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Quantum electrodynamics based on self-energy: Spontaneous emission in cavities
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We extend a previously developed formulation of QED based on self-energy to include the effect of
perfectly conducting boundaries on spontaneous emission. The method is quite general and applic-
able to any quantum system and many boundary geometries. In particular, we compute the spon-
taneous emission rate of an atom near a conducting plate, inside a spherical cavity, and between
parallel plates. We give general formulas and predict both enhanced and inhibited rates, in agree-
ment with recent experiments.

I. INTRODUCTION

Recent experiments have demonstrated that there is a
change in the spontaneous emission from Rydberg atoms
in the vicinity of conducting walls. Both inhibited emis-
sion' and enhanced decay rates have been observed —the
latter when the cavity is tuned to a transition frequency
between two neighboring Rydberg states. Inhibited decay
was also seen in the case of cyclotron radiation by an elec-
tron in a Penning trap, in fluorescent decay rates, and in
the suppression of blackbody absorption by Rydberg
atoms in a parallel-plate cavity. '

Theoretical predictions of this effect seem to go back to
Purcell (see also Ref. 8). There have been a number of
theoretical discussions of this and related phenomena in
the case of plates. ' ' However, all of these calculations
were carried out in the context of the second quantization
of the electromagnetic field and its associated vacuum
fluctuations. We show in this paper that the effect can
equally well be computed in the framework of the self-
energy formulation of QED, ' ' where there is no field
quantization and the vacuum is empty and static.

It is well known that Dirac' in 1927 was able to derive
the Einstein A coefficient of spontaneous emission from
second quantization; this was seen as the first major suc-
cess of the theory. It is perhaps less known that Fermi'
in that same year was also able to arrive at the
coefficient simply by adding a nonlinear radiation-reaction
term to the Schrodinger equation. The connection runs
deeper. In 1951 Callen and Welton, ' in their famous pa-
per on the fluctuation dissipation theorem, demonstrated
that there is indeed an intimate relation between zero-
point fluctuations of the electromagnetic field and the
phenomenon of radiation reaction. In 1973 Ackerhalt
et al. ,

2o Senitzky, ' and Milonni et al. —working within
standard QED—were able to demonstrate that the decay
of an excited state can be interpreted as being caused by
the electron's perturbation by the vacuum electric field
fluctuations, or by the radiation reaction of the electron to
its self-field —or in fact any linear combination of these
two effects.

In view of this situation one may ask if one can refor-
mulate QED totally in the self-energy picture as a com-
plement to the more conventional picture of second

quantization. One approach in this direction was taken
by Jaynes and his collaborators with their "neoclassi-
cal" theory; an elaboration of Fermi's original idea of
modifying the Hamiltonian with a radiation-reaction
term. More recently, a different general theory has been
advanced by Barut and Kraus, ' and Barut and van
Huele. ' This formulation of QED is based entirely on
self-energy without second quantization, and is developed
in its full relativistic version in the first paper. The second
paper contains a nonrelativistic specialization of the
theory which is used to obtain both the Einstein A
coefficient and the Bethe Lamb shift for an atom in free
space; all without vacuum field fluctuations.

In this account of QED the self-part of the electromag-
netic four-vector potential A „ is eliminated from the
Maxwell-Dirac equations through the use of a Green's
function —and so the emission from an atom depends nat-
urally on the Green's function of its environment. In the
present paper we show how this idea can be used to ac-
count for the effects of nearby conducting boundaries.
For simple geometries it is expedient to use the method of
images, which we apply to an infinite conducting plane, a
conducting spherical shell, and a pair of parallel planes.

II. THE METHOD

Barut and van Huele have shown that for an isolated
system in free space the Einstein A coefficient to first or-
der in a is twice the imaginary part of a complex energy
shift. For the nth excited state (where n stands for all the
quantum numbers of the state) of the system, they give'
(fi=c = I)

dkg co„ f „T '(k) T„i(—k)

&& (5;, k; f) )5(co„—k )—,

where mo is the electron mass, a is the fine-structure con-
stant, co„=E„—F. , an energy-level difFerence, and the
0; components of a unit vector in the direction k (summa-
tion implied over ij) The 1 s a.re electron wave-function
form factors, given by'
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„T (k)= f d xg„*(x) —P. (x)e'
l

with the g„ forming a complete set of wave functions for
an atom, harmonic oscillator, electron in cyclotron
motion, etc. Notice that in the dipole approximation,
e'" "-1 and n Tm =pnm, the matrix elements for the elec-
tron momentum.

