 define in a unique
manner C~(z =0)=Coy. Let us study the solutions of
the equations,

d Pp
dz /3o

Pp=M
L

(C 1)
1n

Co /3o+

Co+ /3p
(CS)

where the complex 2&&2 matrix M is considered to be an
implicit function of z via p~ and /3~. The following eigen-
value equation defines the natural bichromatic modes in-
dexed by + and —:

M—Po*
Pp+=A+
p (C2)

A z-dependent linear decomposition of the Raman ampli-
tudes can be performed,

PP C PP+ +C PP-
/3o

+ /3o+ /3o
(C3)

The new evolution equation then reads

dz
Pp Pp+ Pp=A+C+ p +A, C (C4)

Despite the fact that we do not succeed in obtaining
simple evolution equations for C+ due to the z depen-
dence of M, we can still show that the bichromatic
Raman-Raman modes have the following several useful

One can show that always /3p+/Pp &0. Therefore the
arguments of the logarithms above have opposite signs
and only one of the solutions zp or z„ is defined at a time.
This solution will be denoted zp. Moreover, it is possible
to show by working out the signs of Cp+ as a function of
pp, p~, /3p, P~ (z =0) that if &P(z =0)=m, then zo = —ac ', if
4 (z =0)=0, then a solution zp such that 0&z & oo al-
ways exists and is given by (C6) or (C7). Moreover if
z &zp then &P(z)=rr. To summarize, if the initial phase 4
is equal to ~ the solution is stable, and if the initial phase
is equal to zero, an exactly steplike phase locking occurs
at zp.

If p~ and P~ do not vary too much with distance [or if
we are close to the point where pp(z) =0 or Pp(z) =0] (C6)
or (C7) will permit us to estimate the position at which
this phenomenon occurs. This special kind of trajectory
in the phase space is continuously approached by varying
infinitesimally the initial condition and therefore no "ca-
tastrophe" occurs in the structure of the phase space of
the system. A numerical example of +=0 has been given
in Ref. 13.
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