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Scattering geometries are represented by tensorial parameters classified according to symmetry un-
der permutations P and Q: P changes a base set of wave functions into its Hermitian conjugate and
Q interchanges the directions of incidence and scattering. These parameters interlink initial and final
states of projectile and target, a linkage mediated by the angular momentum j, transferred in the col-
lision. Collision cross sections and expectation values of the observables are constructed as sums of
geometrical parameters with different symmetries, weighted by dynamical parameters.

I. INTRODUCTION

Earlier papers of this series,""? referred to in the follow-
ing as I and II, have replaced orbital quantum numbers of
collision theory with an alternative set {o,7,{,m} ap-
propriate to a symmetry analysis of the scattering
geometry. The present paper recasts the scattering
geometry in a tensorial form that displays its symmetries
and selects relevant combinations of the (unsymmetric)
dynamical parameters.

Papers I and II dealt explicitly with the prototype pro-
cess

e +He(1s2!S)—e +He(lsnp 'P) . )

The present paper has a broader scope, largely indepen-
dent of the restricted set of quantum numbers in process
(1). Its notation will nevertheless refer for simplicity to
electron-atom collisions, disregarding the influence of
electron spins, of electron exchange, and hence of spin re-
orientation. Modifications of the treatment, required to
broaden its scope further, will be indicated where ap-
propriate.

Main elements of a scattering geometry are the momen-
ta {p,,py»} of the projectile before and after collision.
These momenta combine to yield the following scalars
and tensors symmetric under reflection through the plane
(pa>Pp): (1) the momentum p, —p, transferred to a tar-
get, which is most relevant to the Born approximation
and to target alignment; (2) the vector product p, XPpy,
which defines the axis of target orientation induced by the
collision; (3) the product P, ‘P, =cosb, the variable of the
projectile’s angular distribution; and (4) the dyadic
PaPa +PsPs +3(Pa XPp )Py XPp). Additional base ele-
ments of collision geometry are the multipole moments of
the target—and of the projectile, if any—before and after
the collision. (Regarding {p,,p,} as projectile momenta
is correct only in the limit of infinite target mass. These
momenta pertain actually to the relative motion of projec-
tile and target or, more generally, of any two fragments of
a collision complex.)

The role of observable momenta {p,,p,} as building
blocks of scattering geometry contrasts with the role of
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unobserved orbital (or other angular) momentum states as
base sets for exploiting the invariance of collision dynam-
ics under space rotations. Base eigenstates of {p,,ps ]}
and of {l,,l,} are connected by standard partial-wave ex-
pansions, but the multiplicity of these expansions—for
eigenstates and for their Hermitian conjugates—leads to
the complications of collision theory [see, e.g., paper I,
Egs. (12)-(17)]. To manage this complication, paper I in-
troduced the quantum numbers

o=+l +1;+1), Po=o, Qo=o0,
r=2, 41, —1 1)), Pr=—r, Qr=r,

=Yl —l,+1,—L), Pt=¢, QE=—¢, (2)
=3, —l,—l;+1), Pp=—m, On=—n,

with characteristic parities under the Hermitian conjuga-
tion P and under the permutation Q of {p,,p,}. The
same goal will be pursued here by tensorial analysis of the
scattering geometry along the lines of Wigner-Racah alge-
bra developed long ago for nuclear collisions,? which are
compatible with the (P,Q) symmetry analysis.

To this end the geometrical parameters of projectile and
target will be cast initially into separate multipole mo-
ments covariant under space rotations and then combined
into scalar products (Sec. II). These multipole moments
will then be classified according to their symmetry under
the permutations P and Q, thus determining the symme-
try of their products as well (Sec. III). The theoretical ex-
pressions for cross sections and for other observables con-
sist of summed contributions from scalar products of
geometrical multipole moments with alternative quantum
numbers, each of them weighted by a corresponding
dynamical parameter.

