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Photon-counting distribution in squeezed states
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We calculate the counting (multiplicity) distribution P& =&N
I pl 1V) where p is (i) the density

matrix corresponding to a (pure) squeezed state and (ii) the density matrix of a superposition of
squeezed states with thermal light. In the first case, we find that P& is an oscillating function of
N. In the second case, this behavior, characteristic for squeezed states, disappears even for small
amounts of noise.

Squeezed states' are of great theoretical and possibly
practical interest. They contain less than the standard
zero-point fluctuations in one quadrature, at the expense
of having more fluctuations at the other quadrature. Ap-
plications in optical communications have been considered
in Ref. 2.

Here we study both pure squeezed states and the more
realistic case of mixtures of squeezed states with thermal
fields, and we evaluate numerically the multiplicity
(counting) distribution Prv =(N

I p I N).
We consider a representation of the SU(1,1) realized

with the unitary operators

Uz(r, 8,X) =exp[ —
—,
' re ' (a ) + —,

' re' a ]exp(ikata),

U2(r, 8,~)Ui (A) 10& (2)

UzU2 1, r )0, r, 8,X C R, [a,at] =1

and we introduce the squeezed coherent states
I
A;rN, ) as

I A;r8).& -U, (r, 8,),) I A&

I A;rN, ) are eigenstates of the destruction operator b

b I A;rN & bU21A) U2a I A& =A
I A;rN. ) .

Note also that

I A;rN ) =Uz exp(Aa1 —A *a) 10)

=exp(Ab t —A *b)U, I 0&

=exp(Abt —A*b)10;rN) .

(6)

(7)

From (6) and (7) we see clearly that IA;re, ) may be
viewed as ordinary coherent states with respect to the
operators b, b ~.

The authors of Ref. 1 calculated the quantities

(ata&=(A;rN, I
ata

I A;rN) =
I A |I

+
I v)

((a) a&
(ata&'

=j+ I A, p —A,*v
I I A i I

+
I v I +21 v I

(IAql + Ivl )

U|(a) exp(Aat —A*a) .

We can prove the relations

(3)
A —vA* .

U2aU2 pa+ va b, U2a U2 =v*a+ f1*a =6

p e ' cosh( —,
' r), v=e ' "+ lsinh( —,

' r), (4)

I p I I vl

The operators b, b t obey the boson commutation relations
[b,bt] 1 and the transformation (4) is a Bogoliubov
transformation. From Eq. (4) and the fact that Uz is uni-
tary we can trivially prove for any function f(a, at) the
relations

Uzf(a, at)Uz=f(b, bt) Uzf(a, at) =f(b, bt)U2 . (5)

Equation (5) implies that Uza =bUz and hence the

The gt ) can take values less than 1 (antibunching) or
between 1 and 2 (bunching) or greater than 2 (enhanced
bunching). We consider here the particular case in which
X=8=0 and A is a real positive number. Equation (8)
now simplifies into

(N) =A [cosh( —,
' r) —sinh( —,

' r)] +sinh ( —,
' r),

g =1+ (e ' —1)+ (1+sinhr)sinh ( —, r) .l, I ~ . Q 1

(N) (N)'
(10)

The distribution Prv = 1(N I A;rN. ) I has been calculat-
ed in Ref. 1 and simplifies in our case into

PIv I (N I A;r) I =, ( —,
' tanh 2 r) exp( —A +A tanh —,

' r)Hg,
&zN!cosh —,

' r (sinhr) 'i
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Using (8) we rewrite (11)as

P~(r,(N)), [2 tanh(2 r)l H~~(Z~). e

TABLE II. Pure squeezed states with r -1, (N, ) 9.

&N I p IN&

I &N& —sinh'( —,
' r) I

' '
[cosh( —,

' r) —sinh( —,
' r)](sinhr) '~

(N& —sinhz(-, ' «)
Z2-

cosh( —,
' r) [sinh( 2 r) —cosh( —,

' r)]
For fixed r, (N) the result is an "oscillating" function of N
(see Tables I and II).

In practice it may be dificult to produce pure squeezed
states. For this reason we now consider a superposition of
squeezed states with thermal fields. For ordinary
(Glauber) coherent states, this mixture was originally
studied by Glauber and by Lachs and is described by the
density matrix

P d28p'-„Po(8)U (8) I A)&A I Uj~(8)

(i3)

(N, ) P (N, )

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.254 x 10
0.475 x 10
0.421 x 10-'
p.236x10-
0.935 x 10
Q.278 x 10
0.641 x 10
0.117
0.171
0.199
0.183
0.130
0.679 x 10
0.231 x 10
0.354 x10
0.237 x 10
0.799 x 10
0.837 x 10
0.281 x 10
0.129x 10

Extension of these arguments to squeezed states has been
considered in Ref. 4. The mixture of squeezed states with
thermal light is described by the density matrix

d 28
p „Po(8)Ui(8) l»r~&&A'«I~~ IU((8)

(i4)

(N, ) P (N )

We see clearly that the coherent part I A)(A I of (13) has

A)) sinh
r r

exp
2 2

0 0.

The result is

been replaced by the squeezed coherent operator
I A;«N )&A;«N, I in (14). An analytical expression for
(N I p I M) is given in Ref. 4 for the case of real positive A,
much larger than r.

TABLE I. Pure squeezed states with «0.5, (N, ) 6.

&N I p IN&

TABLE III. Superposition of squeezed and thermal states;
«05 (N) 6 &NT) 012 y 50.