Equation (1) was obtained from coupled Maxwell and
Dirac equations, with the Maxwell equations written as

z

(q=-1 )

image charge

A„"'(x)+A„„(x)=—j„(x), (3)

III. ATOM NEAR A CONDUCTING PLATE

An infinite conducting plate is positioned normal to the
z axis at z =0. If a unit test charge is placed on the z axis
at zo & 0 the plate may be replaced with a negative unit
charge at —zo (see Fig. 1). If in addition the real test
charge has momentum p ~ V, then in our coordinates the
image has momentum

p'cc P'= d d d
dx dp dz

A „"' being the electron self-field, A „=A „"' + A „'"' the to-
tal field, and j„ the four vector for the electron's probabil-
ity current density. Equation (3) is solved formally with a
Green's function D„

A„"' (x)= f d y D„(x—y)j"(y), (4)

where in free space with the Coulomb gauge, we have, as
usual

—ikx

D;, (x)= f d k (5;, f, f, ) . —
(2ir) ko —

~

k
~

Now in the presence of boundaries we have to use some
appropriate Green's function D„. It is well known that
the electrostatic method of images, in its capacity as a
technique for constructing Green's functions, generalizes
to the full electromagnetic field. "' ' The cavity func-
tion D&, will then be a linear combination of the free
space D„, and some additional image function(s). The
new form factors T are then computed and used in (1) to
find the modified A coefficient A, .

z=P

FIG. l. A unit charge (q =1) in front of an infinite conduct-
ing plane and the appropriate image charge. p and p' are the
rnomenta of the charges.

Including both of these effects at once, Eq. (2) transforms
as follows:

„T (k)~„T (k)e ' —„T' (k)e '=„T (k),
where zo=(0,0,zo). The form factor product in (1) be-
comes

„T '(k) T„'(—k)~„T '(k) T„'(—k)

=„T '(k) T„J(—k)
—cos(2k. zo)„T '(k)[ T„j(—k)]',

(7)

where factors of the form T'T' have been deleted and
those of TT' multiplied by an extra —,', due to artifacts of
the imaging procedure. In addition, we have used sym-
metry in dummy sum and integration variables to com-
bine two terms. We now make the replacement (7) in Eq.
(1) and carry out the angular integration. As in the previ-
ous papers, we assume that TT and TT' are functions of

(From general considerations these products are at
most a linear combination of function of

~

k
~

and a term
proportional to a„.k, where a„ is some constant vector.
Then a second application of symmetry with respect to
dummy variables shows that the latter always vanishes. )

The exact result for the modified Einstein A coefticient
near a wall is then

A„=A„—,g co„~„T ~' (1 —g„) +(I+/, )

Pnm
(m &n)

Sing nm

3
Pnm

Here g„=
~

„T'
~

l
~
„T

~

is introduced to display the asymmetry of the system with respect to the z coordinate,
~
„T

~

is a function of co„, and p„=2zo
~
co„~ scales as the distance of the atom from the plate.

If the use of the dipole approximation (DA) is justified [i.e., if the atom s dimensions are small when compared to the
transition wavelengths k„contributing to the sum in (8)] then the A coefficient becomes

A „=A„—2a g co„~r„~ (1—g„) + (1+/„)
m Pnm Pnm

(m &n)

Slnpnm
3

Pnm



36 QUANTUM ELECTRODYNAMICS BASED ON SELF-ENERGY: 651

rn is a matrix element of the electron's coordinate operator, related to those of the momentum by pn =i~„mor„
Also we have the simplification g„=

~
z„~ /

~
r„~ and thus for one-electron atoms g„can be computed directly.

We shall be most interested in Rydberg transitions prepared such that („=0or 1—or an ensemble of randomly orient-
ed atoms for which on the average g„can be taken to be —,'. Notice that as zo~ oo we recover the free-space formula,
namely

3
(m &nj

(10)

IV. ATOM IN A SPHERICAL CAVITY

We consider a grounded conducting spherical shell of radius a whose center coincides with the origin. If a unit charge
is placed on the z axis at zo,

~

zo
~

&a, the correct Green s function is obtained by replacing the sphere with an image of
charge —zo/a =g, which is located at z=zo=a /zo. (See Fig. 2.) The directions of the momenta of the two charges
are related as in the single-plate case, which we again notate with p and p . The form factor substitutions become

I

„T '(k)~„T '(k)e —g[„T J(k)e ]',
„T '(k) T„'( —k)~„T '(k) T„~(—k) —g cos[k. (zo —zo)]„T '(k)[ T„(—k)]',

with the same conventions as used before. We can now modify Eq. (1), and straightforward manipulations yield

(12)

co„~„T
~

(1—g„) +(1+(„)
mO m Vnm Vnm

(m &n)

Slnvnm

3
Vnm

(13)

with v„=a[g—(I/g)]
~
co„~ and g„as before. To

obtain A in the DA one simply replaces
~
„T

~

~co„m P r„~ . As a check, we notice that if
we transform the sphere into a plane by letting a~ac,
while keeping a —zo fixed, the single-plate result of Eq. (8)
is recovered.