The expectation value of a collision observable is bilin-
ear in the scattering matrix S for the relevant process and
in its Hermitian conjugate ST, as noted in I; it thus de-
pends linearly on the elements of the direct product ma-
trix ST S. This dependence will be analyzed in Sec. IV
with reference to each group of four elements of this ma-
trix that are transformed into one another by the permu-
tations of quantum numbers P,Q, and PQ. The

66 © 1987 The American Physical Society



36 NEW QUANTUM NUMBERS IN COLLISION THEORY. IIIL ... 67

coefficients of four such elements are geometrical parame-
ters, even or odd under each permutation, thus differing
only by factors 1. The dynamical parameters of the
theory are thus identified as sums of the four elements of
each group weighted by ®1. The variation of these pa-
rameters under P and Q will be discussed in the final Sec.
V. A subsequent paper by Lee will analyze the depen-
dence of the target orientation in process (1) on its
dynamical parameters.

II. SEPARATION OF GEOMETRICAL ELEMENTS
FOR TARGET AND PROJECTILE

The scattering matrix S for a collision is usually ex-
pressed in the representation of the total angular momen-
tum J of the projectile and target. Its invariance under

J

Z(LBMBlbmb IJM)(JM {LAMAlama)
M

lla L, J

— Yy HhtMy—my
=2J+1) 3 (=1 Ly 1 i

Jesmy

Equation (3) thus transforms into
(LBMBlbmb IS ’ LAMAlama)

= 2 (—l)j'+MA_mb(LBMBLA —MA |j,m,)

Jrmy

X(L4Lg | SG) | Ll Gem, [ 1y —mpl,m,) ,

where
i I, L, J
(LALB|S<J,)Ilalb)=§J;(—1)(2J+1) Ls I, J
X(Lyly | S(J)| L 41,) . (6)

This transformation corresponds to regrouping the addi-
tion of angular momenta,

J:LA +Ia=LB+Ib ) (7)
into the equation of angular momentum transfer
je=Lg—L%=I,-1Ijy . (8)

The asterisk has been inserted in (8) to specify that
commutation rules for the components of L*% and 1} in-
volve —i instead of i, to preserve the standard rule for the
components of j.® With this proviso, the ket
| (Ia1y)j:m,) represents an eigenstate of |j, | 2. The pro-
viso also implies that this ket is constructed from the

product of the ket | ,m,) with the bra (—1)*~"4(I,m, |

renormalized by the phase factor ( —I)I“Vm“ which also
appears in the transformation formulas (4) and (5). In

space rotations is shown by expanding it into products of
an invariant dynamical parameter and of two Wigner
coefficients, according to the Wigner-Eckart theorem,

(LpMplymy [S [L M lom,)=3 (LgMgl,m, | JM)
M

(Lply | S| L 41,)IM | L M 4l,m,) , (3)

where the capital L and M denote the target angular
momentum and its magnetic quantum number and small
letters | and m apply to the projectile; the labels ( A4,B)
and (a,b) apply to the initial and final states, respectively.

An alternative representation that separates the target
and projectile indices is obtained* by recoupling the
Wigner coefficients in (3) by a standard formula [Egs.
(1.1) and (2.19) of Ref. 5]:

I(LB MpL4—M, |jtmt)(jrmt |1b —myl, mg) . 4)

f

vector symbols, this construction is represented by
| Ualy i) =T | L) x Uz, | 120 ©

[The usage of parentheses and brackets in the superscript

of (9) as well as the symbol U Us) for the matrix U i”mbmé

=(—1) ‘m”ﬁmb m; follow conventions of Ref. 3.]

An important aspect of this introduction of the angular
momentum transfer lies in the range of the quantum
number j, which is limited by the amount of angular
momentum that the target can absorb in a transition
of interest, j, <L, 4+Lg. This limitation contrasts
with the range of the total angular momentum
J <min[L 4 +1,,Lg+1,] which is unrestricted as projec-
tile angular momenta range to infinity.