&Nl plN&

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Q.599x 1Q

0.551 x10
0.240 x 10
0.658 x10
0.127
0.182
0.202
0.175
0.119
0.638 x 10
0.263 x 10
0.796 x 10
0.161 x 10
0.163x 10
0.761 x 10
0.545 x 10
0.391 x10-'
0.810x 10
0.298 x 10
0.891 x10-s

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.130x 10
0.932 x 10
0.326 x 10
0.743 x 10
0.124
0.162
0.172
0.152
0.115
0.755 x 10
0.434 x 10
0.221 x 10
0.101 x 10
Q.413x 10
0.154x 10
Q.529 x 10
0.169x 10
0.506x10 4

Q. 145 x 1p
0.407 x 10
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&N
~ p ~

M) = [cosh( —,
' r)] 'j&NT)[1+tanh( —,

' r)l+e'j ' f&NT) [1 —tanh( —,
' r)]+e 'j

x exp( —y(NT) [(NT)+e "[cosh (~z r)] [1+tanh( z r)]j ') (N!M!)

C„=C22= —,
' (1+(NT))(A —K)+tanh( —,

' r)(1+&NT) '),
c12 = —

—,
' (1+(NT) ) (K+A),

(N, )

i+(N, )

(++M)/z
(cd)

HN'M(R1, R2),

Ri =Rp= — 1—tanh( —,
' r)

K(NT)
e " y'i [cosh( —,

' r)](l+&NT))

[1+tanh( —,
' r)] '(NT)+e "cosh

[1 —tanh( —' r ) ] '(NT) +e"cosh2 2

(N, )

(N, )
'

where (N, ), (NT) are the mean number of coherent and thermal photons.
The Hv"JM(R1, R2) are Hermitean polynomials of two variables. For a given 2X 2 symmetric matrix c J (c J =cj;.) they

are defined as

(C;j) gN+M
HN'M(R1, R2) =( —1) + exp(2 c;JR;Rz) exp( —

2 c;&R;R~), i,j =1,2 . (i 7)
t)RNBR

The expansion of their generating function is

exp(c;Ja;R~ —
—,
' c;Ja;a~) = g HN'M(R1, R2), i,j =1,2 .

~,M N! M!

For the numerical evaluation of our Hermitean polynomials we use the relations

Hpp=1, H~, p=c]~R~+c~pRp, Hp ~ =cppRp+c~pR~

Hl 1 (C11R1+C12R2)(C22R2+C12R1) C12

HN+1 M
= (c11R1+c12R2)HN M Nc11HN 1M——Mc12H-N M 1, -

HN, M+1 (C22R2+C12R1)HN, M MC22HN, M —
1 NC12HN —1,M

(19)

TABLE IV. Superposition of squeezed and thermal states;
r =0.5, (N, ) =6, (NT) =6, y=1.

TABLE V. Superposition of squeezed and thermal states;
r =1, (N, ) =9, (NT) =9, y= l.

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.586 x 10
0.579 x 10
0.567 x 10
0.551 x 10
0.531 x 10
0.509 x 10
0.486 x 10
0.461 x 10
0.436 x 10
0.411 x 10
0.386 x 10
0 362x 10
Q. 338 x 10
0.315x 10
0.293 x 10
0.272 x 10
Q.252 x 1P
0.232 x 10
0.214 x 10
0.197x 10

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.385 x 10
0.384 x 10
0.382 x 10
0.377 x 10
0.372 x 10
0.365 x 10
0.357 x 10
0.348 x 10
0.338 x 10
0 328x10
0.318x 10
0 307x10
Q.296 x 10
0.285 x 10
0.274 x 10
0.263 x 10
Q.252 x 10
0.241 x 10
0.230 x 10
0.220 x 10
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The proof is lengthy but straightforward.
It was proven in Ref. 4 that in the special case of zero

squeezing (r 0), (16) reduces to the standard Glauber-
Lachs formula given in the literature. In the present
work we checked this numerically.

We evaluated (16) for various values of r, (N, ), y. Typ-
ical examples are presented in Tables III-VI. We did not
find any oscillatory behavior of P~. Note that pure
squeezed states in (16) correspond to (Nr) =0, i.e.,
y~ ~. We checked that for y up to 50 no oscillatory be-
havior appears; greater values (y& 50) create numerical
problems in the sense that very large and very small num-
bers appear in the calculation. From a practical point of
view y —50 is already a very small amount of noise, and
although we have not explored the region 50 ( y & ~, we
can conclude that even a small amount of noise destroys
the oscillatory behavior of P~.

We have shown in this paper that photon distributions
associated with pure squeezed states are oscillatory func-
tions of N. Given the fact that other distributions known
in quantum statistics do not present similar behavior, one
might be tempted to argue that this could be used as a cri-
terion for detecting in practice squeezed states. For this
reason we pursued our calculations into squeezed states
with thermal noise, and we found that already very small
amounts of noise destroy the oscillatory behavior. Since
pure squeezed states might be very difficult to achieve in
practice, this finding puts under question the possibility of
using the counting distribution as an indicator of squeezed
states.

After the completion of our work we became aware of a
very recent publication in which the oscillatory behavior
of PN for squeezed states is also found. The effect of noise
is not discussed in this paper.

TABLE VI. Superposition of squeezed and thermal states;
r 1, (N, ) 9, (Nr) 0.18, y 50.

0
1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.225 x 10
0.276 x 10
0.165 x 10
0.638 x 10
0.181x 10
0.399x 10
0.713x 10
0.106
0.134
0.146
0.139
0.117
0.872 x 10
0.584 x 10
0.354 x 10
0.196x 10
0.101 x 10
0.487 x10
0.226 x 10
0.103x 10
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