[ T (k)]('p nTm(k) (p odd)

„T (k) (p even), (14)

where a:=b represents a defined by b. With this notation
the form factor of (2) becomes [z~ = (0,0~~)]

V. ATOM BETWEEN PARALLEL PLATES

Two infinite parallel conducting plates are placed nor-
mal to the z axis at z=+L/2, L being the plate separa-
tion. For a unit charge on the axis at z=zo,

~
zo

~
&L/2,

the plates may be replaced by an infinite series of image
charges —located on the z axis at z~ =pL +( —1) zo,
p=+I, +2, +3, . . . , and each with a charge of ( —1)
(see Fig. 3). The image momenta directions alternate,
which we account for by defining

„T '(k)~ g ( —1) [„T '(k)]' e

6 is the usual unit step function which we are using to
take into account retardation. (The atom at zo does not
react to the image at z~ until time t+

~
zo —z~

~

/c. ) For

(q= -z.i'a )

image

image
p

P

Z)

(q--~)

charge

P

0
Zp

image

P

Z)

(q= -1)

z = -L/2 Z= L/p

FICx. 2. A unit charge inside a conducting spherical shell and
its associated image.

FICx. 3. A unit charge between parallel plates and the resul-
tant series of image charges.
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L «c/r„=cd„(r„being the lifetime of the state n), we

may set 8=1.
We need the Poisson summation formula as used in the

distribution sense

e' "' = g 6(x n)—=:A(x) .

Using this we can now carry out the form-factor product

T '(k) T„'(—k)~[„T '(k) T„'(—k)

—cos[k, (2zo L—)]

k, L
X.T '(k)[ T„'(—k)]'Ib, '

. (ll)

Inserting this into expression (1), and being careful with
the integration, we find

[~, 2
2

co„~„T
~ g (I+/„)+(I—3g„)

mO m p=1 Onm
(m &n)

(I —3g. )+ ( I+g„)
&nm

2z,
cos harp

—1 (18)

valid, as noted before for L «cA„. Here g„ is as be-
fore, cr„=L

~
co„~ /n, and [k] is the greatest integer

less than k.
Milonni and Knight, Philpott, ' and Barton

the framework of standard @ED—have previously ar-
rived at similar formulas. We emphasize again that what
is new here is that (18) was computed, to our knowledge
for the first time, from a theory which is not second quan-
tized and in which there are no fluctuations in the vacu-
um radiation field. This is in sharp contrast to the
above-mentioned derivations, all of which rely heavily on
those two concepts.

VI. COMPARISON TO EXPERIMENT

In their experiment Hulet, Hilfer, and Kleppner (HHK)
find both enhanced and inhibited spontaneous emission
for Rydberg atoms between parallel plates. ' Cesium
atoms are prepared in a single-electron (Rydberg) circular
state with principle quantum number n=22 and azimu-
thal quantum number

~

m
~

=n —1 =21. The decay
mode of this state is a single dipole transition, important
to the experiment, since a state with several decay modes
would have to have all possible transitions enhanced or
suppressed in order to observe the effect on spontaneous
emission. In terms of our formula (18) this means only
one term will contribute to the outermost sum (n =nlm
and m =n '1'm '). The observed transition is n1m

(22,21,21)~n'l'm' (21,20,20) with wavelength X0-=0.45
nm. Our z axis becomes a quantization axis due to an
electric field directed normal to the plates; the selection
rule 6

~

m
~

=1 then guarantees that the emitted radiation
is polarized parallel to the plates. Thus the matrix ele-
ment z„and hence the parameter g„are in this case
zero.

The plate spacing L is tuned to L -A,o/2, with a varia-
bility of h, L /L =0.04. This means that in (18),
o „=cr—1 and [cr]=0, 1 for cr & 1 and o ) 1, respective-
ly, and so we also have only one or zero terms in the in-

nermost sum. The atoms sample all values of zo in the
range

~

zo
~

&L/2, and so we average formula (18) over
this domain. Including all these observations, we have

e(~ —1),
0

(19)

where 2 is the free-space coefficient, a =L
~

coo
~

/rr
=L (/A, o2/), and e is a step function. As we vary L in
the range 0&L & 3AO/4 (recall the formula is only good
for L «cA ) or, equivalently, 0&a & —,', we see that the
spontaneous emission rate is zero until cr =1 (L =A,o/2)
where it jumps to ( A )„=—', 3, and then decays back to-
wards 3 as the plate separation increases (see Fig. 4). In
fact, Fig. 4 looks very much like the experimental plot
given by HHK. In particular, their analysis indicates that
a predicted enhancement to —,