The representation in terms of j, also affords separate
analysis of the observables of target and projectile. Let us
consider an experiment where (1) target and projectile are
prepared with density matrices p 4 and p,, respectively,
and (2) final target and projectile states with density ma-
trices pp and p, are observed through the responses of
detectors Dy and D,, respectively.® For example, in a
collision where an electron beam is prepared with momen-
tum p, and the scattered electron is detected
with momentum p,, we have p,=|p,)p,| and
Dy, = |p,)(py | . The expectation value of the joint detec-
tor operator DgD, is represented by

(DBD,,)=tr(pobDBDb)=tr(SpApaS‘lDBDb) > (10)

where S denotes the scattering matrix.

Instead of considering the joint detector matrix DgD,
and the joint initial density matrix p 4p,, we now consider
their alternative combinations p 4Dp and p,D,. In the
angular momentum transfer representation, Eq. (10) can
be written as
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<DBD17): 2 2 (LALBIS(jx)flalb)(LALB ’S(_];')“allé)* 2 [((LALB)j,'m,'}pADB |(LALB)j,m,)
[a’]b‘ll;’ll; jt’jr' ml‘mly
X((lalb )jtmt “)an l(la’l[; )jt’ml’)] > (an

thus separating the geometrical elements of the system into those of target and projectile. The separate matrix elements
of p 4Dp and p, D, in (11) can be reduced under space rotations,

(DpDy)= 3 3 (LaLy|SU)|LINL 4Ly |SG) L) 3 (L 4Ll |paDp | (L4Ly)i)]g"
Loty ooty J! K.,
X[l )ji | paDy 1IN (=D . (12)

. . . K
This reduction introduces a new tensorial parameter, namely, the 2" '-pole moment of the angular momentum transfer be-
tween projectile and target,

(KQ|= 3 (=" "(KQ | jimfj;—m) | jim)im] | . (13)
m,,m,’
The value of K, is restricted by the triangular condition |j, —j, | <K, <j, +j, and thus implicitly by the target proper-
ties.

The density and detector matrices of the target can also be expressed in terms of the measurable multipole moments®
of the target states, by recoupling the tensorial set

[(L Ly, | xUY (L ,Lpin™
into

[Kg]’

[(L LK, | xUS [(LyLpK"

as in Eq. (3.9) of Ref. 5,

Ly Lp j

[(L4Lp)ji |paDa | (LaLp)iDlg ' = 3 [(2j+ D2/ +DQ2K 4+ 1)2Ks+ D]V {Ly Lp Ji
K Kp

K+ Kp K,

[Kp] (K g) (K )4K,]
X[[(Lg | Dp [ Lp)T XU "Ly lpa LT "o - (14)
Equation (14) shows how K, represents the rank of the multipole moment transferred to the target. The transfer obvi-
ously satisfies (Kth)e triangular condition |Kz—K,| <K, <K, ,+Kp. The set of multipole moments
{[(L4|palLy )]QAA ; Q04=—K,,...,K ]} represents the coordinates of p 4 in the Liouville representation’ where the
operators p 4 are treated as vectors. The quantity in the bracket in Eq. (14) represents the multipole moment transferred
to or from the target through the operator relation K, =Kz —K%.

Usual experiments can be viewed as special cases of Eqgs. (10)-(14). If an initially unpolarized target is excited by col-
lision, we have

[(LslpalLa4 )](QKAA):8KA08QAO(2LA +1)-12

and the geometry of the final target state, specified by | KzQp), will simply follow that of the multipole moment transfer,
ie., Kg=K, and Qp =Q,. In a superelastic collision,® where the initial target state is prepared by laser with a multipole
moment |K 4Q 4), but the final target state is not observed, the multipole transfer | K,Q,), with K,=K 4 and Q;=0Q 4,
will pass on to the geometry of the projectile.

A formula analogous to (14) represents the 2"‘-pole moment of the angular momentum transfer in terms of projectile
parameters,

la lb Jt

[(Lady)je | paDs | (Li15)j01G" = 3 12+ D2/ + D(2ka + D(2ky + DIV 12 1 2
kg kp

ka kb Kt

[ky]

XU Ua |pa |11 < U5 | Dy 11,1715 (15
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Our restriction to experiments on electrons colliding with targets inelastically, which prepare or observe momentum
eigenstates of the electron, | p,) and |p,), without reference to spin polarization, yields the explicit formulas

[y pa |11y =m) = 2" o i v, Ba)

, (16)
L5 [ Dy [ 1)) =@m) =2 e 1y, 8y -
Equation (3.14) of Ref. 5 gives the explicit expression of the tensorial product in Eq. (15),
Iy — < TA t IR 1YY
[(Uuly)ji | Dopa | Ui g =(am =il o= s 1 e @< v e @ S iz
ko ky
(2k, +1)(2k, +1) |7 0 4 B
2K +1 Y (kapa’kbpb) N (17)
t
with the two-vector harmonic defined by
(K,) A A ky — A A
Yo, (keParksPs)= 3 (=1 “(K,Q, | kaquky —qs) Y . Ba)¥i g, (Ps) - (18)

94:9p

III. SYMMETRIES OF GEOMETRICAL ELEMENTS

The geometrical parameters introduced in the last section, e.g., the multipoles (14) and (15), have definite parities un-
der the operators (P,Q) which are determined by the structure of angular momentum algebra. These properties, de-
scribed below, will select in Sec. IV the combinations of unsymmetrical dynamical parameters which occur in cross sec-
tions and other observables. This selection results from the summation over the indices {I,,l;,,,15,j;,j; kq,k;} Which
are permuted by P and Q.

The spherical harmonics C,y‘](’f), which act as elements of a set of Hermitian tensorial operators,3 are related to their
adjoints by

) =(—19ct ) . (19)
The corresponding property of their tensor products in Eq. (16) is

[k, ] (k,,) [k, 1t k1t

~ [k LN
(r,, )]Qr b

k k

[c*la,)xu = (= O, ) xu el @, "y 20)
According to this formula the tensor products are Hermitian or anti-Hermitian depending on the parity of k, +k, +K,.
The reduced matrix elements (/||C*)||I') (Refs. 4 and 5) are real and their parity under the permutation P equals the par-

ity of I +1'. They are subject to the selection rule
I +1I'+k =even . 21
The reduced matrix elements of their tensor product (20) transform under P as

(ky)

+
C kb] [K ],

it u e e KDy i) = (— 1y R R K g iie e o (LD, (2)

where the parity of k, +k;, +j, +j, + K, represents the combined parity of (/, HC[k"]Hla' ), of (1b||C[k”]||I,§ ), and of the per-
mutation of two rows of the 9j coefficient in (15). Corresponding formulas apply to the geometrical elements of the tar-
get.

The permutation Q interchanges the factors of the tensor product in (21) and (22), and hence the corresponding indices
of the relevant Wigner coefficients. Its combined effect amounts to an interchange of the two columns of indices of the
9j coefficient in (15) bearlng the labels a and b. The parity of this interchange equals that of the sum of the 9; indices.

The harmonics YQ * of the two projectile directions (P,,P, ) are neither even nor odd under the permutations P and Q
in general. The general implications of this circumstance require further studies but cause no problem for the treatment
of process (1) and of its analogs where YQK takes a simple form in a particular coordinate system. We lay the z axis in
the direction of projectile incidence P,, leading to

Yi,q,Ba) =12k, +1)/47]'/%8, 23)

n (18), and hence to g, = Q;. Choosing further the zero azimuthal plane (zx) to coincide with the scattering plane
(pa,pb) also simplifies YQ " through
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(2ky +1)(ky — Q) )!

Yi, -0, (Ps)=

Pkb QI(H)’ COSg:ﬁg 'ﬁb ’ ' (24)

with the associate Legendre function defined by Eq. 2.5.10 of Ref. 9. Equation (18) thus reduces to

(2ky + 1) 2kp + 1)(kp — Q!
(kp +0O: )

Yo (kaBarksPo)=(— 1) "%(K,Q, | k,0ky Q,) Py, 0, (cos0) /4 . (25)

1

The symmetry of (25) under the transformations P and Q will be discussed in the applications to the process (1).'°