' 3 at L =Xo/2 agrees with

the data to within 5%.
If one does not average (18) over zo, but rather localizes

the atom at zo ——0 instead (cf. the Penning trap experi-
ments), then (18), under all the same conditions as stated
above, still predicts an enhancement of —,

' 3 .
Formula (13) for an atom inside a sphere also lends it-

self to such an averaging procedure as used for the plates.
If we average (13) over

~
zo

~

& a we get

( g )sphere gon av n (20)

i.e.r, the free-space value —regardless of the value of g„
or of the presence of a quantization axis. This difI'erence
between the parallel-plate case arises because 3 —2 is
an odd function of zo for the sphere formula, but even for
that of the two plates. So a uniformly distributed ensem-
ble of atoms inside a sphere should not show a change in
their emission rates. Of course a localized atom will ex-
perience a change in its emission rate as per the unaver-
aged (13); for example, at exactly the center of the sphere
z0=0, (13) predicts again 3 = A . (The atom would have
to be slightly off center for a non-null effect to appear. ) It
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A/Ao

3/p

/
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L
il p
2

FIG. 4. The change of the spontaneous emission rate A as a
function of the plate spacing I. averaged for an ensemble of
prepared Rydberg atoms between parallel plates. A is the free-
space emission rate and A.o is the wavelength of the emitted pho-
ton.

is the azimuthal symmetry and the existence of a charac-
teristic wavelength in the parallel-plate case which causes
its effects to be much more pronounced than the sphere.

VII. CONCLUSIONS AND DISCUSSION

In the Dirac picture of quantum electrodynamics, the
spontaneous emission rate of an excited atom can be
changed by a nearby boundary through their mutual cou-
pling to the quantized vacuum field. In the present pic-
ture no such coupling occurs as the vacuum is truly emp-
ty. Rather here the structure of the electron's self-field
depends on the presence of the boundary, and thus the
radiation-reaction force —the cause of spontaneous emis-
sion in this view —is modified.

Our further program is to see how far we can go in un-
derstanding radiative processes from the point of view of
self-energy without second quantization. Work has been
completed on Lamb shifts and the related Casimir-Polder
long-range van der Waals forces near boundaries. Work
is in progress to include the general Casimir as well as
Casimir-Polder forces, the Unruh effect, and apparatus
contributions to the measured g-2 value for electrons in
Penning traps. In the case of g-2, considering the recent
extremely accurate experiments, ' and the current
theoretical controversy, ' it would be advantageous to
have a totally new approach to the problem.

We would like now to discuss several general issues re-
lated with our approach to radiative processes based on
self-energy. We note first that the formulation of the
theory is quite general and valid without the dipole ap-
proximation. We did pass later to the dipole approxima-
tion in order to compare our formulas to previous theoret-
ical results and to experiment, as well as to maintain a

consistent nonrelativistic treatment. (The errors obtained
by using the dipole approximation are of the same magni-
tude as relativistic corrections to the wave functions. ) A
full relativistic calculation of spontaneous emission,
without recourse to the dipole approximation, has been
carried out in a recent paper. Two points should be em-
phasized concerning the nonclassical nature of light as
shown experimentally and the need of field quantization.
In our formulation we express the properties of the elec-
tromagnetic field by the properties of its source; the
source and the environment determine the nature of the
light via Eq. (4). Thus "quantized" or "nonclassical" be-
havior of light is due to the particular quantized proper-
ties of the source j„(x) and we may (and in the laboratory
we do) produce coherent light, squeezed light, light from a
pure state, etc. In our view, then these states arise not
from second quantization of the photon field, but rather
from the first-quantized matter field which produced this
light —when the self-energy of that matter field is proper-
ly taken into account.

Secondly we interpret g, or rather eg*g, as represent-
ing the charge density (or current) of electronic matter in
a manner envisaged by Schrodinger himself. Consequent-
ly, a g current produces an electromagnetic field. Thus P
is not used here as a probability amplitude.

Confusion might arise trying to interpet our expansion

tt (x)=g g„(x)e (21)
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as a superposition of states. This is not the case; we in-
terpret g(x) as a classical field, the above equation is sim-

ply a Fourier transformation, and we interpret the observ-
able j„(x)as the current.

Finally, we may comment on the validity of exponential
decay of spontaneous emission for very long times when
the usual Weisskopf-Wigner approximation is invalid.
Here we have obtained the exponential decay from the
imaginary part of the self-energy shift, which in turn was
obtained in an iterative solution of nonlinear equations.
The regime of very long times would correspond to taking
into account higher-order iterative terms which we have
not considered in this paper.
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