IV. SELECTION OF DYNAMICAL PARAMETERS

Consider now the combined implications of the parity of geometrical parameters and of the invariance of observables
under the permutation P. Each observable includes the product (22) of reduced matrix elements of the projectile and of
its analog for the target. The parity of j, +j/ + K, cancels out when projectile and target elements combine to form the
scalar product in (12). The resulting parity of the geometrical parameters is then

ky+ky+K 4 +Kp

(—=1) (26)

The matrix elements of SfXS,
(L Lp |SGH | 1gl)* (L 4Lg |SG) | 1aly), 27)

are changed into their complex conjugates under P. These parameters will then occur in the expressions of observables
in the combinations

k,+ky+K +Kp

(STxS)+(—1) (STxs)*, (28)

that is, as
Re(STxS), when k, +k, +K 4 +Kz=even
Im(STxS), when k, +k,+K ,+Kp=odd .

This important result has been utilized repeatedly in the past;'! its present derivation has fuller generality.

Now let us consider the corresponding implications of the parity of the geometrical elements under the permutation Q,
recalling that this permutation only interchanges terms that are summed over in the formulation of observables. The net
effect of Q reduces to permuting two columns of the 9; coefficient in (15), since the reduced matrix elements with indices
a and b appear together in each term of the summation. The parity of 9; coefficients equals the parity of the sum of all
its indices, that is, of j, +j, +K, since I, +1; +k, and I, +1; +k, are even. Owing to this parity, the expressions of ob-
servables consist of sums over combinations of matrix elements of S7x S and of 9j indices:

la lb jt
(L ALp |SGH) | lalg)*(L4Lg | SGie) | lalp)+(— 1)jr+j’+K L4Lp|SG) | 1pl)*(L4Lg |S )| 1pl, Iy Iy jlp, (30)
kg k, K,

multiplied by coefficients invariant under Q. (The presence of the two-vector harmonics Y(Qlf’) is disregarded here in view
of the remark at the end of Sec. III.)

The symmetric quantum numbers defined by (2) enable us to condense the important result (30) into a more compact
notation. Recalling that (o,7) are even and (£,7) odd under the permutation Q, we rewrite (30) in the condensed form

Ia lb jr
((STGOXS G ormem+ (=1 ST GOXS G orr e ab VLo 15 G T (31)
ko ky K.

The separation of projectile and target parameters and the tensorial analysis in Sec. II have shown that the geometrical
information on projectile and target in (12), (14), and (15) is condensed into the rotationally invariant products of four
tensors:

S (= DL | Dy | L) P ) UL o | L5 1 [ | L1 < U™ 105 1 Dy (1,151, (32)

&

1-0
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This formula can represent both the preparation of target
and projectile in specified geometries and their joint detec-
tion after collision in similarly specified geometries. Lim-
ited specification of these geometries causes one or more
of the indices {K 4,Kp,k,,k;} to vanish. In this event,
the coefficients that multiply (32) are simplified, but the
information on dynamical parameters provided by the ex-
periment is accordingly reduced.

The structure of (32), symmetric in the target and pro-
jectile geometries, permits one to view a collision equally
as transmitting anisotropy from the projectile to the target
or from the target to the projectile. The representation in
terms of angular momentum transfer has been used in the
past* mainly for the case of K,=0 and j,=j,, where no
anisotropy is transferred. Its extended use in this paper is
apparently new.

A second novelty of the present treatment lies in the
use of symmetries under the permutations P and Q to
identify the combinations (29) and (31) of dynamical pa-
rameters that are more directly accessible to experimental
determination. The coefficients that combine the tensor
products (32) with the dynamical parameters (29) and (31)
in the expressions of observables are provided by angular
momentum algebra.

V. SYMMETRIES OF DYNAMICAL PARAMETERS

Dynamical parameters have generally no symmetry un-
der the permutations P and Q as noted above. On the
other hand, they are calculated from matrix elements of
the interaction between projectile and target, each of
which generally has a definite parity. This parity depends
on whether the interaction connects multipole moments of
charge or current distributions. It applies directly to
some dynamical parameters, for example, in the first Born
approximations, but is mixed in higher approximations
that combine effects of charge and current distributions.

Unlike the geometrical parameters, the magnitudes of
dynamical parameters depend on the energy differences of
the projectile and of the target in their initial and final
states. This dependence may be enhanced or, instead,
compensated by the difference of centrifugal potentials
which accompanies changes of angular momenta. These
combined effects yield “propensity rules”!? governing the
magnitude of dynamical parameters, which will be dis-
cussed below and are analyzed through their combina-
tions (31).

A. Symmetry under P

Dynamical parameters have a definite parity under P
when they are real or imaginary. In the notation of
{o,7,§,m] with (0,§) even and (7,7) odd under P, their
parity emerges from the relation analogous to (32):

P(S™XS)yrea=(S"XS% .00

=(S"xs) (33)

o, =17 -

A definite parity, to within irrelevant phase normalization,
obtains in the first Born approximation, as we have noted.
The first Born approximation holds particularly for large
impact parameters, that is, for large values of the orbital

quantum numbers and, especially, of the new o. This ap-
proximation also contributes to the dynamical parameters
ST%S when it holds for large / contributions to S or S t
only; in this event the value of o need not be large but the
value of 7 is comparable to it.

On the other hand, higher-order perturbation expan-
sions include integrations over the energy of intermediate
states. The integrals consist generally of two terms 90°
out of phase, namely, the resonant term from intermediate
states that conserve energy and the principal-part integral
over states of different energies. Each of these terms has a
definite parity under P to within phase normalization but
P changes their sum into its complex conjugate. Approxi-
mate parity of the dynamical parameters emerges only
when either term predominates over the other.

Regardless of perturbation expansions, the complex
character of the scattering matrix emerges from its repre-
sentation in terms of the real reaction matrix K :'3

s=1+tiK
1—iK
The equation for the K matrix contains only principal-
part integrals, but the resonance contributions are related
to the principal parts by dispersion relations and are im-
plied by the analytic structure of (34).

Note finally that the occurrence of charge and current
interactions with ofpposite parity P emerges in the dynami-
cal parameters S XS only through the interference of
cross terms in the expression of their bilinear structure.
Terms of STxS quadratic in the charge or current in-
teractions are, of course, real. Current interactions gen-
erally contribute to dynamical parameters only weakly at
nonrelativistic energies.

(34)

B. Symmetry under Q: Propensity rules

The correlated variations of the projectile energy E and
orbital momentum / during a collision influence the mag-
nitude of the relevant S matrix element as anticipated at
the beginning of this section. The permutation Q of /,
with [, will thus generally alter the magnitude of
(L,4Lg|S(,)]|I1,) since the energy change E,—E,
remains equal to the excitation energy of the target.

Specifically, the permutation of /, and [, affects the
overlap of the projectile’s radial wave functions,
&E,1,(rdE,1,(r), whenever I,5£l,. This overlap is opti-
mized, with a resulting boost of matrix elements, when
the wavelengths of ¢g,;, and ¢g,,, are nearly equal in the
range of r that contributes mostly to S. Since the wave-
length decreases with increasing E but increases with in-
creasing centrifugal potential, overlap is enhanced when
the differences E, —E, and I, —I, have the same sign.'?
S-matrix elements for target excitation, which require
E, —E, >0, will thus be larger when [, >, and will be
reduced by the permutation Q. This is the essence of a
propensity rule which depends but little on other aspects
of the collision.

This rule is illustrated by the data of Table I for the e-
He collision (1) calculated in the distorted-wave Born ap-
proximation (DWBA) as described in Ref. 10. Some
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TABLE 1. The modulus and phase of the radial overlap integral R,b I [this integral determines the

scattering matrix (Lgl, | S(j,) | L 41,) in the calculation of Ref. 10] calculated from DWBA for the pro-
cess (1) at 80-eV impact energy. Numerals in square brackets represent powers of ten.

I Iy Modulus Phase 1, I Modulus Phase

1 0 0.126 0.230[ +01] 0 1 0.305 —0.956

2 1 0.424 0.111[+01] 1 2 0.121 —0.206[ +01]
3 2 0.456 0.634 2 3 0.187[ —01] —0.251[+01]
4 3 0.414 0.417 3 4 0.208[ —01] 0.416

5 4 0.356 0.292 4 5 0.328[—01] 0.292

6 5 0.297 0.211 5 6 0.332[ —01] 0.211

7 6 0.244 0.154 6 7 0.292[ —01] 0.155

8 7 0.199 0.113 7 8 0.242[ —01] 0.114

9 8 0.162 0.831[—01] 8 9 0.193[—01] 0.845[ —01]
10 9 0.132 0.612[ —01] 9 10 0.152[ —01] 0.626[ —01]
11 10 0.107 0.450[ —01] 10 11 0.119[ —01] 0.464[ —01]
12 11 0.879[ —01] 0.331[—01] 11 12 0.926[ —02] 0.344[ —01]
13 12 0.721[ —01] 0.243[ —01] 12 13 0.724[ —02] 0.255[ —01]
14 13 0.593[ —01] 0.179[ —01] 13 14 0.566[ —02] 0.189[ —01]
15 14 0.489[ —01] 0.132[ —01] 14 15 0.446[ —02] 0.140[ —01]
16 15 0.405[ —01] 0.977[ —02] 15 16 0.352[ —02] 0.105[ —01]
17 16 0.335[—01] 0.726[ —02] 16 17 0.280[ —02] 0.781[ —02]
18 17 0.278[ —01] 0.542[ —02] 17 18 0.224[ —02] 0.586[ —02]
19 18 0.232[ —01] 0.407[ —02] 18 19 0.180[ —02] 0.442[ —02]
20 19 0.193[ —01] 0.309[ —02] 19 20 0.145[ —02] 0.337[ —02]
21 20 0.161[—01] 0.236[ —02] 20 21 0.118[ —02] 0.258[ —02]
22 21 0.134[—01] 0.184[ —02] 21 22 0.969[ —03] 0.200[ —02]
23 22 0.112[ —01] 0.144[ —02] 22 23 0.787[ — 03] 0.157[ —02]
24 23 0.940[ —02] 0.115[ —02] 23 24 0.662[ —03] 0.124[ —02]
25 24 0.786[ —02] 0.927[ —03] 24 25 0.539[ —03] 0.101] —02]
26 25 0.660[ —02] 0.771[ —03] 25 26 0.466[ —03] 0.818[ —03]
27 26 0.551[ —02] 0.633[ —03] 26 27 0.379[ —03] 0.689[ —03]
28 27 0.464[ —02] 0.544[ —03] 27 28 0.339[ —03] 0.567[ —03]
29 28 0.387[ —02] 0.457[ —03] 28 29 0.274[ —03] 0.494[ —03]
30 29 0.326[ —02] 0.404[ —03] 29 30 0.253[ —03] 0.414[ —03]

violations of the propensity rule are apparent for low
values of [, in the Table. In these cases the reduction of
the centrifugal potential from [, (I, +1)/r? to I,(I, +1)/r2
has greater effects upon the electron than the concurrent
reduction of energy from E, to E,.

The effect of the propensity rule upon the dynamical
parameters is readily seen to depend on the quantum
numbers (§,7n), at least for process (1). Four distinct com-
binations of the signs of /, —I, and I, —I, occur, namely,

(1, >l,,},la’ > 1), (favored, favored) ,
when =0 and {=1,
(I, >1,,l;, <1;), (favored, unfavored) ,
when p=1 and £{=0,

(35)

(I, <ly,l; > 1), (unfavored, favored) ,

when n=—1 and {=0,

(I, <ly,l; <1p), (unfavored, unfavored) ,

when =0 and {=—1.

It is apparent from (35) that the sum of 7=0 components
have much larger magnitude than for {=0. The two
combinations of {=0 with n==x1 appear equivalent on
inspection of (32). However, a closer analysis shows a
systematic dependence on 7 of the dynamical parameters
as functions of o, namely, =1 prevails for small ¢, and
n=—1 for large 0.
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